机械牵张对豚鼠膀胱ICC细胞兴奋性的影响及其与逼尿肌不稳定的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:储/排尿是膀胱的主要生理功能。这一功能受到来自中枢神经系统的支配和控制,神经因素长期以来被认为是膀胱功能调节最经典甚至是惟一的调控方式。但是有研究表明膀胱逼尿肌在失去神经控制的状态下,仍然存在自发性的收缩,目前越来越多的证据显示膀胱源性因素也参与了膀胱功能的调节。这些因素包括膀胱上皮细胞的分泌功能、逼尿肌细胞之间的缝隙连接和信号传递以及膀胱壁内的一些特殊的细胞群等等。这些膀胱自身的调控因素在膀胱逼尿肌兴奋的起源和调控机制尚待进一步阐明。神经因素之外的膀胱自身调控因素如何参与膀胱的兴奋性控制,他们与经典的神经调控机制之间的关系毫无疑问地成为了膀胱功能调节崭新的研究方向。
     既然膀胱具有自发的兴奋性,而同样具有自发性兴奋的器官如心脏和胃肠道等都有一个共同的特点,自发的兴奋性与某些特殊分化的细胞群有密切的关系。因此很多研究人员都自然而然地联想到膀胱中是否存在这样一群类似的细胞。新近的报道以及我们的研究中发现:膀胱中的确存在一种特殊的间质细胞,这种细胞和胃肠道卡哈尔间质细胞(Interstitial cells of Cajal,ICC)类似,有特异性的c-kit酪氨酸激酶受体的表面标志。很多研究都业已证实胃肠道的ICC细胞参与了胃肠道蠕动功能的调节,而在某些由于ICC细胞缺失或功能失调导致的先天性胃肠道功能紊乱性疾病中同时也伴有膀胱功能障碍。因此我们推测ICC细胞可能参与了膀胱功能的调节,并且作为一种重要的膀胱源性因素,影响了膀胱的自发性兴奋收缩以及膀胱功能的调控。ICC细胞作为胃肠道中的“起搏细胞”,在调节胃肠道动力的病理生理学机制方面起到重要的作用。目前的研究表明,ICC细胞是一种具有多种功能的特殊间质细胞,它们的主要功能是产生和传播胃肠道基本电节律(Basic electrical rhythm ,BER)、整合神经调控以及感受胃肠道的机械牵张刺激。近年来的研究表明,在包括人在内的多种属的泌尿系统中,也存在着这样一些特殊的间质细胞,它们可分布在输尿管、膀胱、尿道、前列腺、阴茎海绵体,但是对这些特殊的细胞的功能知之甚少,命名也尚不统一,它们曾被称作如膀胱间质细胞、非典型平滑肌细胞、ICC样间质细胞、类ICC细胞等等。这些细胞的广泛分布和潜在的功能开启了泌尿系统相关研究的一个新领域。虽然这类间质细胞和胃肠道ICC细胞有类似的形态学特征和某些生理学功能(如自发兴奋性等),但很多研究也表明其与胃肠道ICC有明显的差别,胃肠道ICC细胞的功能亦尚未一一在膀胱ICC细胞中得到印证。为了规范名称便于交流,2007年的第五届国际Cajal间质细胞论坛建议将泌尿系这一类与胃肠道ICC有相似形态学特征和免疫学标志的间质细胞命名为泌尿系ICC细胞,本文中对于该类细胞的命名也借鉴了上述标准。在以往的研究中,已经明确的观察到ICC细胞在泌尿道的分布以及形态学特征,甚至从组织中将他们分离出来进行培养和研究他们的免疫学、生理学特性,但是到目前为止,泌尿系ICC细胞究竟如何参与和调节泌尿系统的功能仍然没有定论。
     细胞的生物机械环境对于细胞的正常生长发育,相互作用及其特殊功能的发挥都有重要的影响,在众多的机械刺激当中,机械牵张刺激是最为常见的。膀胱在生理状态下,感受不断产生的尿液对膀胱壁的充盈刺激是调节膀胱排空的重要因素。目前的研究表明:在体条件下,当膀胱内容量充盈到一定程度时,即产生足够的牵张刺激,使逼尿肌兴奋性增高,诱发其收缩,从而启动膀胱的排空;而在离体条件下,膀胱逼尿肌条受到牵张刺激时逼尿肌细胞可产生自发性的兴奋,启动肌条的节律性收缩,这种收缩在膀胱失去神经支配和多种神经受抑制剂(包括河豚毒素)作用下仍然存在。而在某些病理状态下,如逼尿肌不稳定中,上述牵张诱导的肌条活动表现为同样张力条件下不稳定逼尿肌较正常逼尿肌收缩频率增高。因此机械牵张在启动膀胱源性逼尿肌收缩和控制逼尿肌兴奋性中有重要作用。
     我室以往的研究表明:正常豚鼠膀胱中存在c-kit阳性的ICC细胞,可主要分布于膀胱粘膜下、逼尿肌肌束之间以及逼尿肌肌束内部。膀胱ICC细胞可产生自发性起搏电位If,可能与逼尿肌的自发性收缩关系密切;膀胱不同部位的ICC细胞有着不同的分布密度,三角区的膀胱ICC细胞密度最高,而与之相对应的部位逼尿肌条的自发性收缩频率更高,提示膀胱中可能存在兴奋的最高控制点,即起搏点,而膀胱ICC细胞可能和起搏功能有密切关系;另外我们还发现ICC细胞可以对ATP、卡巴胆碱等神经递质或类似物产生兴奋样冲动,膀胱内灌注ATP可诱发大鼠盆神经放电,用c-kit特异性抑制剂甲磺酸依马替尼阻断ICC细胞功能后,盆神经放电频率明显降低,提示ICC细胞极有可能参与了ATP介导的膀胱感觉传入,ICC细胞可能作为神经末梢调控逼尿肌细胞收缩“中转站”的结构基础发挥了重要的中介作用。而膀胱ICC细胞的潜在起搏功能和神经传递功能都来自基于胃肠道ICC细胞功能的延伸和推测,因此我们有理由相信膀胱ICC细胞可能和胃肠道ICC细胞一样,也可通过感受机械牵张刺激参与了膀胱逼尿肌收缩功能的调控。而这种特殊的牵张感受功能对我们理解膀胱源性的逼尿肌自发性兴奋从而进一步认识储尿排尿生理和病理状态下的膀胱功能异常都有重要的意义。
     综上所述,膀胱逼尿肌具有自发性兴奋,机械牵张刺激可诱导膀胱逼尿肌发生周期性的收缩,而膀胱中的ICC细胞是不是这种自发性兴奋的结构基础?膀胱ICC细胞是否具有牵张敏感特性?在膀胱功能异常的情况下ICC细胞的结构和功能会不会发生变化?对这些问题进行深入的探索具有重要的科学研究意义,并将为逼尿肌兴奋性调控相关研究开创新的领域,为膀胱功能障碍性疾病的发病机制研究提供一个全新的切入点。
     本课题通过体内慢性梗阻和体外培养细胞的机械牵张模型研究ICC细胞的形态、数量以及兴奋性的变化,探讨膀胱ICC细胞的机械牵张敏感性及其在逼尿肌不稳定中的可能机制。
     我们拟从以下几个方面进行研究:第一:通过膀胱颈部分梗阻(partial bladder outlet obstruction, PBOO)建立豚鼠逼尿肌不稳定动物模型,并比较梗阻后膀胱ICC细胞的形态、数量及分布的变化,研究ICC细胞在膀胱流出道梗阻状态下的适应性改变;第二:观察PBOO膀胱和正常膀胱内ICC细胞的自发钙活动的变化,探讨ICC细胞在PBOO后的功能改变以及在逼尿肌不稳定(detrusor overactivity, DO)发病机制中的可能作用;第三:构建体外培养细胞机械牵张装置,通过对体外培养的膀胱ICC细胞施加静态牵张力的作用,观察ICC细胞内牵张诱导钙瞬变(stretch-induced calcium transient, SICT)的特征;第四:通过施加一定的钙离子阻断因素,包括清除细胞外钙离子、RYR或IP3敏感钙库抑制等探讨ICC细胞SICT的来源和初步作用机制。
     方法:
     1.本研究以2-3月龄豚鼠为研究对象,尿道近端结扎法制作膀胱流出道部分梗阻模型,并设假手术组为对照,6周后行充盈性膀胱测压,根据测压结果将动物分为梗阻后逼尿肌不稳定组(DO组)、梗阻后逼尿肌稳定组(DS组)和对照组。各组分别行c-kit免疫荧光组织染色,激光共聚焦观察ICC细胞的形态和分布情况;
