高速光探测器性能的测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作是围绕以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”(项目编号:2003CB314900)中课题1“单片集成光电子器件的异质兼容理论与重要结构工艺创新”(项目编号:2003CB314901);国家自然基金重点项目“GaAs、InP基功能楔型结构材料工艺研究及在新型光电子器件中的应用(延续)”(项目批准号:90601002);“高等学校学科创新引智计划资助”(Supported by the 111 Project)第二批建设项目:“通信与网络核心技术创新引智基地”项目(项目编号:B07005)以及教育部“长江学者和创新团队发展计划”资助(No.IRT0609)展开工作的。
     随着信息技术的不断发展,光纤通信技术在不断的向高速的方向演进。作为光纤通信系统核心器件——光探测器,它的各种参数,包括暗电流、光电转换效率、频率响应特性、非线性特性等,都需要进行精确的测量和分析,来进一步指导光探测器的设计。本论文围绕光探测器芯片的基本参数测量及光探测器频率响应测量的两种最普遍的方法——矢量分析仪法和光外差法进行了理论上的分析及相关的实验验证,取得的成果如下:
     1.总结分析了光探测器芯片的各种重要参数,包括Ⅰ-Ⅴ特性、暗电流、光电转换效率、频率响应特性的定义及相应的测试方法,特别是通过测量结果分析出光探测器性能影响。
     2.对光波器件分析仪法测量光探测器频率响应的原理进行推导分析,得到光探测器S参数的意义。分析了光波器件分析仪法的校准方案,并用此法对实验室研制的PIN光探测器进行了测试。并基于测试结果完成光探测器小信号模型的参数提取。
     3.通过实验证明了光外差法测量光探测器频率响应特性的一种校准方法的有效性。首先根据光外差法的基本原理推导了光探测器频率响应的表达式。发现了激光器调谐过程中的输出不稳定性是影响光外差法测量光探测器频率响应特性结果准确性的主要原因。通过实验逐一比较了采用与没有采用相应校准方法的结果,验证了该校准方法的有效性。
     4.在光外差法测量光探测器频率响应特性实验过程中观测到了光探测器的非线性现象。通过对光探测器非线性模型进行分析,得到光探测器非线性主要原因是探测器载流子的速率和扩散常数与载流子的密度有关,得到的结论证明观测到非线性现象的正确性。
     5.搭建了测量外延片透射/反射谱测试平台和光谱响应测试装置,使用C#语言并基于VISA接口技术开发出自动测试平台,提高了实验室测试项目的效率和精度。
The research work of this thesis was supported by the sub-project one "Theory on heterogeneous materials compatibility and Key Structure & Technology Innovations for Monolithic Integrated Optoelectronic Devices" (Project No.2003CB3149001) of the 973 project "Basic Research on Integrated Optoelectronic Devices and Microstructure Optical Fibers with Structure and Technology Innovations for Future Advanced Optical Communications"(project No. 2003CB314900 ), national nature science key projects "Research in the material and fabrication method of GaAs/InP taper structure and applications in the novel opt-electronic devices "(project No. 9001002), the 2nd stage project of 111 project "Communications and network technology innovation and personnel core base" (project No. B07005) and Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0609) , MOE, China.
     Along with the development of information technology, optical communication technologies have been pushed towards ultra high speed characters. The parameters of Photodetectors, which is the core device in optical communication systems, such as dark current, responsivity, quantum efficiency, frequency response and nonlinear characters, should be measured precisely. And these parameters could be used to design and fabricate new photodiodes.
     In this master's thesis, almost all important parameters of photodetectors and how to measure these parameters are introduced, Two normal method of measuring the frequency response of photodetectors, light wave component analyzer and optical heterodyne method, were analyzed and many measurements has been taken to prove the conclusions. The research results can be summarized as follows:
     1. Parameters of photodetectors, such as I-V character, dark current, responsivity, quantum efficiency and frequency response, and how to measure these parameters are introduced.
     2. The principle of light wave component analyzer is introduced here and the meaning of S parameters of photodiodes is given. Three small signal model of photodetector is analyzed and the parameter is extract and the model is simulated by ADS.
