基于运动捕获的人体运动生成与编辑关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在虚拟环境中生成人体运动是计算机图形学和计算机动画的研究热点之一,能够广泛应用于游戏、影视、广告、军事等领域。由于人体结构的复杂性,生成自然逼真的人体运动是一项烦琐的工作,即使借助动画制作软件,生成一段运动也需要耗费大量的时间和精力。随着运动捕获技术的发展和运动捕获设备的普及,出现了一种新的运动生成方法,即基于运动捕获数据驱动虚拟角色的方法,该方法具有易于实现、生成的运动逼真度高等优点。但是,由于人体运动的多样性,有限的运动捕获数据无法满足广泛的实际应用的需求,基于现有运动生成新运动、提高现有运动的可重用性便凸显其重要性。
     本文研究的目的在于基于现有的人体运动数据,通过用户简单的交互式控制,生成自然逼真的新运动,以提高现有人体运动的可重用性,降低人体运动生成的复杂度。其中涉及的关键技术主要包括运动分割、运动的非线性降维、运动生成与编辑、运动连接、运动重定向等。本文综合运用统计学习、模式识别、数据挖掘、计算机图形学、最优化理论等学科理论对相关问题展开研究,对以上关键技术提出可行的解决方法。
     在理论研究和算法实践过程中,根据所研究的内容以及所要解决的问题,有针对性地提出了一些新思路和新算法,本文主要的创新点和贡献有:
     提出一种基于运动特征变化探测的运动自动分割方法。运动捕获设备获取的运动素材往往包含多个语义特征,在运动创作时一般是对其中的某个语义特征的运动片段进行素材重用,因此需要将包含多个语义特征的长运动分割为独立语义特征的运动片段。运动的语义特征属于主观认知范畴,为了避开对运动语义特征直接分析和建模的困难,将运动映射到低维特征空间,在特征空间提取运动几何特征并使之与运动的高层语义特征相对应,运动几何特征的变化能够反映运动语义特征的改变。该方法借助分析运动的几何特征来分析运动的高层语义特征,实现运动在语义层次的自动分割。
     提出快速自适应比例高斯过程隐变量模型,并提出一种基于该模型的人体运动数据降维及运动生成方法。针对人体运动数据维度高、不易直接分析的特点,通过对运动数据进行统计学习,实现非线性降维的同时获得了该运动姿势空间的概率描述,姿势概率作为姿势自然逼真程度的一个量化度量,概率越大表示姿势与样本运动越相似,因此越自然逼真。在给定末端约束条件下求取满足约束的、同时概率最大的姿势,作为逆向运动学的解,克服了传统逆向运动学算法计算烦琐、效果不逼真的缺点。在姿势生成的基础上,给出了两种运动生成方法,即基于运动轨迹编辑的运动生成和基于关键帧编辑的运动生成。相对于比例高斯过程隐变量模型,该模型具有更快的收敛速度和更高的收敛精度,同时能够自适应运动编辑的方向,有效地扩大了运动的可编辑幅度。
     提出一种基于运动动态性建模的运动自动连接方法。引入隐马尔可夫模型对运动动态性进行建模,通过快速自适应比例高斯过程隐变量模型对运动数据进行降维,将运动数据映射到低维隐空间,在隐空间基于马尔可夫链对运动的时序动态性进行建模,达到了在低维空间分析高维运动数据的目的。为了解决运动连接的两个核心问题,即过渡运动长度估算问题和过渡运动姿势生成问题,提出了基于运动速度的过渡运动长度估算方法和基于隐轨迹插值的过渡运动姿势生成方法。
     提出一种面向人体四肢的运动重定向方法,包括面向人体下肢的运动重定向和面向人体上肢的运动重定向。对于面向下肢的运动重定向,将运动依据其是否需要对脚与约束面的接触位置进行约束分为两类,针对不需要约束脚与约束面的接触位置的运动提出基于下肢向量特征不变的运动重定向方法,针对需要约束脚与约束面的接触位置的运动提出基于下肢运动轨迹投影变换的运动重定向方法。对于面向上肢的运动重定向,分析了人体上肢在运动过程中受到的约束情况,根据不同约束提出静态约束的运动轨迹重定向方法、动态约束的运动轨迹重定向方法和语义约束的运动轨迹重定向方法,将原始骨骼模型的上肢运动轨迹重定向到目标骨骼模型,以重定向后的运动轨迹作为约束对目标骨骼模型进行逆向运动学求解,最终实现运动重定向。
     设计并实现了一个基于运动捕获的人体运动生成与编辑原型系统,即三维虚拟人运动生成与编辑系统,对本文所提出的算法和技术进行了验证,系统在相关项目中得到了较好的应用。
     综上所述,通过本文的研究,解决了基于运动捕获的人体运动生成与编辑中涉及到的若干关键技术,提高了现有运动的可重用性,对运动捕获技术更好地应用于角色运动和计算机动画起到了一定的促进作用。
Synthesizing virtual character motion in virtual environment is one of researchfocuses in computer graphics and computer animation, which can be used widely togame, advert, movie, military affairs and so on. As the complexity of virtual characterskeleton, synthesizing realistic motion in computer is very difficult. Synthesizing amotion segment must take animator lots of time and energy even by dint of computeranimation software. As the development of motion capture technology, it became realityto generate virtual character motion with motion capture data. This method is easy toimplement and can generate vivid motion, but existing motion capture data are notenough to satisfy application in practice. So, it is need to reuse existing motion capturedata to generate new motion.
     The aim of this thesis is to generate vivid human motion, based on existing humanmotion data, by simple interactive control of user. This can reduce the complexity ofhuman motion generation and reuse existing human motion better. The key technologiesinclude: nonlinear dimensionality reduction of human motion, motion generation andediting, motion extension, motion segmentation and join, motion style editing and so on.The thesis is focused on the above associated issues, employing the knowledge fromstatistic learning, pattern recognition, data mining, computer graphics, optimizationtheory, etc.