     2.流式细胞仪检测各组c-kit阳性细胞数量的变化;为排除肥大细胞的干扰(因为膀胱中的肥大细胞也可表现为c-kit染色阳性)以验证流式细胞仪的结果,在激光共聚焦显微镜下对各组膀胱组织标本行ICC细胞计数;
     3.利用StageFlexer硅酮膜、聚乙烯齿梳、3140密封胶以及普通细胞培养皿等材料制作体外水平机械牵张装置,并与低渗溶液诱导细胞膨胀进行比较;
     4.胶原酶消化膀胱组织,体外培养ICC细胞72h并通过c-kit免疫荧光细胞染色进行鉴定;
     5.活细胞钙荧光指示剂Fluo-4AM负载急性分离贴壁的细胞,激光共聚焦动态观察DO组、DS组和对照组膀胱ICC细胞自发钙活动的变化情况;
     6.将正常膀胱ICC细胞培养于体外水平机械牵张装置中72h牢固贴壁后,通过梯度机械牵张刺激观察ICC细胞在机械牵张负荷下的SICT变化情况;
     7.利用无钙HBSS缓冲液、RYR钙库特异性阻断剂钌红(Ruthenium red,RU)或IP3敏感钙库特异性阻滞剂2-氨基乙氧基苯硼酸(2-Aminoethoxydiphenyl borate,2-APB)处理体外培养的ICC细胞,探讨胞外钙离子内流以及胞内钙库释放在ICC细胞自发性钙活动以及SICT产生机制中的作用。
     结果:
     1.通过免疫荧光组织染色我们发现正常膀胱和DS膀胱中粘膜下层c-kit阳性细胞呈单层连续分布,在平滑肌束之间散在分布,相互间缺乏联系;PBOO术后出现DO组膀胱ICC细胞在粘膜下ICC细胞多层分布,肌束间ICC细胞互相之间连接呈网络状;
     2.流式细胞仪检测发现DO组膀胱中c-kit阳性细胞数量较对照组显著增多,而DS组和正常对照组间无显著差异;激光共聚焦显微镜下行ICC细胞计数的结果表明PBOO后膀胱ICC细胞数量较对照组显著增加,而DO组膀胱ICC细胞数量与DS组相比亦有明显增加;
     3.成功构建体外水平静态机械牵张培养装置,该装置可稳定将培养于牵张膜上的细胞机械拉伸10%-30%,并可在应力状态下动态观察,而低渗细胞膨胀实验虽然也可以达到增加细胞体积的作用但是存在改变细胞外生存环境,导致细胞膜不均匀膨胀的缺点,因此在后续的实验中采用前一种机械牵张模式;
     4.体外稳定培养膀胱ICC细胞,并通过c-kit免疫细胞染色鉴定在体外培养状态下具有长梭形突起典型特征的细胞为ICC细胞;
     5.急性分离贴壁1h后的ICC细胞可观察到自发性的钙波,而DO膀胱中的ICC自发性的钙波和正常组及DS组相比有高频率、低振幅的特点;
     6.培养于牵张膜上的ICC细胞在牵张20%、30%状态下兴奋性增高,荧光钙染色可观察到兴奋性的钙波—SICT,平滑肌细胞也可出现类似的钙波,但对于相同的机械牵张刺激,平滑肌的反应时间显著长于ICC细胞的反应时间,ICC细胞在机械牵张诱导下产生的SICT可通过细胞膜向邻近的平滑肌细胞传递;
     7.细胞无钙状态和胞内钙库的阻断均可显著抑制ICC细胞自发性钙活动;
     8.细胞外无钙状态和RU(10μM)均可抑制机械牵张诱导ICC细胞产生钙波的振幅,而2-APB(10μM)则可将其完全阻断。
     结论:
     1. PBOO后豚鼠膀胱内ICC细胞的形态、数量、分布以及自发性钙活动的特征均发生了改变,并且和DO的发生有直接关系,提示ICC细胞的一系列适应性变化有可能是导致DO的病理基础;
     2.机械牵张能诱导ICC细胞的兴奋状态改变,提示ICC细胞有牵张敏感的特性,并且对相同的机械牵张刺激ICC细胞比平滑肌细胞更为敏感,钙波可从ICC细胞传递至平滑肌细胞。ICC细胞的牵张感受功能可能与膀胱源性逼尿肌收缩有密切的关系;
     3.胞外钙离子内流和胞内钙库释放均参与了ICC细胞自发性兴奋和SICT的形成,而IP3敏感的钙库在SICT的产生过程中发挥了更为重要的作用。
Background and Objective: Bladder function regulation of urine storage and emptying involves complicated mechanisms. Many researches indicated that besides neural modulation, myogenic factors in bladder take part in the process of detrusor contractions. Detrusor strips show spontaneous contractions under static mechanical stretch, which are independent with neural regulation. Many studies suggested some myogenic changes lead to bladder dysfunction, such as overactive bladder. Since then, lots of theories about bladder myogenic factors have been presented to explain bladder function regulation such as secretion of urothelium, gap junctions and some special cell population. However, the exact mechanisms of those myogenic factors are not fully understood. In recent years, researchers found some special interstitial cells in bladder and believe those cells are important myogenic factors that take part in bladder modulation. Those interstitial cells have the same receptor tyrosine kinase c-kit molecular marker as interstitial cells of Cajal (ICC) in gastrointestinal tract and some scientist named those cells as bladder ICC. Previous researches of bladder ICC about their potential pacemaker function and relationship with nerve brought new understandings and recognitions of physiology and pathophysiology underlining bladder function regulation.