     3. A systematic calibration method of measuring photodetector frequency response based on optical heterodyne technique is approved. The expression of photodetector frequency response is achieved by analyzing the fundamental principle of optical heterodyne. It is found that the main reason of influencing the measurement results is the instable light of lasers during tuning. Experiments improve that the calibration method is feasible and effective.
     4. Nonlinear phenomenon is observed during measuring the frequency response, and the principle is analyzed, and the conclusions are corresponding to the result that measured.
     5. The automatic measurement system of measuring the reflection/ transmission spectrum and the response spectrum is established by using C# and VISA architecture.
引文
[1]顾婉仪,李国瑞《光纤通信系统》北京邮电大学出版社1999年出版
    [2]Jinwei Shi,Kiangiap Gan,and Yijen Chiu etal.Ultra-high bandwidth(570GHz)Metal-Semiconductor-Metal Traveling-Wave-Photodetectors,Proceeding of APMC2001,Taipei,Taiwan,R.O.C.:358-361
    [3]任晓敏 黄永清 刘凯 Joe C.Campbell,一种新型高性能光电探测器结构的研究,光电子·激光 第9卷 第4期 1998年8月
    [4]Kazutoshi Kato,Ultrawide-band/high-frequency Photodetectors,IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.47,NO.7,JULY 1999
    [5]祝宁华《光电子器件微波封装和测试》科学出版社2007年出版
    [6]李秀萍 高建军,《微波射频测量技术基础》
    [7]S.lezekiel,B.Elamaran and R.D.Pollard,Recent developments in lightwave network analysis,ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL APRIL 2001
    [8]G.Lucovsky,R.F.Schwarz,and R.B.Emmons,Transit-time considerations in PIN diodes,Journal of Applied Physics,March 1964,33(3):622-628
    [9]Elliot Eichen,John Schlafer,and William Rideout,Wide-Bandwidth Receiver/photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,IEEE J.Lightwave Technol.,1990,8(6):912-916.
    [10]D.Trommer,G.Unterborsch,and D.Schumann etal.Above 100 GHz performance of waveguide integrated photodiodes measured by electro-optical sampling,OFC2003,2003,1(3):343-345
    [11]R.Thomas Hawkins,Michael D.Jones,and Steven H.Pepper,Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,IEEE J.Lightwave Technol.,1991,9(10):1289-1294.
    [12]张胜利,高速PIN光电探测器的散射参量测量和TO封装,博士论文,中国科学院半导体研究所 2004.6.6
    [13]Paul D.Hale Dylan F.Williams,Calibrated Measurement of Optoelectronic Frequency Response,IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.51,APRIL 2003
    [14]梁军、刘旺、孙圣和,网络分析仪误差模型及应用,计量技术,2002 No.6
    [15]HP 8703A Lightwave Component Analyzer Operating Manual,Aug.1991
    [16]Hamid Z F,David W W,Russell E E,et al.Numerical modeling of energy balance equations in quantum well AL xGal-xAsGaAs PIN photodetectors.IEEE Transactions on Electron Devices,2000,47(5):915-921.
    [17]Guido T,Isabelle H,Marc S,et al.An analytical small-signal bias-dependent nonuniform model for PIN traveling-wave photodetectors.IEEE Transactions on Microwave Theory and Techniques,2002,50(11):2553-2557.
    [18]Huang H P,Zhu N H,Liu J,Extraction of intrinsic frequency response of a PIN photodiode.IEEE Photon Technol Lett,2005,(17):2155-2157
    [19] Master of Science Thesis in Photonics and Microwave Engineering by Johan Sjostrom , Measurement and modeling of photodetectors for monolithic optoelectronic receivers for bit rates up to 40 Gb/s. Stockholm, April 1998
    