     This dissertation focuses on the reconstruction problem of geometries and texturesfrom multiple wide baseline images,some creative algorithms and methods have beenproposed, and the highlighted ideas and main contributions are described as follows:
     An automatic segmentation method for motion based on detecting motionfeature change is proposed. The motion captured by motion capture equipment ofteninclude several semantic features and the motion segments which include singlesemantic feature are needed in motion production, so the long motion which includeseveral semantic features must be segmented as motion segments. The semantic featureof motion belongs to the category of subjective cognition, the motion is mapped tolow-dimensional feature subspace to avoid the difficulty to analyse and model semanticfeature of motion directly and the motion geometric feature is extracted in the featuresubspace. The geometric feature corresponds to the high-level semantic feature and itschange can denote the change of the high-level semantic feature. This method analysesthe high-level semantic feature by analyzing the geometric feature to implementautomatic segmentation for motion in the semantic level.
     A method of human motion nonlinear dimensional reduction and generation isproposed, based on fast adaptive scaled Gaussian process latent variable models.Through statistical learning on motion data, the motion data are mapped from high-dimensional observation space to low-dimensional latent space to implementnonlinear dimensional reduction, and probability distributing of posture space whichmeasures the nature of posture is obtained. The posture which meets constraints and hasmaximal probability can be computed as the solution of inverse kinematics. Thismethod can avoid cockamamie computation and posture distortion existing in traditionalinverse kinematics. Then, two methods of motion generation are proposed, which arethe motion generation based on motion trajectory editing and the motion generationbased on key frame editing. Compared with the SGPLVM, the FASGPLVM has higherconvergence velocity and precision and extends editing range of motion by adaptingmotion editing direction.
     An automatic transition method for motion based on motion dynamic model isproposed. The hidden Markov model is introduced to model the motion dynamics, inwhich the motion data are mapped to low-dimensional latent space by the fast adaptivescaled Gaussian process latent variable models and the motion danymics is modeledbased on Markov chain in the latent space, to analyse the high-dimensional data in thelow-dimensional space. To solve the two key problems, estimation of the length oftransition motion and generation of pose of transition motion, an estimation method ofthe length of transition motion based on motion velocity and a generation method ofpose of transition motion based on latent trajectory interposition are proposed.