     Interstitial cells of Cajal in gut have potential pace-making property. They have spontaneous excitability and generate periodic“slow waves”to aid local coordination to sense excitatory and inhibitory neural inputs and spread those signal to the adjacent myocytes and they can sense mechanical stimulations and integrate gut motility. McCloskey firstly identified c-kit positive interstitial cells in guinea pig bladder in 2002. They also widely distribute in urinary tract, including renal pelvic, ureter, bladder, urethral and even in cavernous body. Those cells share the same molecular marker with gut ICC, but their morphological properties and potential functions may not assemble with their analogue in gastrointestinal tract. The 5th International Symposium on Interstitial Cells of Cajal (Ireland, 2007) recommended that all such cells in the urinary tract be classified as ICC and we adopted this nomenclature in the present paper. ICC in bladder have close connection with detrusor myocytes and show intimate relationship with nerve fibers. Those specific characters indicate that bladder ICC may play a similar role as gut ICC. Although there are little direct evidence of ICC in bladder is a pacemaker, ICC networking is a potential candidate to modulate bladder sensation and coordinate autonomous activities in bladder wall.
     Several studies have demonstrated that ICC in gut can respond the mechanical stimulation and convert this stimulus into electrical signals and consequently modulate intestinal peristalsis. Since ICC has also been identified in the urinary bladder for years, and they were presumed to relate with spontaneous phasic activity of the detrusor muscle and maintaining local tension in storage phase, we speculate those functions may associate with mechanical stretch stimulation. However, the correlation between bladder ICC and mechanical stretch has not been defined yet.
     In our previous studies, c-kit positive ICC in guinea pig bladder have been demonstrated to have spontaneous depolarization potentials(If), and have close relationship with detrusors spontaneous contractions; ICC in bladder have different distributive density; bladder trigone have higher density of ICC and smooth muscle strips derived from that region of bladder have higher spontaneous contraction frequency. We also found that ICC can sense and respond to neurotransmitters such as ATP, carbacol, et al. The effects of Glevic on rat pelvic nerve afferent discharge evoked by ATP indicated that bladder ICC play very important role in bladder sensation and neurotransmission. Since the potential pacemaker and neurotransmmition function have beem demonstrated in bladder ICC, we speculated that bladder ICC have similar functions of mechanical sensitivity and take part in the the regulation of detrusor contractions. Moreover, the special function of bladder ICC in mechanical sensitivities may contribute to the normal bladder regulation and mechanisms underline bladder dysfunction.
     In summary, bladder detrusor have spontaneous excitability and present periodical contraction under static mechanical stretch. Whether bladder ICC is the origin of the spontaneous excitability? Whether bladder ICC have mechanical sensitivity and whether the changes of ICC in structure and function contribute to bladder dysfunction? Answering those questions and exploring bladder ICC provide a new approach to further understand of bladder regulation and pathogenesis of bladder dysfunction.
     In this study, we tried to investigate the variation of morphology, distribution and excitability of bladder ICC in chronical bladder obstructive animal models in vivo and detected the mechanical sensitiveity of cultured ICC and its preliminary pharmacological properties in vitro.
     Our studies were carried out as following steps: first, we constructed partial bladder outlet obstruction (PBOO) models and investigated the morphological and quantitative changes of bladder ICC in PBOO bladders to elucidate the adaptive variation of bladder ICC underline long-term mechanical stretch; Second, at the base of the results of the first part, we detected the spontaneous [Ca2+]i transient properties of ICC after PBOO in vitro to explore the possible mechanisms underline detrusor overactivity (DO); Third, ICC were cultured in vitro in the static uniaxial mechanical stretch device and applied step-wise static stretch on cultured ICC. Stretch induced [Ca2+]i transient properties were detected. We also investigated the preliminary mechanisms of those [Ca2+]i transient with calcium influx and intracellular calcium stores inhibitors application.
     Materials and methods:
     1. Female guinea pigs of 2~3 months old were used in the study. Proximal urethra was partial ligated to produce the models of partial bladder outlet obstruction (PBOO), sham operated animals were set as control. Intravesical pressure was measured 6 weeks later. Animals were divided into DO group, DS group and control group based on the urodynamic results. Immunohistochemical studies under confocal microscopy were performed in whole mounted preparations and cryosections to identified the morphological and distributional properties of c-kit positive ICC in bladders;
     2. The quantitative evaluation of c-kit positive cells in bladders of each group was performed with FCM analysis as well as manually counting of c-kit positive ICC under confocal microscopy;
     3. Static mechanical stretch device was constructed with StageFlexer silicone membrane and polyethylene toothcombs ect. Mechanical stretch was also obtained from hypotonic distention; those two methods were compared in the effeciency of stretch and cell morphology;
     4. Urinary bladder tissues were dispersed with colleagenase and cultured in vitro and c-kit positive ICC were identified with immunofluorescent staining;
     5. Spontaneous [Ca2+]i transient properties of ICC were identified with living cell calcium indicator Fluo-4AM.
     6. After 3-4 days cultured on the mechanical stretch silicone mambranes, step-wise mechanical stretch was applied to the membrane and the cells cultured onto it, meanwhile, [Ca2+]i transient induced by mechanical stretch (SICT) of ICC were detected under confocal microscopy.
     7. The calcium transient properties of cultured cells under mechanical stretch were also been measured after exposed respectively to ruthenium red (a ryanodine sensitive intracellular Ca2+ stores inhibitor), 2-APB (an IP3 sensitive intracellular Ca2+ stores inhibitor) and replacing extracellular solution by no calcium HBS to investigate the composition of SICT in cultured ICC.
     Results:
     1. C-kit positive ICC mainly located in suburothelium and intermuscular layers. In control and DS bladders, we found those intramuscular c-kit positive cells were discrete and did not contact with each other. Stellate-shaped c-kit positive cells in DO bladders presented many cytoplasmic branches emanating from them. Those lateral branches connected with each other to construct a reticular network between smooth muscle bundles
     2. C-kit positive cells in DO bladders were significant increased comparing to the DS and control bladders.
     3. Static mechanical stretch device for in vitro cultured cells was successfully constructed. Mechanical stretch could be applied approximate 10-30% step-wisely and extension was subjected uniformly to the silicone membrane, and the cells cultured on it. Hypotonic distension could also expand the cell volume to obtain mechanical stretch in vitro. However, the nonuniform swelling and extracellular environment changing underline hypotonic restrict its application.
     4. Successfully cultured bladder ICC in vitro. Those fusiform cells with dendritic branches were identified as ICC with c-kit immunocytochemistry experiment.
     5. Freshly isolated ICC from DO bladders showed spontaneous calcium waves with higher frequency and lower amplitude comparing to those from DS and control bladder.
     6. Strech-induced [Ca2+]i transient could be detected in cultured bladder ICC when 20-30% extension was applied to the cultured cells via lengthening the silicone membrane. The similar calcium augment were also detected in the cultured smooth muscle cells with longer responding time comparing to ICC. SICT generated in ICC could transfer to adjacent smooth muscle cells throough cell membrane connection.
     7. The amplitude of SICT was significantly reduced when removing the extracellular Ca2+ or exposed to ruthenium red . 2-APB nearly abolished the augment of [Ca2+]i response to mechanical stretch application.
     Conclusion:
     1. Long-term obstruction following PBOO caused morphological changes and increasing quantity of ICC, which may play a role in the pathogenesis of DO. Freshly dispersed ICC from DO bladders showed spontaneous calcium waves with high frequency and lower amplitude comparing to those from DS and control bladder, which indicated that ICC have different excitability in DO bladders.
