基于特征向量的二维颅脑CT图像配准与分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着医学影像技术的飞速发展,包括多排螺旋CT在内的先进的成像设备开始在临床上广泛使用。它们产生的影像资料清晰度越来越高,数据量也越来越大,一方面为影像医师提供了更清晰的医学图像,但另一方面也给他们带来了很大的读片负荷。在此背景下,计算机辅助诊断成为解决此问题的一个有效途径。
     在颅脑病变的检查中,许多MRI图像难以应用的场合,高分辨率CT图像是一种十分重要的替代手段,针对脑出血和脑肿瘤等病变更是具有自己独特的优势,具有不可替代的地位。开展基于颅脑CT图像的计算机辅助诊断的研究,需要针对CT图像的特点研究诸如特征提取、图像配准和图像分割在内的一系列相关的技术。
     本文利用医学图像纹理分析技术提出一种基于局部直方图的几何不变矩。通过提取不同尺度下的局部直方图,计算能够反映图像纹理特征的几何不变矩,并融合了图像像素的边界信息,为图像中的每个像素建立了属于其自身的特征向量作为其形态学签名。实验证明,特征向量将图像的灰度信息映射到特征空间,从而增大了属于同一组织的像素的相似性和分属不同组织的像素的差异性,具有良好的纹理特征区分性能。
     在实现计算机辅助诊断的研究中,图像的非刚性配准是关键的一步。本文利用具有相同解剖位置的像素的特征向量的相似性,实现了对应特征点的自动搜索和准确定位,解决了基于特征点的非刚性配准算法需要手动选择标志点的问题。更进一步,利用基于特征向量的对应特征点自动搜索算法的良好性能,通过将特征提取与近似薄板样条非刚性配准相结合,提出了一种特征向量驱动的颅脑CT图像配准算法。该配准算法保证了颅脑CT图像上具有关键解剖意义的点的一一对应,不仅适用于正常图像的配准,而且也适用于病变图像的配准。
     图像分割在基于数字化图谱的病变检出中,是一种重要的定量分析手段。特征向量具有良好的组织区分能力,能够区分出颅脑CT图像上分属不同组织但具有相似或相同灰度值的像素。用改进的模糊C均值聚类的方法将特征空间的点聚集成对应不同组织区域的类团,并将分类结果映射回图像空间,在颅脑CT图像颅内空间的组织分割中取得了良好的效果,能够分割出完整的白质、灰质和脑脊液。
     课题研究工作的成果较好的实现了计算机辅助诊断研究中所需的特征提取、非刚性配准和图像分割等技术,具有实际应用价值。
     本论文的工作得到了国家自然科学基金项目(60771007)的资助。
With the rapid development of medical imaging technology, some advanced imaging equipments, such as Multi-slice Spiral CT, are clinically widely used. The volume data of high quality and large quantity, which is produced by these equipments, can provide the doctors with clearer medical images, while at the same time, also put heavy reading burden on them. The Computer Aided Diagnosis (CAD) system can be an effective means to solve the problem.
     The high resolution CT (HRCT) image is an important substitute for MRI image in some occasions where MRI cannot be used. In particular, the HRCT image has a unique advantage for the detection of brain tumors and cerebral hemorrhage. In order to perform the research of the CT image-based Computer Aided Diagnosis (CAD), many related algorithms, like feature extraction, image registration and image segmentation should be designed and studied.
     In this paper, the local histogram-based Geometrical Moment Invariants (GMI) is proposed on the basis of medical image texture analysis algorithm. Eigenvector is constructed by both calculating the moments based on the local histogram in different scale regions of interest (ROI) and incorporating the boundary information of every pixel. Eigenvector can be regarded as the morphology signature of the pixel. The experiment results show that the eigenvectors, mapping the information of CT image from intensity space into feature space, aggrandize both the similarity of the pixels in the same tissue and discrepancy of the pixels belonging to different tissues, thus demonstrate its good performance in discriminating the medical image texture feature.