     A motion retargeting method orienting human limbs is proposed, whichincludes motion retargeting orienting human lower limbs and motion retargetingorienting human upper limbs. For motion retargeting orienting human lower limbs,motions are classified to two classes by needing to constrain the contact position of footand constraint surface or not. A motion retargeting method based on lower limbs vectorfeature fixedness is proposed for the motions which do not need to constrain the contactposition of foot and constraint surface, and a motion retargeting method based on lowerlimbs motion trajectory projection is proposed for the motions which need to constrainthe contact position of foot and constraint surface. For motion retargeting orientinghuman upper limbs, the motion trajectory, including static state constraint, dynamicconstraint or semantic constraint, is retargeted to the target skeleton model. Then theretargeted motion trajectory is used as constraint to solve inverse kinematics for targetskeleton model to implement motion retargeting.
     A prototype system of human motion generation and editing based on motioncapture is designed, named motion generation and editing system for3D virtual human,in which methods of this thesis are validated. Some parts of this system have beenapplied to correlative projects.
引文
[1]赵沁平.虚拟现实综述[J].中国科学(F辑):信息科学,2009,39(1):2~46.
    [2]王兆其.虚拟人合成研究综述[J].中国科学院研究生院学报,2000,17(2):89~97.
    [3] http://mocap.cs.cmu.edu/.
    [4] Behrens T, Zhu A. X, Schmidt K, et al. Multiscale Digital Terrain Analysis andFeature Selection for Digital Soil Mapping [J]. Geoderma,2010,155(3-4):175-185.
    [5] K. Pearson. On lines and planes of closest fit to systems of points in space.Philosophical Magazine,1901,2(6):559-572.
    [6]孙宏伟,顾明,孙家广.基于主分量分析的相关矢量量化编码算法[J].计算机辅助设计与图形学学报.2005,17(8):1662~1666.
    [7] Michael E. Tipping, Chreistopher M. Bishop. Probabilistic Principal ComponentAnalysis[J], Journal of the Royal Statistical Society,1999,61(3):611~622.
    [8]聂琨坤.独立分量分析及其在数据挖掘中的应用[D].成都:电子科技大学,2005:29~43.
    [9] Radulovic J, Rankovic V. Feedforward Neural Network and Adaptive Network-based Fuzzy Inference System in Study of Power Lines[J]. Expert Systems withApplications,2010,37(1):165~170.
    [10] Khosravi A, Nahavandi S, Creighton D. A Prediction Interval-based Approach toDetermine Optimal Structures of Neural Network Metamodels[J]. Expert Systemswith Applications,2010,37(3):2377~2387.
    [11] Tenenbaum J, Silva V.D, Langford J. A Global Geometric Framework forNonlinear Dimensionality Reduction[J]. Science,2000,290(5500):2319-2323.
    [12]甘应爱,田丰,李维铮等.运筹学[M].北京:清华大学出版社,2005:262~266.
    [13] Roweis S, Saul L. Nonlinear Dimensionality Reduction by Locally LinearEmbedding[J]. Science,2000,290(5500):2323~2326.
    [14]肖传乐,曹槐.基于流形学习的基因表达谱数据可视化[J].生物信息学,2009,(01):47~51.
    [15] Rodr Guez-rajo F. J, Astray G, Ferreirolage J. A, et al. Evaluation of AtmosphericPoaceae Pollen Concentration using A Neural Network Applied to A CoastalAtlantic Climate Region[J]. Neural Networks,2010,23(3):419~425.
    [16] Christopher M. Bishop, Pattern Recognition and Machine Learning[M],Singapore,2006.
    [17] R.Rosipal, M.Girolami, L.J. Trcjo, A. Cichochi, Kernel PCA for FeatureExtraction and De-Noising in Non-linear Regression [J]. Neural Computing&Applications,2001,10(3):231~243.