     2. Cultured bladder ICC showed mechanical sensitivity and presented enhanced [Ca2+]i augment under stretch load. ICC were more sensitive than SMC to mechanical stretch and the calicium waves could transfer from ICC to adjacent SMC. Mechanosensitive role of ICC provide a novel mechanism underling myogenic contraction.
     3. IP3 sensitive Ca2+ stores release compose the major part of initiation of [Ca2+]i augment in responding to mechanical stretch.
引文
1. Brading AF: The physiology of the mammalian urinary outflow tract. Exp Physiol 1999, 84(1):215-221.
    2. Wiseman OJ, Fowler CJ, Landon DN: The role of the human bladder lamina propria myofibroblast. BJU Int 2003, 91(1):89-93.
    3. Vodusek DB: Mictunrition and the sacral reflex arc: lessons from electrophysiological techniques. Scand J Urol Nephrol Suppl 2002(210):51-54.
    4. Xiao CG, Du MX, Dai C, Li B, Nitti VW, de Groat WC: An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury: preliminary results in 15 patients. J Urol 2003, 170(4 Pt 1):1237-1241.
    5. Sibley GN: The physiological response of the detrusor muscle to experimental bladder outflow obstruction in the pig. Br J Urol 1987, 60(4):332-336.
    6. Sibley GN: A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 1984, 354:431-443.
    7. Gillespie JI, Harvey IJ, Drake MJ: Agonist- and nerve-induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. Exp Physiol 2003, 88(3):343-357.
    8. Sibley GN: An experimental model of detrusor instability in the obstructed pig. Br J Urol 1985, 57(3):292-298.
    9. Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A: Role of gap junctions in spontaneous activity of the rat bladder. Am J Physiol Renal Physiol 2007, 293(4):F1018-1025.
    10. Roosen A, Wu C, Sui G, Chowdhury RA, Patel PM, Fry CH: Characteristics of Spontaneous Activity in the Bladder Trigone. Eur Urol 2008.
    11. McCloskey KD, Gurney AM: Kit positive cells in the guinea pig bladder. J Urol 2002, 168(2):832-836.
    12. Brading AF, McCloskey KD: Mechanisms of Disease: specialized interstitial cells of the urinary tract--an assessment of current knowledge. Nat Clin Pract Urol 2005, 2(11):546-554.
    13. Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD:Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol 2008, 294(3):F645-655.
    14. Farrugia G: Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008, 20 Suppl 1:54-63.
    15. Sanders KM, Ordog T, Ward SM: Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2002, 282(5):G747-756.
    16. Metzger R, Schuster T, Till H, Stehr M, Franke FE, Dietz HG: Cajal-like cells in the human upper urinary tract. J Urol 2004, 172(2):769-772.
    17. Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM: Interstitial Cajal-like cells in human gallbladder. J Mol Histol 2007, 38(4):275-284.
    18. Povstyan OV, Gordienko DV, Harhun MI, Bolton TB: Identification of interstitial cells of Cajal in the rabbit portal vein. Cell Calcium 2003, 33(4):223-239.
    19. Ward SM, Sanders KM: Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 2001, 281(3):G602-611.
    20. Sanders KM, Ward SM: Kit mutants and gastrointestinal physiology. J Physiol 2007, 578(1):33-42.
    21. Gillespie JI, Markerink-van Ittersum M, de Vente J: cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int 2004, 94(7):1114-1124.
    22. Sui GP, Wu C, Fry CH: Characterization of the purinergic receptor subtype on guinea-pig suburothelial myofibroblasts. BJU Int 2006, 97(6):1327-1331.
    23. Bulmer P, Abrams P: The unstable detrusor. Urol Int 2004, 72(1):1-12.
    24. Chang IY, Glasgow NJ, Takayama I, Horiguchi K, Sanders KM, Ward SM: Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol 2001, 536(Pt 2):555-568.
    25. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, Van Kerrebroeck P, Victor A, Wein A: The standardisation of terminology in lower urinary tractfunction: report from the standardisation sub-committee of the International Continence Society. Urology 2003, 61(1):37-49.
    26. Wang XY, Zarate N, Soderholm JD, Bourgeois JM, Liu LW, Huizinga JD: Ultrastructural injury to interstitial cells of Cajal and communication with mast cells in Crohn's disease. Neurogastroenterol Motil 2007, 19(5):349-364.
    27. Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO: Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol 2003, 284(5):F925-929.
    28. Li L, Jiang C, Song B, Yan J, Pan J: Altered expression of calcium-activated K and Cl channels in detrusor overactivity of rats with partial bladder outlet obstruction. BJU Int 2008, 101(12):1588-1594.
    29. Santis WF, Sullivan MP, Gobet R, Cisek LJ, McGoldrick RJ, Yalla SV, Peters CA: Characterization of ureteral dysfunction in an experimental model of congenital bladder outlet obstruction. J Urol 2000, 163(3):980-984.
    30. Li L, Jiang C, Hao P, Li W, Song C, Song B: Changes of gap junctional cell-cell communication in overactive detrusor in rats. Am J Physiol Cell Physiol 2007, 293(5):C1627-1635.
    31. Mostwin JL, Karim OM, van Koeveringe G, Brooks EL: The guinea pig as a model of gradual urethral obstruction. J Urol 1991, 145(4):854-858.
    32. Davidson RA, McCloskey KD: Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol 2005, 173(4):1385-1390.
    33. Metzger R, Neugebauer A, Rolle U, Bohlig L, Till H: C-Kit receptor (CD117) in the porcine urinary tract. Pediatr Surg Int 2007, 24(1):67-76.
    34. Kubota Y, Hashitani H, Shirasawa N, Kojima Y, Sasaki S, Mabuchi Y, Soji T, Suzuki H, Kohri K: Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction. Neurourol Urodyn 2007, 27(4):330-340.
    35. Kajioka S, Nakayama S, McCoy R, McMurray G, Abe K, Brading AF: Inward current oscillation underlying tonic contraction caused via ETA receptors in pig detrusor smooth muscle. Am J Physiol Renal Physiol 2004, 286(1):F77-85.
    36. Sergeant GP, Hollywood MA, McHale NG, Thornbury KD: Ca2+ signalling inurethral interstitial cells of Cajal. J Physiol 2006, 576(Pt 3):715-720.
    37. Nakayama S, Ohya S, Liu HN, Watanabe T, Furuzono S, Wang J, Nishizawa Y, Aoyama M, Murase N, Matsubara T et al: Sulphonylurea receptors differently modulate ICC pacemaker Ca2+ activity and smooth muscle contractility. J Cell Sci 2005, 118(Pt 18):4163-4173.
    38. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I: Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 2000, 27(2):97-106.
    39. Martin Braun P, Arancibia Fernandez MI, Martinez Portillo FJ, Seif C, Sotelino Crespo A, Sugimoto S, de Dios Montoto E, Alken P, Junemann KP: [Continuous bilateral sacral neuromodulation as a minimally invasive implantation technique in patients with functional bladder changes]. Arch Esp Urol 2003, 56(5):497-501.
    40. Hanson BJ: Multiplexing Fluo-4 NW and a GeneBLAzer transcriptional assay for high-throughput screening of G-protein-coupled receptors. J Biomol Screen 2006, 11(6):644-651.
    41. Chang FY: Electrogastrography: basic knowledge, recording, processing and its clinical applications. J Gastroenterol Hepatol 2005, 20(4):502-516.
