暂堵型钻井液的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对钻井工程中出现的护壁堵漏与保护地层渗透性的矛盾,提出利用胍尔胶、魔芋、和Na-CMC等聚合物,并结合现代生物技术中聚合物的断链降解原理,开发出适合于石油、天然气和水文水井钻探等领域的自动降解无伤害钻井液——暂堵型钻井液。
    三年来,为实现本目标,进行了广泛的信息调研、资料收集和理论分析,并开展了大量的暂堵型钻井液的配方试验和性能测试工作,将室内研究结果应用于水文水井钻探实际,同时也已经开始和地方企业联合开发暂堵型钻井液的基本材料。
    以钻井工程为基础,以现代生物技术为手段,结合有机化学、高分子化学、生物化学、分析化学等方法和流体力学等方法,研制开发出的暂堵型钻井液,具有很强的科学性、创新性和新颖性。
    暂堵型钻井液为自动降解无伤害型钻井液,无毒,无害,具有较好的环境适应性和经济性;和传统的暂堵技术相比,暂堵型钻井液体现为自动降解,本质性地改进了解堵工艺,提高了生产效率。生物酶能有效的并完全地降解聚合物,因此暂堵型钻井液避免了钻进完成后聚合物对产层的伤害问题。
    本文首先分析了暂堵型钻井液及其材料的国内外研究现状,阐述了胍尔胶、魔芋、钠羧甲基纤维素(Na-CMC)和羟乙基纤维素(HEC)等聚合物的性质及其用途,它们构成了暂堵型钻井液的主剂;介绍了聚合物降解的几种方式;接着介绍了聚合物钻井液的特点、性能指标和聚合物处理剂的主要作用机理等;生物酶技术在本文中得到了重点介绍,文中对酶的分类、酶作为催化剂的显著特点、酶的催化作用、酶作用机理、酶动力学、各种因素对酶的影响等方面做了详细的介绍,在本章结尾处介绍了酶在钻井工程中的应用情况。
    本文在介绍了传统的暂堵剂的暂堵机理之后,重点分析了暂堵型钻井液的暂堵机理。暂堵型钻井液是采用生物酶作为主要的性能调控制剂,它使暂堵型钻井液以认为可控堵方式进行降解,完成由堵到解堵过程。接着详细介绍了淀粉、纤维素和胍尔胶等几种聚合物的降解原理。
    对生物酶降解各种聚合物和降解各种复配的聚合物进行了数百次的室内实验,同时对以粘土为基浆、以聚合物为主要处理剂和以生物酶为性能调控试剂的暂堵型钻井液进行了大量的实验,用本研究依托的课题组自行特殊研制的渗透性恢复测试仪对暂堵型钻井液进行渗透性恢复测试,分析遴选出性能优良的独特配方。
    暂堵型钻井液将生物酶技术应用于水文水井钻探领域,因为它的性能具有人为可调控性,能自动降解、对地层无污染、无伤害,地层的渗透性恢复达到90%以上,相对于常规钻井液,能明显地提高水井的产量。同时,该新型暂堵型钻井液的其他常规技术指标(如粘
    
    度、失水量、稳定性、润滑性和抑制性等)均达到相应优质泥浆的技术标准,尤其在钻井期间的护壁堵漏性能尤为突出。
    暂堵型钻井液应用于生产实际,在甘肃张掖和广西柳州共进行了多口水井的现场试验工作。不仅解决了复杂地层护壁堵漏难的问题,使钻进工作顺利进行,而且显著地提高了水井的产量。
    同时还开展了暂堵型钻井液的基础材料的初步开发。以来源广泛且价格低廉的植物粗纤维材料为基本原料,结合先进的物理和化学的方法,研究适于石油、天然气和水文水井钻探领域的暂堵型钻井液的基本材料,与湖北有关生化企业联合,开始暂堵型钻井液的基础材料的工业化生产的前期工作,已有小批量的产品可推向市场。
    通过全文可以看出,我们在以下方面有突破性进展:暂堵型钻井液为自动降解无伤害钻井液,无毒,具有较好的环境适应性和经济性;和传统的暂堵技术相比,暂堵型钻井液体现为自动降解,本质性地改进了解堵工艺,提高了生产效率;利用粘性可变的材料来研制钻井液;根据钻井周期的需要,通过对材料配方的调整来控制钻井液流变性等参数随时间变化特性,满足钻井液在钻井期间具有强的护壁堵漏效果,而在成井后开采时,又使近井地层中侵入的钻井液粘度下降,从而使地下流体通道畅通,地层的渗透性恢复,提高了生产井的产量。
    本课题相关的专著和论文已经出版和发表,而且相应成果在《科技日报》以及相关报纸和网络媒体也有报道。
A contradiction comes into being that whether keeping the hole and blocking the leakage or protecting the permeability of the formation. To solving this problem, we use polymers such as guar gam, konjaku flour and Na-CMC, combining with the chain scission and degradation in modern biology, and develop temporarily blocked drilling fluid, which is marking as self-degradated, harmless to the formation and can be widely used in oil, gas and water well drilling.