     The non-rigid registration is a key process in the CAD system. An eigenvector-based corresponding point automatic detection algorithm is proposed to determine the corresponding landmark points between moving images and fixed images automatically and correctly. The algorithm successfully solved the problem that corresponding point must be labeled manually in the point-based non-rigid registration. Furthermore, this advantage is used in the Approximating Thin-Plate Splines (ATPS) scheme to design an eigenvector-based non-rigid registration algorithm for brain CT images. The registration algorithm can guarantee the one-to-one mapping between the corresponding points in the key anatomical positions and can be applied for the registration of both normal medical images and the abnormal ones.
     In the Atlas-based pathology automatic detection, image segmentation is an important quantitatively analysis method. Eigenvectors can discriminate the pixels of which the intensities are same or similar but belong to different tissues. Therefore, they can be classified by Modified Fuzzy C-mean Method (MFCM) in the feature space and the classification result will be mapped into intensity space. The cerebrum area on brain CT images, in this way, can be segmented into white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF).
     In this research, the algorithms of texture feature extraction, medical non-rigid registration and medical segmentation has been realized. These algorithms can be applied in the Computer-Aided Diagnosis System, so to some extent, they are valuable.
     This research was sponsored by Nature and Science Foundation of China (Project No. 60771007).
引文
李传富. 2005.颅脑CT病变的计算机自动化检出方法研究[D]:[博士].合肥:中国科学技术大学.
    简江涛. 2006.形变模型技术研究及其在医学图像分割中的应用[D]:[博士].合肥:中国科学技术大学, 9-16.
    林瑶,田捷. 2002.医学图像分割综述[J].模式识别与人工智能, 15(2):192-204.
    聂生东. 2000.基于模糊聚类的磁共振颅脑图像分割方法的研究[D]:[博士].上海.上海第二医科大学, 29-88.
    罗述谦.1999.医学图像配准技术[J].国外医学生物医学工程分册. 22(1):1-8.
    罗述谦,周果红. 2003.医学图像的处理与分析[M].北京:科学出版社,65-138.
    盛文,杨江平,柳健等. 2000.一种基于纹理元灰度模式统计的图像纹理分析方法[J].电子学报,28(4):73-75.
    宋利伟. 2003.基于Watershed算法的自动MR脑图像分割[D]:[硕士].上海:上海交通大学, 7-34.
    田捷,包尚联,周明全.医学影像处理与分析[M].北京,电子工业出版社,2003.
    汪小毅,林江莉,李德玉等.基于纹理分析的脂肪肝B超图像识别[J].航天医学与医学工程.2004.17(2):144-149.
    王海南,郝重阳,雷方元等. 2005.非刚性医学图像配准研究综述[J].计算机工程与应用.11:180-184.
    王爱民,沈兰荪. 2000.图像分割研究综述[J].测控技术. 5:1-15.
    谢维信,刘建庄.硬聚类和模糊聚类的结合——双层FCM快速算法[J],模糊系统与数学,1992,2(6):7-85.
    于甬华,王仁本等. 2005.计算机辅助诊断在医学影像学领域的研究进展[J].生物医学工程研究,24(2):133-136.
    袁晓辉,许东,夏良正,等.基于形态学滤波和分水线算法的目标图像分割[J],数据采集与处理,2003,18(4):455-459.
    章毓晋. 2005.图像工程(中):图像分析(第2版).北京:清华大学出版社. 279-309.
    周平. 2007a.基于纹理特征的颅脑CT图像病变自动化检出算法研究[D]:[博士].合肥:中国科学技术大学.
    周平,李传富,陈荻,周康源. 2007b.一种基于小波变换的配准特征点自动标记算法[J].北京生物医学工程. 26(4):356-359.
    周显国,陈大可,苑森淼. 2008.基于DT-CWT变换统计模型的医学图像纹理检索[J].中国医疗设备. 10:16-19.
    赵凤,范九伦. 2007.一种C-均值聚类图像分割的模糊熵后处理方法[J],数据采集与处理,22(3):299-303.
    Ahmadian A, Mostafa A. 2003. An efficient texture classification algorithm using Gabor wavelet[J]. Processings of the 25th Annual International Conference of the IEEE EMBS,1:930-933.
    Bajcsy R, Kova?i? S. 1989.Multiresolution elastic matching[J]. Comput. Vision Graph. Image Process. 46(1): 1-21.