    42. Daniel EE, Willis A, Cho WJ, Boddy G: Comparisons of neural and pacing activities in intestinal segments from W/W++ and W/W(V) mice. Neurogastroenterol Motil 2005, 17(3):355-365.
    43. Hirst GD, Suzuki H: Involvement of Interstitial Cells of Cajal in the control of smooth muscle excitability. J Physiol 2006, 576(3):651-652.
    44. Kubota Y, Kajioka S, Biers SM, Yokota E, Kohri K, Brading AF: Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations. Auton Neurosci 2004, 115(1-2):64-73.
    45. Ozturk B, Cetinkaya M, Gur S, Ugurlu O, Oztekin V, Aki FT: The early effects of partial outflow obstruction on contractile properties of diabetic and non-diabetic rat bladder. Urol Res 2002, 30(3):178-184.
    46. Ghafar MA, Shabsigh A, Chichester P, Anastasiadis AG, Borow A, Levin RM, Buttyan R: Effects of chronic partial outlet obstruction on blood flow and oxygenation of the rat bladder. J Urol 2002, 167(3):1508-1512.
    47. Mirone V, Imbimbo C, Longo N, Fusco F: The detrusor muscle: an innocent victim of bladder outlet obstruction. Eur Urol 2007, 51(1):57-66.
    48. Goto K, Matsuoka S, Noma A: Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 2004, 559(Pt 2):411-422.
    49. Forrest A, Huizinga JD, Wang XY, Liu LW, Parsons M: Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol 2008, 294(1):G315-326.
    50. McCloskey KD: Calcium currents in interstitial cells from the guinea-pig bladder. BJU Int 2006, 97(6):1338-1343.
    51. Jiang HH, Song B, Lu GS, Wen QJ, Jin XY: Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int 2005, 96(3):428-433.
    52. Drake MJ, Harvey IJ, Gillespie JI, Van Duyl WA: Localized contractions in the normal human bladder and in urinary urgency. BJU Int 2005, 95(7):1002-1005.
    53. Nemeth L, Maddur S, Puri P: Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel. J Pediatr Surg 2000, 35(6):823-828.
    54. Piotrowska AP, Solari V, de Caluwe D, Puri P: Immunocolocalization of the heme oxygenase-2 and interstitial cells of Cajal in normal and aganglionic colon. J Pediatr Surg 2003, 38(1):73-77.
    55. Sergeant GP, Large RJ, Beckett EA, McGeough CM, Ward SM, Horowitz B: Microarray comparison of normal and W/Wv mice in the gastric fundus indicates a supersensitive phenotype. Physiol Genomics 2002, 11(1):1-9.
    56. Boddy G, Willis A, Galante G, Daniel EE: Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WV mice. Can J Physiol Pharmacol 2006, 84(6):589-599.
    57. Piaseczna Piotrowska A, Rolle U, Solari V, Puri P: Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients withmegacystis-microcolon intestinal hypoperistalsis syndrome. BJU Int 2004, 94(1):143-146.
    58. Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WF, Wendt I, Parkington HC: Pyeloureteric Peristalsis: Role of Atypical Smooth Muscle Cells and Interstitial Cells of Cajal-Like Cells as Pacemakers. J Physiol 2006, 576(3):695-705.
    59. Solari V, Piotrowska AP, Puri P: Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 2003, 170(6 Pt 1):2420-2422.
    60. Rana OR, Zobel C, Saygili E, Brixius K, Gramley F, Schimpf T, Mischke K, Frechen D, Knackstedt C, Schwinger RH et al: A simple device to apply equibiaxial strain to cells cultured on flexible membranes. Am J Physiol Heart Circ Physiol 2007.
    61. Wood DN, Brown RA, Fry CH: Characterization of the control of intracellular [Ca2+] and the contractile phenotype of cultured human detrusor smooth muscle cells. J Urol 2004, 172(2):753-757.
    62. Yost MJ, Simpson D, Wrona K, Ridley S, Ploehn HJ, Borg TK, Terracio L: Design and construction of a uniaxial cell stretcher. Am J Physiol Heart Circ Physiol 2000, 279(6):H3124-3130.
    63. Jobin A, Levin MF: Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: a new measure of spasticity. Dev Med Child Neurol 2000, 42(8):531-540.
    64. Jeyendran RS, Van der Ven HH, Zaneveld LJ: The hypoosmotic swelling test: an update. Arch Androl 1992, 29(2):105-116.
    65. O'Neil RG, Heller S: The mechanosensitive nature of TRPV channels. Pflugers Arch 2005, 451(1):193-203.
    66. Black J: Dead or alive: the problem of in vitro tissue mechanics. J Biomed Mater Res 1976, 10(3):377-389.
    67. Bassett CA, Herrmann I: Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 1961, 190:460-461.
    68. Rodan GA, Mensi T, Harvey A: A quantitative method for the application of compressive forces to bone in tissue culture. Calcif Tissue Res 1975, 18(2):125-131.
    69. Sotoudeh M, Jalali S, Usami S, Shyy JY, Chien S: A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann Biomed Eng 1998,26(2):181-189.
    70. Meikle MC, Reynolds JJ, Sellers A, Dingle JT: Rabbit cranial sutures in vitro: a new experimental model for studying the response of fibrous joints to mechanical stress. Calcif Tissue Int 1979, 28(2):137-144.
    71. Bottlang M, Simnacher M, Schmitt H, Brand RA, Claes L: A cell strain system for small homogeneous strain applications. Biomed Tech (Berl) 1997, 42(11):305-309.
    72. Tamma G, Procino G, Svelto M, Valenti G: Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells. Am J Physiol Cell Physiol 2007, 292(4):C1476-1484.
    73. Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T: Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea. Hear Res 2007, 230(1-2):93-104.
    74. Ter Keurs HE, Shinozaki T, Zhang YM, Wakayama Y, Sugai Y, Kagaya Y, Miura M, Boyden PA, Stuyvers BD, Landesberg A: Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias. Ann N Y Acad Sci 2008, 1123:79-95.
    75. Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ: Universal physical responses to stretch in the living cell. Nature 2007, 447(7144):592-595.
    76. Kraichely RE, Farrugia G: Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil 2007, 19(4):245-252.
    77. Kubota Y, Biers SM, Kohri K, Brading AF: Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn 2006, 25(3):205-210.
    78. Yin J, Chen JD: Roles of interstitial cells of Cajal in regulating gastrointestinal motility: in vitro versus in vivo studies. J Cell Mol Med 2008, 12(4):1118-1129.
    79. Won KJ, Sanders KM, Ward SM: Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A 2005, 102(41):14913-14918.
    80. Gillespie JI, Markerink-van Ittersum M, De Vente J: Interstitial cells and cholinergic signalling in the outer muscle layers of the guinea-pig bladder. BJU Int 2006, 97(2):379-385.
    81. Gillespie JI, Markerink-van Ittersum M, De Vente J: Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res 2006, 325(2):325-332.
    82. Ji G, Feldman M, Doran R, Zipfel W, Kotlikoff MI: Ca2+ -induced Ca2+ release through localized Ca2+ uncaging in smooth muscle. J Gen Physiol 2006, 127(3):225-235.
    83. Morimura K, Ohi Y, Yamamura H, Ohya S, Muraki K, Imaizumi Y: Two-step Ca2+ intracellular release underlies excitation-contraction coupling in mouse urinary bladder myocytes. Am J Physiol Cell Physiol 2006, 290(2):C388-403.