    [18] B. Sch lkopf, A. J. Smola, K. R. Müller. Kernel Principal Component Analysis[C]//Proc. of1997International Conference on Artificial Neural Networks(ICANN’97), Lausanne, Switzerland,1997:583.
    [19] Neil D. Lawrence. The Gaussian process latent variable model [T]. Tech. Report.2006.
    [20] QU Shi, WEI Ying-mei, KANG Lai, WU Ling-da. Pose Synthesis of VirtualCharacter Based on Statistical Learning[C]//Proc. of the InternationalSymposium on Computer Network and Multimedia, Wuhan, China,2009:36~39.
    [21] Carl H, Philip H S, Neil D L. Gaussian process latent variable models for humanpose estimation[C]//Proc. of Machine Learning for Multimodal Interaction. Brno:Springer-Verlag Press,2007:132~143.
    [22] R.N. Bindiganavale. Building Parameterized Action Representations fromObservation [D]. University of Pennsylvania,2000.
    [23] Guo S, Roberge J. A high-level Control Mechanism for Human LocomotionBased on Parametric Frame Space Interpolation[C]//Proc. of EurographicsWorkshop on Computer Animation and Simulation96,1996:95~107.
    [24] C F Rose III. Verbs and Adverbs: Multidimensional Motion Interpolation usingRadial Basis Functions [D]. Princeton University,1999.
    [25] Shoemake K. Animating Rotation with Quaternion Curves. Computer Graphics,1985,19(3):245~254.
    [26] Jack B Kuipers. Quaternions Rotation Sequences: a Primer with Applications toOrbits, Aerospace, and Virtual Reality[D]. Princeton, Princeton University Press,1998.
    [27] J Lee, S Y Shin. Multiresolution Motion Analysis with Applications[C].//Proc.of the International Workshop on Human Modeling and Animation, Seoul,2000:131~143.
    [28]郭翰文,石民勇,费广正.基于关键帧的PCA与RBF高效运动编辑算法[J].系统仿真学报,2007,19(2):95~98.
    [29] A.Witkin, M. Kass. Spacetime Constraints[J]. Computer Graphics.1988,(22):159~168.
    [30] M. F. Cohen. Interactive Spacetime Control for Animation. Computer Graphics.1992,26(2):293~302.
    [31] M. Gleicher, P. Litwinowicz. Constraint-based Motion Adaptation[J]. Journal ofVisualization and Computer Animation.1998,(9):65~94.
    [32] Charles Rose, Michael F. Cohen, Bobby Bodenheimer. Verbs and Adverbs:Multidimensional Motion Interpolation[J]. IEEE Computer Graphics andApplications,1998,18(5):32~40.
    [33]肖俊.智能人体动画若干关键技术研究[D].浙江:浙江大学计算机科学与技术学院,2007:82~93.
    [34] Eugene Hsu, Kari Pulli, Jovan Popovi. Style Translation for Human Motion[J].ACM Transactions on Graphics.2005,24(3):1082~1089.
    [35] M.E. Brand, A. Hertzmann. Style Machines[C]//In Proceeding of ACMSIGGRAPH2000. New York: ACM Press,2000:183~192.
    [36] Keith Grochow, Steven L. Martin, Aaron Hertzmann, et al. Style-based inversekinematics[J]. ACM Transactions on Graphics,2004,23(3):522~531.
    [37] A. Bruderlin, L. Williams. Motion Signal Processing[C]//In Proceeding of ACMSIGGRAPH95. Los Angeles: ACM Press,1995:97~104.
    [38] Munetoshi Unuma, Ken-ichi Anjyo, Ryozo Takeuchi. Fourier Principles forEmotion-based Human Figure Animation[C]//In Proceeding of ACMSIGGRAPH95. Los Angeles: ACM Press,1995:91~96.