    Banerjee S, Mukherjee DP, Majumdar DD. 1999. Fuzzy c-means approach to tissue classification in multimodal medical imaging[J]. Information Sciences 115(1-4): 261-279.
    Bastos C, Ferreira R, Borges DL. 2003. Analysis of mammogram classification using a wavelet transform decomposition[J]. Pattern Recognition letters. 24(7):973-982.
    Bebngia S, Malik J. 2002. Shape matching and object recognition using shape contexts [J]. IEEE Trans on Pattern Analysis and Machine Intelligence. 24(24):509-521.
    Bezdek JC, Hall LO, Clarke LP. 1993. Review of MR image segmentation techniques using pattern recognition[J]. Med Phys, 20(4):1033-1048.
    Bezdek JC, Hathaway RJ. 1987. Convergence and theory for fuzzy c-means clustering: counterexamples and repairs[J]. IEEE Trans. PAMI, 17(5): 873-877.
    Bookstein FL. 1989. Principal warps:thin-plate splines and the decomposition of deformation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence. 11(6):567-585.
    Brandt ME, Bohan TP, Kramer LA, et al. 1994. Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images[J]. Comput Med Imag Graph, 18:25-34.
    Broit C. 1981. Optimal registration of deformed images[D], PhD Dissertation. University of Pennsylvania.
    Busch C. 1997. Wavelet based texture segmentation of multi-modal tomographic images[J]. Computers & Graphics. 21(3):347-358.
    Canny J. 1986. A computational approach to edge detection[J], IEEE Trans. PAMI, 8 (6): 679-698. Chen C-T. 2003. Radiologic Image Registration: Old Skills and New Tools[J]. Academic Radiology 10(3): 239-241.
    Chen M, Kanade T, Rowley HA, Pomerleau D. 1998. Anomaly detection through registration[J]. In Computer Vision and Pattern Recognition, Proceedings. IEEE Computer Society Conference. 304-310.
    Christensen GE, Rabbitt RD, Miller MI. 1993. A deformable neuroanatomy textbook based onviscous fluid mechanics[C]. In 27th Annual Conference on Information Sciences and Systems,vol 211-216.
    Cosic D, Loucaric S. 1997. Computer system for quantitative analysis of ICH from CT head images[J]. In Engineering in Medicine and Biology Society. Proceedings of the 19th Annual International Conference of the IEEE. 2:553-556.
    Davatzikos C, Genc A, Xu D, Resnick SM. 2001. Voxel-based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy[J]. NeuroImage. 14(6):1361-1369.
    Deleo JM, Schwartz M, Creasey H, et al. 1985. Computer-assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter[J]. Computers and Biomedical Research. 18:79-88.
    Ducan JS, Ayache N. 2000. Medical Image Analysis: Progress over Two Decades and the Challenges Ahead[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 22(1):181-204 Frantz S, Rohr K, Stiehl HS. 2005. Development and validation of a multi-step approach to improved detection of 3D point landmarks in tomographic images[J]. Image and Vision Computing. 23:956-971.
    Gee JC, Reivich M, Bajcsy R. 1993. Elastically deforming 3D atlas to match anatomical brain images[J]. J Comput Assist Tomogr. 17(2): 225-36.
    Gholipour A, Kehtarnavaz N, Briggs R, Michael et al. 2007. Brain Functional Localization: A Survey of Image Registration Techniques[J]. IEEE Trans on Medical Imaging. 26(4):427-451.
    Haralick RM, Shanmngam K., Dinstein I.1973. Texture feature for image classification[J]. IEEE Trans on System, Man, and Cybernetics. SMC-3(6):768-780.
    Hu M. 1962. Visual pattern recognition by moment invariants[J]. IRE Trans. Inform. Theory 8:179-187.
    Joshi S, Lorenzen P, Gerig G., Bullitt E. 2003. Structural and radiometric asymmetry in brain images[J]. Medical Image Analysis. 7(2):155-170.
    Kadir T, Brady M. 2000. Saliency, Scale and Image Description[J]. International Journals of Computer Vision.45(2):83-105.
    Klein A, Hirsch J. 2005. Mindboggle: a scatterbrained approach to automate brain labeling[J]. Neuroimage 24(2): 261-280.