    84. McCloskey KD: Characterization of outward currents in interstitial cells from the guinea pig bladder. J Urol 2005, 173(1):296-301.
    85. Streutker CJ, Huizinga JD, Driman DK, Riddell RH: Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 2007, 50(2):176-189.
    86. Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B: Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 2000, 279(2):C529-539.
    87. Boddy G, Bong A, Cho W, Daniel EE: ICC pacing mechanisms in intact mouse intestine differ from those in cultured or dissected intestine. Am J Physiol Gastrointest Liver Physiol 2004, 286(4):G653-662.
    88. Cajal R: Rev Clin 5th edn Madrid 1911:206-209.
    89. Lin ZH, Han EM, Lee ES, Kim CW, Kim HK, Kim I, Kim YS: A distinct expression pattern and point mutation of c-kit in papillary renal cell carcinomas. Mod Pathol 2004, 17(6):611-616.
    90. Torihashi S, Fujimoto T, Trost C, Nakayama S: Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 2002, 277(21):19191-19197.
    91. Ordog T, Redelman D, Horowitz NN, Sanders KM: Immunomagnetic enrichment ofinterstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2004, 286(2):G351-360.
    92. Liu HN, Ohya S, Furuzono S, Wang J, Imaizumi Y, Nakayama S: Co-contribution of IP3R and Ca2+ influx pathways to pacemaker Ca2+ activity in stomach ICC. J Biol Rhythms 2005, 20(1):15-26.
    93. Koh SD, Sanders KM, Ward SM: Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol 1998, 513 ( Pt 1):203-213.
    94. Koh SD, Ward SM, Ordog T, Sanders KM, Horowitz B: Conductances responsible for slow wave generation and propagation in interstitial cells of Cajal. Current Opinion in Pharmacology 2003, 3(6):579-582.
    95. Choi S, Park do Y, Yeum CH, Chang IY, You HJ, Park CG, Kim MY, Kong ID, So I, Kim KW et al: Bradykinin modulates pacemaker currents through bradykinin B2 receptors in cultured interstitial cells of Cajal from the murine small intestine. Br J Pharmacol 2006, 148(7):918-926.
    96. Poley RN, Dosier CR, Speich JE, Miner AS, Ratz PH: Stimulated calcium entry and constitutive RhoA kinase activity cause stretch-induced detrusor contraction. Eur J Pharmacol 2008, 599(1-3):137-145.
    97. Chaqour B, Yang R, Sha Q: Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappaB activation. J Biol Chem 2006, 281(29):20608-20622.
    98. Dixit D, Zarate N, Liu LW, Boreham DR, Huizinga JD: Interstitial cells of Cajal and adaptive relaxation in the mouse stomach. Am J Physiol Gastrointest Liver Physiol 2006, 291(6):G1129-1136.
    99. Drake M, Gillespie J, Hedlund P, Harvey I, Lagou M, Andersson KE: Muscarinic stimulation of the rat isolated whole bladder: pathophysiological models of detrusor overactivity. Auton Autacoid Pharmacol 2006, 26(3):261-266.
    100. Burnstock G, Lavin S: Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 2002, 97(1):68-72.
    101. Yanai Y, Hashitani H, Kubota Y, Sasaki S, Kohri K, Suzuki H: The role of Ni(2+)-sensitive T-type Ca(2+) channels in the regulation of spontaneousexcitation in detrusor smooth muscles of the guinea-pig bladder. BJU Int 2006, 97(1):182-189.
    102. Ji G, Feldman ME, Greene KS, Sorrentino V, Xin HB, Kotlikoff MI: RYR2 proteins contribute to the formation of Ca(2+) sparks in smooth muscle. J Gen Physiol 2004, 123(4):377-386.
    103. Maake C, Landman M, Wang X, Schmid DM, Ziegler U, John H: Expression of smoothelin in the normal and the overactive human bladder. J Urol 2006, 175(3 Pt 1):1152-1157.
    104. Harhun M, Gordienko D, Kryshtal D, Pucovsky V, Bolton T: Role of intracellular stores in the regulation of rhythmical [Ca2+]i changes in interstitial cells of Cajal from rabbit portal vein. Cell Calcium 2006, 40(3):287-298.
    105. Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR: A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 2003, 6(7):724-730.
    106. Calabrese B, Tabarean IV, Juranka P, Morris CE: Mechanosensitivity of N-type calcium channel currents. Biophys J 2002, 83(5):2560-2574.
    107. Becker D, Blase C, Bereiter-Hahn J, Jendrach M: TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 2005, 118(Pt 11):2435-2440.
    108. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA: Interstitial cells of Cajal in the urethra. J Cell Mol Med 2006, 10(2):280-291.
    109. Bradley E, Hollywood MA, Johnston L, Large RJ, Matsuda T, Baba A, McHale NG, Thornbury KD, Sergeant GP: Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol 2006, 574(Pt 3):651-661.
    110. Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA: IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid. J Cell Biol 2008, 181(1):143-155.
    111. Gossman DG, Zhao HB: Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling. Cell Commun Adhes 2008, 15(4):305-315.
    112. Yamda J, Ohkusa T, Nao T, Ueyama T, Yano M, Kobayashi S, Hamano K, Esato K, Matsuzaki M: Up-regulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Am Coll Cardiol 2001, 37(4):1111-1119.
    1. Ward SM, Sanders KM: Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 2001, 281(3):G602-611.
    2. Young HM, Ciampoli D, Southwell BR, Newgreen DF: Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 1996, 180(1):97-107.
    3. Faussone-Pellegrini MS, Pantalone D, Cortesini C: An ultrastructural study of the interstitial cells of Cajal of the human stomach. J Submicrosc Cytol Pathol 1989, 21(3):439-460.
    4. Faussone Pellegrini MS: Ultrastructural peculiarities of the inner portion of the circular layer of the colon. II. Research on the mouse. Acta Anat (Basel) 1985, 122(3):187-192.
    5. Faussone-Pellegrini MS, Cortesini C: Ultrastructural features and localization of the interstitial cells of Cajal in the smooth muscle coat of human esophagus. J Submicrosc Cytol 1985, 17(2):187-197.
    6. Burnstock G, Lavin S: Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 2002, 97(1):68-72.
    7. Wester T, Eriksson L, Olsson Y, Olsen L: Interstitial cells of Cajal in the human fetal small bowel as shown by c-kit immunohistochemistry. Gut 1999, 44(1):65-71.
    8. McHale NG, Hollywood MA, Sergeant GP, Thornbury KD, Shafei M, Ward SM: Organization and Function of Icc in the Urinary Tract. J Physiol 2006, 576(3):689-694.
    9. Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WF, Wendt I, Parkington HC: Pyeloureteric Peristalsis: Role of Atypical Smooth Muscle Cells and Interstitial Cells of Cajal-Like Cells as Pacemakers. J Physiol 2006, 576(3):695-705.
    10. Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO: Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol 2003, 284(5):F925-929.
    11. Lang RJ, Klemm MF: Interstitial cell of Cajal-like cells in the upper urinary tract.J Cell Mol Med 2005, 9(3):543-556.