    [39] J. Lee, S. Y. Shin. A Hierarchical Approach to Interactive Motion Editing forHuman-like Figures[C].//Proc. of SIGGRAPH99,1999:39~48.
    [40] J. Lee, S. Yong Shin. Multiresolution Motion Analysis and Synthesis [J].Graphical Models,2000,63(2):87~105.
    [41]刘丰,庄越挺,罗忠祥,等.基于小波变换的运动分析及其应用[J].中国图像图形学报A.2003,8(1):68~76.
    [42]杨跃东,王莉莉,郝爱民等.基于几何特征的人体运动捕获数据分割方法[J].系统仿真学报,2007,19(10):2229~2234.
    [43]肖俊,庄越挺,吴飞.三维人体运动特征可视化与交互式运动分割[J].软件学报,2008,19(8):1995~2003.
    [44] Barbic J, Safonova A, Pan JY, et al. Segmenting Motion Capture Data intoDistinct Behaviors[C]//Heidrich W, Balakrishnan R, eds. Proc. of the GraphicsInterface Conference. London: Canadian Human-Computer CommunicationsSociety,2004:185~194.
    [45]王天树,郑南宁,徐迎庆等.人体运动非监督聚类分析[J].软件学报,2003,14(2):209~213.
    [46]李婷.基于运动捕获数据的人体运动编辑技术研究[D].湖北:华中科技大学,2008:18~30.
    [47]杨春玲,董传良.基于多分辨率模型的快速运动过渡生成算法[J].计算机仿真,2007,24(1):186~195.
    [48]陆文宇.手部运动重定向与运动连接技术的研究[D].天津:天津大学,2009:29~37.
    [49] Jin Ok Kim, Bum Ro Lee, Chin Hyun Chung. Real-time Interactive MotionTransitions by A Uniform Posture Map[J]. Future Generation Computer Systems,2005:1106~1116.
    [50] B. Fritzke. Growing Cell Structures-A Self-organizing Network for UnsupervisedAnd Supervised Learning[J]. Neural Netw.1994,7(9):1441~1460.
    [51] T.M. Martinetz, S.G. Berkovich, K.J. Schulten. Neural-gas Network for VectorQuantization And Its Application to Time-series Prediction[J]. IEEE Trans.Neural Netw.1993,4:558~568.
    [52]杨丽娟.运动重定向与运动连接技术的研究[D].天津:天津大学,2008:36~48.
    [53] Aubel A, Boulic R, Thalrnann D. Real-time Display of Virtual Humans: Levels ofDetails and Impostors[J]. IEEE Trans. on Circuits and Systems for VideoTechnology,2000,10(2):207~217.
    [54] Faiz M Z. Inverse Kinematics Solution for Robot Manipulator based on NeuralNetwork[J]. Journal of Basic and Applied Sciences,2009,1(2):147~154.
    [55]陈志华,马利庄,杨文山.基于捕获数据的运动编辑技术研究综述[J].计算机研究与发展.2005,42(增刊):295~299.
    [56] A.Balestrino, G.De. Maris, L.Sciavicco. Robust Control of Robotic Manipulatiors
    [C]//In Proceedings of the9th IFAC World Congress. Budapest,1984.
    [57] Y.T,Tsai, D.E.Orin. A Strictly Convergent Real-time Solution for InverseKinematics of Robot Manipulators [J]. Journal of Robot System,1987,4(4):477~501.
    [58] L.Sciavicco, B.Siciliano. A Dynamic Solution to The Inverse Kinematic Problemfor Redundant Manipulators[C]//In Proceedings of1987IEEE Int’l Conf.Robotics and Automation. Los Alamitos, CA: IEEE Computer Society Press,1987:1081~1087.
    [59] J.Zhao, N.I. Badler. Inverse Kinematics Positioning Using NonlinearProgramming for Highly Articulated Figures [J]. ACM Trans. Graphics,1994,13(4):313~336.
    [60] J.Lee, S.Y.Shin. Multiresolution Motion Analysis And Synthesis [T]. SeoulNational University, Tech. Rep.: CS-TR-2000.149,2000.