    Lauric A, Frisken S. 2007. Soft Segmentation of CT Brain Data [EB/OL]. http://www.cs.tufts.edu//tech_report/reports/2007-3/report.pdf
    Li H, Deklerck R, De CB, et al. 1995. Object recognition in brain CT-scans: knowledge-based fusion of data from multiple feature extractors[J]. Medical Imaging, IEEE Transactions 14(2):212 - 229.
    Loncaric S, Cosic D, Dhawan AP. 1996. Hierarchical segmentation of CT Head images[J]. In Engineering in Medicine and Biology Society. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE. 2:736-737.
    Lorenzen P, Joshi S, Gerig G, Bullitt E. 2001. Tumor-induced structural and radiometric asymmetry in brain images[J]. In mathematical Methods in Biomedical Image Analysis. MMBIA. IEEE Workshop. 163-170.
    Maes F, Collignon A, Vandermeulen D et al. 1997. Multimodality Image Registration by Maximization of Mutual Information [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 16(2): 187~198.
    Maksimovic R, Stankovic S, Milovanovic D. 2000. Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models-‘snakes’[J]. International Journal of Medical Informatics. 58-59:29-37.
    Matesin M, Loncaric S, Petravic D. 2001. A rule-based approach to stroke lesion analysis from CT brain images[J]. In Image and Signal Processing and Analysis. ISPA. Proceedings of the 2nd International Symposium. 219-223.
    Matsopoulos GK, Atlins S. 1994. Multi-resolution morphological fusion of MR and CT images of the human brain[J]. IEEE Processing Vis Image Signal Process, 141(3):220-232.
    Meier DS, Guttmann CRG. 2003. Time-series analysis of MRI intensity patterns in multiple sclerosis[J]. NeuroImage. 20(2):1193-1209.
    Moon N, Bullitt E, Van Leemput K, Gerig G. 2002. Model-based brain and tumor segmentation[J]. In pattern Recognition. Proceedings of 16th International Conference. 1:528-531.
    Musse O, Heitz F, Armspach J-P. 2003. Fast deformable matching of 3D images over multiscale nested subspaces[J]. Application to atlas-based MRI segmentation. Pattern Recognition 36(8): 1881-1899.
    Nyul LG, Udupa JK, Zhang X. 2000. New variants of a method of MRI scale standardization[J]. IEEE Trans on medical imaging. 19(2):143-150.
    Oatridge A, Hajnal JV, Saeed N, et al. 2002. Subvoxel Image Registration of Multislice (2D) Magnetic Resonance Images in Patients with High-grade Gliomas of the Brain[J]. Clinical Radiology 57(12): 1098-1108.
    Pal NR, Bezdek JC. 1995. On clustering for the fuzzy c-means model[J]. IEEE Trans. FS, 3(3): 370-379.
    Pal NR, Pal SK. 1993. A review of image segmentation techniques[J]. Pattern Recognition. 26(9):1277-1294.
    Park H-J, Westin C-F, Kubicki M, Maier SE, Niznikiewicz M. 2004. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study[J]. NeroImage 23(1):212-223.
    Pun CM,Lee MC. 2003. Log-Polar wavelet energy signatures for rotation and scale invariant texture classification[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence. 25(5):590-603.
    Rohlfing T, Russakoff DB, Maurer CR. 2004. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation[J]. Medical Imaging, IEEE Transactions 23(8): 983 - 994.
    Rohr K. 1999. Image registration based on thin plate splines and local estimates of anisotropic landmark localization uncertainties[J]. Lecture Notes in Computer Science: MICCAI’98. 1496:1174-1183.
    Rohr K. 1997. On 3D differential operators for detecting point landmarks[J]. Image Vision Computing. 15(3):219-233.
    Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. 2001. Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines[J]. IEEE Tran on Medical Imaging. 20(6):526-534.
    Saeed N, Puri B K. 2002. Cerebellum segmentation employing texture properties and knowledge based image processing: applied to normal adult controls and patients[J]. Magn Reson Imaging. 20:425-429.
    Shen DG. 2007. Image registration by local histogram matching[J]. Pattern Recognition. 40:1161-1172.