    [20] G. wang, T. Tokumitsu, I. Hanawa et al. Analysis of high speed p-i-n photodiodes S-parameters by a novel small signal equivalent circuit modle, IEEE Microwave Wireless Comp. Lett, vol. 12 Oct. 2002: 378-380
    
    [21] Gang Wang, Tsuneo Tokumitsu, Ikuo Hanawa et al., A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes, IEEE Transaction on Microwave Theory and Techniques, VOL. 51, NO. 4, April.2003:1227-1233
    
    [22] Crowe W, Craig R M J. GaAs laser linewidth measurements by heterodyne detection. Appl Phys Lett, 1964,5: 72.
    
    [23] Bergano N S. Wavelength discriminator method for measuring dynamic chip in DFB lasers. Electron Lett, 1988, 24:1296-1297
    
    [24] Kikuchi K, Okoshi T, Measurement of FM noise, and field spectra of 1300nm InGaAsP DFB laser and determination of the linewidth enhancement factor. IEEE J Quantum Electron, 1985, 11:1814-1818
    
    [25] Ishida O. Delayed self heterodyne measurement of laser frequency fluctuations. J Lightwave Technol., 1991, 9: 1528-1533.
    
    [26] Joseph H, Sadot D. A novel self-heterodyne method for combined temporal and spectral high resolution measurement of wavelength transients in tunable lasers. IEEE Photon Technol Lett, 2004, 16:1921-1923.
    
    [27] Nakajima F, Ohno T, Yoshino K, et al. Monolithic optical millimeter wave transmitter comprising 125 GHz modelocked laser diode and electro absorprion modulator. Electron Lett, 2005, 41(20):1135-1136
    
    [28] N H Zhu, J M Wen, H S San et al. Improved optical heterodyne methods for measuring frequency responses of photodetectors, IEEE Journal of Quantum Electronics, 2006, 42(3):241-248
    
    [29] Satoki Kavanishi, Masatoshi Saruwatari, A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL.38, NO.2, APRIL 1989:569-573
    
    [30] Wen Jimin, San Haisheng, and Huang Hengpei et al. Accurate Characterization for the Frequency Response of High-Speed Photodetectors, CHINESE JOURNAL OF SEMICONDUCTORS, Vol.27 No.9 Sep.,2006: 1630-1634
    
    [31] Keith J. Williams, Ronald D. Esman, Mario Dagenais, Nonlinearities in PIN Microwave Photodetectors, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.14, NO.1, JANUARY 1996:84-95
    
    [32] Y L Huang, C K Sun, Nonllinear saturation behaviors of high speed pin photodetectors, Journal of Lightwave Techbology, 2000,18(2):203-212
    
    [33] P.S. Matavulj, D. Gvozdic and J. B. Radunovic, Analysis of Linear and Nonlinear Time Response of a PIN Photodiode By a tow valley model, Proc. 21~(st) International Conference on Microelectronics, Vol .1, NIS, YUGOSLAVIA, 14-17 Sep.1997
    
    [34] Petar S. M., Dusan S. G and Jovan B. R., Comparison of nonlinear and nonstationary Response of conventional and resonant cavity enhanced PIN photodiode,Journal of Applied Physics,2000,87(6):3086-3092
    [35]刘晖,朱日宏等,半导体光电探测器响应度测试装置的研制,光学学报,1999,19(11):1581-1583
    [36]张辉,刘建伟等,紫外及可见光探测器光谱响应测试系统的研制,激光与红外,2003,33(5):371-373
    [37]黄成,用于DWDM系统的集成解复用接收器件的理论和试验研究,硕士论文,北京邮电大学 2005.3.15
    [38]陈钰GPIB系统中光功率计自动测试的实现,微计算机信息(测试自动化),2007,23(5-1):178-179
    [39]陈磊,张靖,张瑞康等,SG-DBR激光器波长自动测试控制系统,光通信研究,2007年第二期:58-60
    [40]曹明,vC++中用通讯控件开发串行通信程序,电脑编程技巧与维护,1999年第三期:22-24
    [41]赵桂明,利用VISA通过LAN实现对Tek3032B编程控制,实践心得,2007年6月,26(6):78-79
    [42]鲁昌华,笪许燕,王光春等,基于GPIB的自动测试系统组态软件的研究,电测与仪表,2001年第12期:38-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700