    [61] A.Bruderlin, L.Williams. Motion Signal Processing[C]//In Proceedings ofSIGGRAPH’95,1995:97~104.
    [62] M. Gleicher. Retargetting Motion to New Characters[C]//In Proceedings ofACM SIGGRAPH1998. New York, ACM Press,1998:33~42.
    [63] R.Bindiganavale, N.I.Badler. Motion Abstraction and Mapping with SpatialConstraints[C]//In Proceedings of CAPTECH’98,1998:70~82.
    [64] Ming-Kei Hsieh, Bing-Yu Chen, Ming Ouhyoung. Motion Retargetting AndTransition in Different Articulated Figures[C]//In Proceedings of2005International Conference on Computer Aided Design and Computer Graphics.
    [65] J Choi, H.S.Ko. On-line Motion Retargeting[C]//In Proceedings of the Int’lPacific Graphics’99, Seoul, Korea,1999.
    [66] Tak Seyoon, Hyeongseok Ko. Example Guided Inverse Kinematics[C]//InProceedings of the International Conference on Computer Graphics andImaging(CGIM)2000, Las Vegas, Nevada, USA,2000:19~23.
    [67] Raibert M H, Hodgins J K. Animation of Dynamic Legged Locomotion[C]//InProceedings of SIGGRAPH’91Conference Proceedings, Las Vegas, Nevada,USA,1991:349~358.
    [68] S.Tak, Song O-Y.Ko H.S. Motion Balance Filtering[C]//In Proceedings of the21th European Conf. Computer Graphics. Cambridge, Blackwell Publishers,2000:437~446.
    [69] K.Pullen, C. Bregler. Motion Capture Assisted Animation: Texturing andSynthesis[C]//In Proceedings of ACM SIGGRAPH2002. New York, ACM Press,2002.
    [70] SEYOON TAK, HYEONG-SEOK KO. Physically-Based Motion RetargetingFilter [J]. United States Patent Application Publication,2006.
    [71] A.Witkin, Z.Popovic. Motion Warping[C]//In Proceedings of SIGGRAPH’95,1995:105~108.
    [72] Z.Popovic, A. Witkin. Physically based Motion Transformation[C]//InProceedings of ACM SIGGRAPH1999. New York, ACM Press,1999:11~20.
    [73] N.Pollard. Simple Machines for Scaling Human Motion[C]//In Proceedings ofEurographics Workshop on Animation and Simulation, Milano, Italy,1999.
    [74] A. Safonova, J. Hodgins, N.Pollard. Synthesizing Physically Realistic HumanMotion in Low-dimensional, behavior-specific spaces[C]//In Proceedings ofACM SIGGRAPH2004. New York, ACM Press,2004:514~521.
    [75] C.Liu, Z.Popovic. Synthesis of Complex Dynamic Character Motion from SimpleAnimations [J]. ACM Trans. Graphics,2002,21(3):408~416.
    [76] A.Fang, N. Pollard. Efficient Synthesis of Physically Valid Human Motion[J].ACM Trans. Graphics,2003,22(3):417~426.
    [77] George Baciu, Bartholomew K.C. Iu. Motion Retargeting in The Presence ofTopological Variations [J]. Computer Animation and Virtual Worlds.2006,17:41~57.
    [78] Christian Ott, Dongheui Lee, Yoshihiko Nakamura. Motion Capture basedHuman Motion Recognition and Imitation by Direct Marker Control[C]//InProceedings of the8th IEEE-RAS International Conference on HumanoidRobots, Korea,2008.
    [79] Behzad Dariush, Michael Gienger, Bing Jian, et al. Whole Body HumanoidControl From Human Motion Descriptors[C]//In Proceedings of2008IEEEInternational Conference on Robotics and Automation. Pasadena, CA, USA,2008:19~23.
    [80] Behzad Dariush, Michael Gienger, Arjun Arumbakkam, et al. Online andMarkerless Motion Retargeting with Kinematic Constraints[C]//In Proceedingsof2008IEEE/RSJ International Conference on Intelligent Robots and Systems.Acropolis Convention Center. Nice, France,2008:22~26.