    12. McCloskey KD, Gurney AM: Kit positive cells in the guinea pig bladder. J Urol 2002, 168(2):832-836.
    13. Shafik A: Study of interstitial cells in the penis: human study. J Sex Med 2007, 4(1):66-71.
    14. Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD: Cholinergic induced Ca2+-signalling in Interstitial Cells of Cajal from the guinea-pig bladder. Am J Physiol Renal Physiol 2008, 294(3):F645-655.
    15. Klemm MF, Exintaris B, Lang RJ: Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 1999, 519 Pt 3:867-884.
    16. Metzger R, Schuster T, Till H, Stehr M, Franke FE, Dietz HG: Cajal-like cells in the human upper urinary tract. J Urol 2004, 172(2):769-772.
    17. Smet PJ, Jonavicius J, Marshall VR, de Vente J: Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 1996, 71(2):337-348.
    18. Davidson RA, McCloskey KD: Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol 2005, 173(4):1385-1390.
    19. Iino S, Horiguchi K, Nojyo Y: Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008, 152(2):437-448.
    20. Hashitani H, Yanai Y, Suzuki H: Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol 2004, 559(Pt 2):567-581.
    21. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA: Interstitial cells of Cajal in the urethra. J Cell Mol Med 2006, 10(2):280-291.
    22. Sergeant GP, Johnston L, McHale NG, Thornbury KD, Hollywood MA: Activation of the cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spatial spread of Ca2+ waves. J Physiol 2006, 574(Pt 1):167-181.
    23. Sergeant GP, Hollywood MA, McHale NG, Thornbury KD: Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol 2006, 576(Pt 3):715-720.
    24. Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD: Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Physiol Cell Physiol 2001, 280(5):C1349-1356.
    25. McHale N, Hollywood M, Sergeant G, Thornbury K: Origin of spontaneous rhythmicity in smooth muscle. J Physiol 2006, 570(Pt 1):23-28.
    26. Hashitani H: Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J Physiol 2006, 576(Pt 3):707-714.
    27. Shafik A, El-Sibai O, Shafik AA, Shafik I: Identification of interstitial cells of Cajal in human urinary bladder: Concept of vesical pacemaker. Urology 2004, 64(4):809-813.
    28. Burton LD, Housley GD, Salih SG, Jarlebark L, Christie DL, Greenwood D: P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Auton Neurosci 2000, 84(3):147-161.
    29. Kito Y, Ward SM, Sanders KM: Pacemaker potentials generated by interstitial cells of Cajal in the murine intestine. Am J Physiol Cell Physiol 2005, 288(3):C710-720.
    30. Kito Y, Suzuki H, Edwards FR: Properties of unitary potentials recorded from myenteric interstitial cells of Cajal distributed in the guinea-pig gastric antrum. J Smooth Muscle Res 2002, 38(6):165-179.
    31. Sergeant GP, Large RJ, Beckett EA, McGeough CM, Ward SM, Horowitz B: Microarray comparison of normal and W/Wv mice in the gastric fundus indicates a supersensitive phenotype. Physiol Genomics 2002, 11(1):1-9.
    32. Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B: TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol 2002, 283(6):C1637-1645.
    33. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW: Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 2005, 129(5):1504-1517.
    34. Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I: Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cellsisolated from the mouse ureteropelvic junction. J Urol 2007, 177(4):1573-1580.
    35. Gillespie JI, Markerink-van Ittersum M, De Vente J: Interstitial cells and cholinergic signalling in the outer muscle layers of the guinea-pig bladder. BJU Int 2006, 97(2):379-385.
    36. van der AF, Roskams T, Blyweert W, Ost D, Bogaert G, De Ridder D: Identification of kit positive cells in the human urinary tract. J Urol 2004, 171(6 Pt 1):2492-2496.
    37. Ward SM, McLaren GJ, Sanders KM: Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol 2006, 573(Pt 1):147-159.
    38. Popescu LM, Gherghiceanu M, Cretoiu D, Radu E: The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med 2005, 9(3):714-730.
    39. Grady EF, Baluk P, Bohm S, Gamp PD, Wong H, Payan DG, Ansel J, Portbury AL, Furness JB, McDonald DM et al: Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J Neurosci 1996, 16(21):6975-6986.
    40. Chen H, Redelman D, Ro S, Ward SM, Ordog T, Sanders KM: Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol 2007, 292(1):C497-507.
    41. Choi S, Park do Y, Yeum CH, Chang IY, You HJ, Park CG, Kim MY, Kong ID, So I, Kim KW et al: Bradykinin modulates pacemaker currents through bradykinin B2 receptors in cultured interstitial cells of Cajal from the murine small intestine. Br J Pharmacol 2006, 148(7):918-926.
    42. Daigo Y, Takayama I, Ward SM, Sanders KM, Fujino MA: Isolation of novel mouse genes that were differentially expressed in W/W(V) mouse fundus. J Gastroenterol 2004, 39(3):238-241.
    43. Nemeth L, Maddur S, Puri P: Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel. J Pediatr Surg 2000, 35(6):823-828.
    44. Sanders KM, Ordog T, Ward SM: Physiology and pathophysiology of the interstitialcells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2002, 282(5):G747-756.
    45. Huizinga JD: Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol 2001, 281(5):G1129-1134.
    46. Kubota Y, Biers SM, Kohri K, Brading AF: Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn 2006, 25(3):205-210.
    47. Kubota Y, Hashitani H, Shirasawa N, Kojima Y, Sasaki S, Mabuchi Y, Soji T, Suzuki H, Kohri K: Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction. Neurourol Urodyn 2007, 27(4):330-340.
    48. Solari V, Piotrowska AP, Puri P: Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 2003, 170(6 Pt 1):2420-2422.
    49. Daniel EE, Willis A, Cho WJ, Boddy G: Comparisons of neural and pacing activities in intestinal segments from W/W++ and W/W(V) mice. Neurogastroenterol Motil 2005, 17(3):355-365.
    50. Sanders KM, Ward SM: Kit mutants and gastrointestinal physiology. J Physiol 2007, 578(1):33-42.
    51. Iino S, Horiguchi S, Horiguchi K, Nojyo Y: Interstitial cells of Cajal in the gastrointestinal musculature of W mutant mice. Arch Histol Cytol 2007, 70(3):163-173.
    52. McCloskey KD, Anderson UA, Davidson RA, Bayguinov YR, Sanders KM, Ward SM: Comparison of mechanical and electrical activity and interstitial cells of Cajal in urinary bladders from wild-type and W/Wv mice. Br J Pharmacol 2009, 156(2):273-283.
    1. Huizinga JD: Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol 2001, 281(5):G1129-1134.
    2. Lang RJ, Klemm MF: Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med 2005, 9(3):543-556.
    3. Shafik A: Study of interstitial cells in the penis: human study. J Sex Med 2007, 4(1):66-71.
    4. Yoneda S, Kadowaki M, Sugimori S, Sekiguchi F, Sunano S, Fukui H, Takaki M: Rhythmic spontaneous contractions in the rat proximal colon. Jpn J Physiol 2001, 51(6):717-723.
    5. Chang FY: Electrogastrography: basic knowledge, recording, processing and its clinical applications. J Gastroenterol Hepatol 2005, 20(4):502-516.
    6. Nemeth L, Maddur S, Puri P: Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel. J Pediatr Surg 2000, 35(6):823-828.