    In the past three years, to realize the task, the author took great attention in investigation and research work, the collection of reference information, and theoretical analysis. Based on these previous works, hundreds of lab performance tests of different compounding temporarily blocked drilling fluid have been done. The lab achievements have been used in water well drilling. At the meantime, the project group upon which the research work depended has cooperated with the local company the produce the fundamental materials of temporarily blocked drilling fluid.
    Based on the drilling engineering, by means of modern biology and connected with organic chemistry, high polymer chemistry, biochemistry, analytical chemistry and fluid mechanics, we developed temporarily blocked drilling fluid, which has great scientific and novelty meanings.
    Temporarily blocked drilling fluid can be auto-degradated and toxicless and harmless to the local environment. Distinguished from traditional temporarily blocked agents, it does not need additional unblocking technology such as pressure unblocking, acidizing, oil-solubl or broking gam, which elementarily improves the unblocking technology and the productive efficiency. The enzyme can effectively and thoroughly degradate the polymers, which avoiding the harm of polymer on the formation after drilling work.
    The present status of temporarily blocked drilling fluid and the related materials was introduced firstly. The performances and uses of polymers such as guar gum, konjac, Na-CMC, and HEC which make up of the main agent of temporarily blocked drilling fluid, are represented. In succession of this content, the characters, performance parameters and the main performance mechanics of polymer drilling fluids was compactly introduced. As a main part, the knowledge of enzyme was interpreted in detail which including the classification, the obvious characters of it as catalyst, the catalyst effect, the reaction mechanics, the dynamics and the influencing factors. At the ending of this chapter, the author talked about the application of enzyme in drilling industry.
    After introducing the temporarily blocked mechanics of conventional temporarily blocked agent, the author primarily analyzed the temporarily blocked mechanics of temporarily blocked drilling fluid. Used enzyme as the main agent to control the performance of it, the degradation of it can be man-controlled, which ensures the process of blocking to unblocking. Then the degradated principles of several polymers such as starch, CMC and guar gam were analyzed in detail.
    Hundreds of lab tests were preceded about the degradation of enzyme on polymer and composite polymers. Then plenty of tests were done on the temporarily blocked drilling fluid
    
    which was made up of bentonite, polymers and enzyme. Using the self-developed recovering testing apparatus of permeability, the author tested the recovering performance of permeability of the temporarily blocked drilling fluid and got the excellent and special compounding of it.