    [81] F.-J. Montecillo-Puente, M. Sreenivasa, J.-P. Laumond, On Real-timeWhole-body Human to Humanoid Motion Transfer[C]//In Proceedings ofInternational Conference on Informaticsin Control, Automation and Robotics,2010.
    [82] Leslie Ikemoto, Okan Arikan, David Forsyth. Generalizing Motion Edits withGaussian Processes[J]. ACM Transactions on Graphics,2009,28(1).
    [83]孙军,唐少敏.三维动画中运动重定向技术研究[J].计算机与信息技术.2006,10:40~42.
    [84]杨熙年,张家铭,赵示宾.基于骨干长度比例之运动重定目标算法[J].中国图象图形学报.2002,7(9):871~875.
    [85]罗忠祥,庄越挺,刘丰,等.基于时空约束的运动编辑和运动重定向.[J]计算机辅助设计与图形学学报.2002, l4(12):1146~1151.
    [86] Ming-Kai Hsieh, Bing-Yu Chen, Ming Ouhyoung. Motion Retargetting andTransition in Different Articulated Figures[C]//In Proceedings of NinthInternational Conference on Computer Aided Design and Computer Graphics,2005.
    [87] Yan Gao, Lizhuang Ma, Zhihua Chen, et al. Motion Normalization: in thePreprocess of Motion Data[C]//In Proceedings of VRST’05,2005:253~256.
    [88] Shin, H.J.Lee, J.Gleicher, et al. Computer puppetry: an Importance-basedApproach[J]. ACM Transactions on Graphics.2001,20(2):67~94.
    [89] Kovar, L.Schreiner, J. Gleicher. Footskate Cleanup for Motion Capture Editing[C]//In Proceedings of ACM SIGGRAPH Symposium on Computer Animation’02,2002.
    [90] Wenyu Lu, Yan Liu, Jizhou Sun, et al. A Motion Retargeting Method forTopologically Different Characters[C]//In Proceedings of the6th InternationalConference on Computer Graphics, Imaging and Visualization.2009,53:96~100.
    [91] Jessica Hodgins, Nancy Pollard. Adapting Simulated Behaviors for NewCharacters[C]//In Proceeding of ACM SIGGRAPH97. ACM Press,1997:153~162.
    [92] Kwangjin Choi, Hyeongseok Ko. Online Motion Retargeting[J]. The Journal ofVisualization and Computer Animation,2000,11(5):223~235.
    [93] J. Monzani, P. Baerlocher, R. Boulic, et al. Using An Intermediate Skeleton andInverse Kinematics for Motion Retargeting[C]//In EUROGRAPHICS2000,19(3):11~19.
    [94] Seyoon Tak, Hyeong-Seok Ko. A Physically-based Motion Retargeting Filter[J].ACM Transactions on Graphics,2005,24(1):98~117.
    [95] Min Je Park, Sung Yong Shin. Example-based Motion Cloning[J]. ComputerAnimation and Virtual Worlds,2004,15(3-4):245~257.
    [96]葛春宝,陈益强,尹宝才等.一种新的手势运动数据重定向方法[J].计算机学报,2006,29(10):1850~1855.
    [97] Keith Grochow, Steven L. Martin, Aaron Hertzmann, et al. Style-based inversekinematics [J]. ACM Transactions on Graphics,2004,23(3):522~531.
    [98] Neil D. Lawrence, Matthias Seeger, Ralf Herbrich. Fast Sparse Gaussian ProcessMethods: The Informative Vector Machine[C]//Proceedings of NeuralInformation Processing Systems15. MIT Press,2003:609~616.
    [99] Martin F. M ller. A Scaled Conjugate Gradient Algorithm for Fast SupervisedLearning[J]. Neural Networks,1993,6(4):525~533.
    [100]刘俊峰.三维转动的四元数表述[J].大学物理,2004,23(4):39~43.