    Shen DG, Davatzikos C. 2003. Very High-Resolution Morphometry Using Mass-Preserving Deformations and HAMMER Elastic Registration[J]. NeuroImage 18(1): 28-41.
    Shen DG, Davatzikos C. 2002. HAMMER : Hierarchical Attribute Matching Mechnism for Elastic Registration[J]. IEEE on Medical Imaging. 21(11):1421-1439.
    Slomka PJ, Radau P, Hurwitz GA, et al. 2001. Automated three-dimensional quantification of myocardial perfusion and brain SPECT[J]. Computerized Medical Imaging and Graphics 25(2): 153-164.
    Soltanian ZH, Windham JP, Peck DJ. 1994. Semi-automatic brain morphometry in CT[C]. In Nuclear Science Symposium and Medical Imaging Conference. IEEE Conference Record, 4. 1812– 1816.
    Stricker M, Orengo M. 1995. Similarity of color images, in: Proceedings of the Storage and Retrieval for Image and Video Databases III[J]. SPIE Conference Proceedings. 2420:381-392.
    Thirion JP, Prima S, Subsol G, Roberts N. 2000. Statistical analysis of normal and abnormal dissymmetry in volumetric medical images[J]. Medical Image Analysis. 4(2):111-121.
    Thompson PM, Toga AW. 2000. Elastic Image Registration and Pathology Detection[J]. In: Bankman I,ed. Handbook of Medical Image Processing, vol Academic Press.
    Thurfjell L, Andersson J, Pagani M, et al. 1998. Automatic detection of hypoperfused areas in SPECT brain scans[J]. Nuclear Science, IEEE Transactions 45(4): 2149 - 2154.
    Toga AW, Thompson PM. 2001. The role of image registration in brain mapping[J]. Image and Vision Computing 19(1-2): 3-24.
    Unser M. 1995. Multigrid Adaptive Image Processing[J]. Processing of the 1995 IEEE Conference on Image Processing, Washington DC, USA, 1:49-52.
    Vannier MW, Haller JW. 1998. Biomedical image segmentation[J]. In Image Processing. ICIP 98. Proceedings. 1998 International Conference,vol 2. 20 - 24.
    Viola PA, Wells WM. 1997. Alignment by Maximization of Mutual Information[J]. International Journal of Computer Vision, 24(2): 137~154.
    Wahba G. 1990. Spline Models for Observational Data[M]. Philadephia, PA: Soc. Ind. Appl. Math. Wells W. Grimson W. Kikins R, et al. 1996. Adaptive Segmentation of MRI Data[J]. IEEE Trans on Medical Imaging, 15(4):429-442.
    Xie Z, Farin GE. 2004. Image registration using hierarchical B-splines[J]. Visualization and Computer Graphics, IEEE Transactions 10(1): 85 - 94.
    Xue Z, Shen DG, Davatzikos C. 2006. Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping[J]. Medical Image Analysis. 10:740-751.
    Yan M, Karp J. 1995. An Adaptive Bayesian Approach to Three-Dimensional MR Brain Segmentation[J]. Processing of 6th International Conference on Information Processing in Medical Imaging, He de Berder, France, 201-213.
    Yao W, Qian J, Zhao BZ. 2002. Comparative study between neighborhood pixels calculator two and one in the ultrasonic texture analysis between parenchyma of normal liver and fatty liver, and between parenchyma of normal thyroid and nodular goiter[J]. Chinese Journal Ultrasonic Medical. 18(3):172-174.
    Yoon OK, Kwak DM, kin DW, et al. 1999. MR brain image segmentation using fuzzy clustering[J]. In Fuzzy Systems Conference Proceedings. FUZZ-IEEE’99. IEEE International. 2:853-857.
    Zavaljevski A, Dhawan AP, Gaskli M, Ball W, Johnson JD. 2000. Multi-level adaptive segmentation of multi-parameter MR brain images[J]. Computerized Medical Imaging andGraphics. 24(2):87-98.
    Zhang H, Low C, Smoliar W, et al. 1995. Video parsing, retrieval and browsing: an integrated and content-based solution[J]. ACM Multimedia. 15-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700