    When the temporarily blocked drilling fluid was used in water well drilling, the lab test demonstrated that the performance of drilling fluid can be artificially controlled. It can be auto-degradated and have no pollution or harm on the formation. The recovering ratio of the permeability of the formation is as high as 90%. At the same time, the general parameters of it such as viscosity, API fluid loss, stability, lubricating ability and rejection capability have meet up the technical standard of quality drilling fluid, especial the protection perfo
引文
[1] 乌效鸣、蔡记华、杨倩云、马贝卡,具有暂堵特性的钻井液的初步研究开发[J],探矿工程,2001年增刊,P221~223;
    [2] 徐德明、岳登进,国外钻井液和完井液用聚合物,钻采工艺,1998,1,P61;
    [3] 田忆凯、侯丽英、俞晓东、唐永林,国外着重开发的生物降解聚合物,上海化工,1999,8,P29~30;
    [4] 田忆凯、侯丽英、俞晓东、唐永林,国外生物降解聚合物的种类及主要成分,上海化工,1999,6,P28;
    [5] 李绍泽、李治龙、王海元,THY修井暂堵剂在稠油井中的试验研究与应用,特种油气藏,1995,4,P49;
    [6] 郭才轩,PB-l型多功能屏蔽暂堵剂的研究与应用,石油钻探技术,1998,1,P23~24;
    [7] 喻高明、唐善法、蔡木平、杨顺贵,JFM暂堵剂性能评价与应用,钻采工艺,1999,1,P55;
    [8] 唐孝芬、刘戈辉、李良雄、赵顺亮,堵水调剖用暂堵剂ZDJ-98的研制与性能评价,油田化学,1999,2,P128;
    [9] 严锦根、汤志强、王兆水,新型水溶性暂堵剂JYDⅡ的研制与应用,油田化学,2000,1,P24;
    [10] 李素珍、汪绪刚、程兴生、邹洪岚、单文文,ESEM在暂堵剂筛选评价中的应用,电子显微学报,2000,4,P607;
    [11] 任占春、张光焰、韩文峰、张智勇、田庆堂、李清明、陈景军,HT-10高温屏蔽暂堵剂研制与应用[J],油田化学,2002,2,P109~110;
    [12] 隋学旭、陈为贞、李晓玉、贺建华、刘为民,SYD系列溶性暂堵剂在油田入井液中的应用,油气田地面工程,2002,4,P35;
    [13] 杨小华、苌益华、谢爱华,国内1999-2000年钻井液处理剂研究与应用进展[J],油田化学,2001,2,P184~187;
    [14] 陈德昭,中国大百科全书·生物学Ⅰ[M],中国大百科全书出版社,1991,12,P441;
    [15] 任占春、孙慧毅、秦利平,羟丙基瓜尔胶压裂液的研究及应用[J],石油钻采工艺,1996,1,P82;
    [16] 赵以文,植物胶水基压裂液[J],油田化学,1990,7,P13~14;
    [17] 马喜平、陈尚冰,胍胶类交联压裂液及胶套破胶剂的新进展[J],钻采工艺,1997,5,P63;
    [18] 唐燕祥,瓜尔胶与田菁胶化学改性的研究进展[J],矿冶,1995,9,P67~69;
    [19] 郑秀华、夏柏如、王彬,魔芋胶液性能及其应用的试验研究[J],探矿工程,2000,5,P45~46;
    [20] 莫文治、李国相,新型钻井液处理剂——蒟蒻[J],探矿工程,1982,3,P47;
    [21] 陈秀敏、傅德贤、欧阳藩,魔芋葡甘露聚糖化学结构及改性研究进展[J],天然产物研究与开发,2002,2,P65;
    
    
    [22] 杨晓鸿,魔芋胶的性能研究及在酸化液中的应用[J],上海化工,2002,21,P16;
    [23] 郑晓宇、吴肇亮,油田化学品[M],北京:化学工业出版社,2001,5,P233~237;
    [24] T.L. Hughes, SPE, T.G.L. Jones, SPE, and O.H. Houwen, Schlumberger Cambridge Research, Chemical Characterization of CMC and Its Relationship to Drilling-Mud Rheology and Fluid Loss, SPE Drilling & Completion, September,1993, P157~158;
    [25] 黄鹏、马志艺、李卓美、黄玉惠,取代度对CMC溶液性质及泥浆性能的影响[J],石油学报,1991,4,P115~116;
    [26] 崔小明,羟乙基纤维素开发利用前景[J],四川化工与腐蚀控制,2001,5,P24~26;
    [27] 孙华林,羟乙基纤维素的开发前景[J],精细石油化工,2002,3,P61~62;
    [28] [德]W.施纳贝尔,聚合物降解原理及应用[M],科学出版社,1988,9,P1~3,180~187;