    [101]刑燕.四元数及其在图形图像处理中的应用研究[D].合肥:合肥工业大学,2009:19~24.
    [102]周玉兴.关于四元数代数与分析若干问题研究[D].广西:广西民族大学,2008:3~12.
    [103] W.W.Armstrong, M.Green, R.Lake. Near Real-Time Control of Human FigureModels[J]. IEEE Computer Graphics&Applications,1987,7(6):28~38.
    [104] J.Wilhelms. Using Dynamic Analysis for Realistic Animation of ArticulatedBodies[J]. IEEE Computer Graphics&Applications,1987,7(6):12~27.
    [105]蔡士杰,吴春镕,孙正兴等译.计算机图形学[M].北京:电子工业出版社,2002:252~255.
    [106]向坚.基于三维捕获数据的人体运动分析关键技术研究[D].浙江:浙江大学,2007:36~37.
    [107] Jacobs, O. L. R. Introduction to Control Theory[M],2nd Edition, OxfordUniversity Press,1993.
    [108] J. Carpenter, P. Clifford, P. Fernhead. An Improved Particle Filter for Non-linearProblems. In IEEE Proceedings on Radar, Sonar and Navigation,1999.
    [109] Kiam Choo, David J. Fleet. People Tracking Using Hybrid Monte Carlo Filtering.In ICCV,2001:321~328.
    [110] Sheldon M. Ross. Introduction to Probability Models [M]. POSTS&TELECOMPRESS, China,2007.
    [111] Y. Yacoob, M. J. Black. Parameterized Modeling and Recognition of Activities[J].Computer Vision and Image Understanding,1999,73(2):232~247.
    [112] J. Li, A. Najmi, R. M. Gray. Image Classification by a Two Dimensional HiddenMarkov Model [J]. IEEE Transactions on Signal Processing,2000,48(2):517~33.
    [113]王作英,肖熙.基于段长分布的HMM语音识别模型[J].电子学报,2004,2(1):46~49.
    [114]陈永彬,王仁华.语音信号处理[M].合肥:中国科学技术大学出版社,1990.
    [115] Sheldon M. Ross. Introduction to Probability Models [M]. POSTS&TELECOMPRESS, China,2007.
    [116] C.F. Rose, B. Guenter, Bobby Bodenheimer. Efficient Generation of MotionTransitions Using Spacetime Constraints[C]//In Proceedings of the23rdAnnualConference on Computer Graphics and Interactive Techniques. New York: ACMPress,1996:147~154.
    [117] J. Lee, J. Chai, P. S. A. Reitsma. Interactive Control of Avatars Animated withHuman Motion Data[C]//In Proceedings of the29thAnnual Conference onComputer Graphics and Interactive Techniques. San Antonio, Text: ACM Press,2002.
    [118] O. Arikan, D.A. Forsyth, J. F. Brien. Motion Synthesis from Annotations [J].ACM Transactions on Graphics.2003,22(3):402~408.
    [119] K. Pullen, C. Bregler. Animating by Multilevel Sampling[C]//In Proceedings ofthe Computer Animation. Washington DC, USA: IEEE Computer Society,2000:36~44.
    [120] F. S. Grassia. Belevable Automatically Synthesized Motion by Knowledge-enhanced Motion Transformation [D]. Carnegie Mellon University,2000.
    [121] J. Wang, B. Bodenheimer. Computing the Duration of Motion Transitions: anEmpirical Approach[C]//In Proceedings of the ACM SIGGRAPH2004. ACMPress,2004:335~344.
    [122] D. MacKay. Information Theory, Inference and Learning Algorithms [M].2003.
    [123] William W. Armstrong, Mark Green, Robert Lake. Near-real-time Control ofHuman Figure Models [J]. IEEE Computer Graphics&Applications,1987,7(6):28~38.
    [124] Jane Wilhelms. Using Dynamic Analysis for Realistic Animation of ArticulatedBodies [J]. IEEE Computer Graphics&Applications,1987,7(6):12~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700