    [29] 鄢捷年,钻井液工艺学,石油大学出版社[M],2001,5,P173~181;
    [30] A.怀斯曼,酶生物技术手册[M],北京:科学出版社,1989,7,P52~75,360;
    [31] 许根俊,酶的作用原理,北京:科学出版社,1983,3,P2~15;
    [32] 罗贵民、曹淑桂、张今,酶工程[M],北京:化学工业出版社,2002,5,P7;
    [33] 易绍金、梅平,酶技术在油气生产中的应用研究[J],湖北化工,2002,3,P26~27;
    [34] 孙应力,酶在油气田生产中的新用途[J],国外油田工程,2000,3,P15;
    [35] 周风山、苏标瑾,一种新型酸溶性高失水暂堵剂的研制与评价[J],西安石油学院学报,1998,3,P40;
    [36] 周波译,Petroleum Engineer International,1999,4;
    [37] 李明志、刘新全、汤志胜、王 勇、周池明、刘景豪,聚合物降解产物伤害与糖甙键特异酶破胶技术[J],油田化学,2002,1,P89~92;
    [38] 乌效鸣、胡郁乐、贺冰新、蔡记华,钻井液与岩土工程浆液[M],武汉:中国地质大学出版社,2002,6,P22~26;
    [39] 美国专利,专利号5292537;
    [40] 刘俊峰等,稻草制取糠醛联产高效复合肥工艺研究[J],环境污染与防治,2002,1,P62~64;;
    [41] 段金柱等,玉米秸粉作碳源固体发酵生产纤维素酶的研究[J],饲料博览,2000,2,P4;
    [42] 杨性坤等,浅谈花生壳的综合开发利用[J],信阳师范学院学报(自然科学版),1998,2,P188;
    [43] 陈魁,试验设计与分析[M],北京:清华大学出版社,1996,8,P94~109;
    [44] 鄢捷年等,钻井液防塌效果的综合评价方法[J],石油大学学报(自然科学版),1999,1,P32~33;
    [45] 张琰等,仿油性水基钻井液的试验研究[J],现代地质,2000,14(2),P211~212;
    [46] J.P. Simpson, SPE, and T.O. Walker, SPE, O'Brien-Goins-Simpson & Assoes inc., and G.Z. Jiang, SPE, Consultant, Environmental Acceptance Water-based Mud Can Prevent Shale Hydration and Maintain Borehole Stability, SPE Drilling & Completion, December,1995, P242~249;
    [47] J.V. R.R. Wood, SPE, and Jeff Kirsner, Baroid Drilling Fluids Inc., Development and Field
    
    Trial of Two Enviromentally Safe Water-based Fluids Used Sequentially to Free Stuck Pipe, SPE Drilling & Completion, March,1998, P52~53;
    [48] F.B. Growcock, SPE, and T.P. Frederick, SPE, Amoco Corp, EPTG Drilling, Operational Limits of Synthetic Drilling Fluids, SPE Drilling & Completion, September,1996, P132~136;
    [49] Julianne Elward-Berry, SPE, Exxon Production Research Co. and J.B. Darby, SPE, Exxon Co. U.S.A., Rheologically Stable, Nontoxic High-Temperature, Water-Based Drilling Fluid, SPE Drilling & Completion, September, 1997, P158~162;
    [50] Dorothy P. Enrlght, SPE, William M. Dye, and F.Martin Smith, Milpark Drilling Fluids, An Environmentally Safe Water-based Alternative to Oil Muds, SPE Drilling Engineering, March,1992, P15~19;
    [51] Guillermo Pastor Sanz, NV Turkse Shell; Michael C.Gunningham, SPE, Koninklijke/Shell E&P Laboratorium (KSEPL); Hon Chung Lau, SPE, Shell Oil Co.;and Allan J.Samuel, SPE, KSEPL, Use of Succinoglycan Biopolymer for Gravel Packing, SPE Drilling & Completion, June,1994, P139~140。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700