    7. Cho WJ, Daniel EE: Proteins of interstitial cells of Cajal and intestinal smooth muscle, colocalized with caveolin-1. Am J Physiol Gastrointest Liver Physiol 2005, 288(3):G571-585.
    8. Huizinga JD, Golden CM, Zhu Y, White EJ: Ion channels in interstitial cells of Cajal as targets for neurotransmitter action. Neurogastroenterol Motil 2004, 16 Suppl 1:106-111.
    9. Popescu LM, Gherghiceanu M, Cretoiu D, Radu E: The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med 2005, 9(3):714-730.
    10. Dixit D, Zarate N, Liu LW, Boreham DR, Huizinga JD: Interstitial cells of Cajal and adaptive relaxation in the mouse stomach. Am J Physiol Gastrointest Liver Physiol 2006, 291(6):G1129-1136.
    11. Forrest A, Huizinga JD, Wang XY, Liu LW, Parsons M: Increase in stretch-inducedrhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol 2008, 294(1):G315-326.
    12. Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ: Universal physical responses to stretch in the living cell. Nature 2007, 447(7144):592-595.
    13. Yamaguchi O: Response of bladder smooth muscle cells to obstruction: signal transduction and the role of mechanosensors. Urology 2004, 63(3 Suppl 1):11-16.
    14. Ji G, Barsotti RJ, Feldman ME, Kotlikoff MI: Stretch-induced calcium release in smooth muscle. J Gen Physiol 2002, 119(6):533-544.
    15. Kraichely RE, Farrugia G: Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil 2007, 19(4):245-252.
    16. Kim CH, Rhee PL, Rhee JC, Kim YI, So I, Kim KW, Park MK, Uhm DY, Kang TM: Hypotonic swelling increases L-type calcium current in smooth muscle cells of the human stomach. Exp Physiol 2000, 85(5):497-504.
    17. O'Neil RG, Heller S: The mechanosensitive nature of TRPV channels. Pflugers Arch 2005, 451(1):193-203.
    18. Tamma G, Procino G, Svelto M, Valenti G: Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells. Am J Physiol Cell Physiol 2007, 292(4):C1476-1484.
    19. Won KJ, Sanders KM, Ward SM: Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci U S A 2005, 102(41):14913-14918.
    20. Thuneberg L, Peters S: Toward a concept of stretch-coupling in smooth muscle. I. Anatomy of intestinal segmentation and sleeve contractions. Anat Rec 2001, 262(1):110-124.
    21. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL: Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 2000, 428(3):558-576.
    22. Mitsui R, Komuro T: Distribution and ultrastructure of interstitial cells of Cajal in the gastric antrum of wild-type and Ws/Ws rats. Anat Embryol (Berl) 2003, 206(6):453-460.
    23. Forrest AS, Huizinga JD, Wang XY, Liu LW, Parsons ME: Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC-SMP. Am J Physiol Gastrointest Liver Physiol 2007, 294(1):G315-326.
    24. Faussone-Pellegrini MS: Interstitial cells of Cajal: once negligible players, now blazing protagonists. Ital J Anat Embryol 2005, 110(1):11-31.
    25. Chaqour B, Yang R, Sha Q: Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappaB activation. J Biol Chem 2006, 281(29):20608-20622.
    26. Fry CH, Hussain M, McCarthy C, Ikeda Y, Sui GP, Wu C: Recent advances in detrusor muscle function. Scand J Urol Nephrol Suppl 2004(215):20-25.
    27. Jiang HH, Song B, Lu GS, Wen QJ, Jin XY: Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int 2005, 96(3):428-433.
    28. Wiseman OJ, Fowler CJ, Landon DN: The role of the human bladder lamina propria myofibroblast. BJU Int 2003, 91(1):89-93.
    29. Sui GP, Wu C, Fry CH: Electrical characteristics of suburothelial cells isolated from the human bladder. J Urol 2004, 171(2 Pt 1):938-943.
    30. Lagou M, Drake MJ, Gillespie JI: Volume-induced effects on the isolated bladder: a possible local reflex. BJU Int 2004, 94(9):1356-1365.
    31. Zagorodnyuk VP, Costa M, Brookes SJ: Major classes of sensory neurons to the urinary bladder. Auton Neurosci 2006, 126-127:390-397.
    32. Gevaert T, Vandepitte J, Hutchings G, Vriens J, Nilius B, De Ridder D: TRPV1 is involved in stretch-evoked contractile changes in the rat autonomous bladder model: A study with piperine, a new TRPV1 agonist. Neurourol Urodyn 2007: 451-453.
    33. Gillespie JI, Markerink-van Ittersum M, De Vente J: Endogenous nitric oxide/cGMP signalling in the guinea pig bladder: evidence for distinct populations ofsub-urothelial interstitial cells. Cell Tissue Res 2006, 325(2):325-332.
    34. Sergeant GP, Johnston L, McHale NG, Thornbury KD, Hollywood MA: Activation of the cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spatial spread of Ca2+ waves. J Physiol 2006, 574(Pt 1):167-181.
    35. Ordog T, Redelman D, Horowitz NN, Sanders KM: Immunomagnetic enrichment of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2004, 286(2):G351-360.
    36. Liu HN, Ohya S, Furuzono S, Wang J, Imaizumi Y, Nakayama S: Co-contribution of IP3R and Ca2+ influx pathways to pacemaker Ca2+ activity in stomach ICC. J Biol Rhythms 2005, 20(1):15-26.
    37. Koh SD, Sanders KM, Ward SM: Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol 1998, 513 ( Pt 1):203-213.
    [1] Brading AF (1997) A myogenic basis for the overactive bladder. Urology 50(6A Suppl):57-67.
    [2] Drake MJ, Harvey IJ, Gillespie JI (2003) Autonomous activity in the isolated guinea pig bladder. Exp Physiol 88:19-30.
    [3] Drake MJ, Hedlund P, Harvey IJ, Pandita RK, Andersson KE, Gillespie JI (2003) Partial outlet obstruction enhances modular autonomous activity in the isolated rat bladder. J Urol 170:276-279.
    [4] McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder (2002) J Urol 168:832-836.
    [5] Metzger R, Neugebauer A, Rolle U, Bohlig L, Till H (2008) C-Kit receptor (CD117) in the porcine urinary tract. Pediatr Surg Int 24:67-76.
    [6] Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD (2008) Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol 294: 645-655.
    [7] Won KJ, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci USA 102:14913-14918.
    [8] Kraichely RE, Farrugia G (2007) Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol Motil 19:245-252.
    [9] Jiang HH, Song B, Lu GS, Wen QJ, Jin XY (2005) Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int 96:428-433.
    [10] Yost MJ, Simpson D, Wrona K, Ridley S, Ploehn HJ, Borg TK, Terracio, L. (2000) Design and construction of a uniaxial cell stretcher. Am J Physiol Heart Circ Physiol 279: 3124-3130.
    [11] Shafik A, El-Sibai O, Shafik AA, Shafik I (2004) Identification of interstitial cells of Cajal in human urinary bladder: Concept of vesical pacemaker. Urology 64:809-813.
    [12] Burnstock G, Lavin S (2002) Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 97:68-72.
    [13] Grol S, van Koeveringe GA, de Vente J, van Kerrebroeck PE, Gillespie JI (2008) Regional differences in sensory innervation and suburothelial interstitial cells in the bladder neck and urethra. BJU Int 102:870-877.
    [14] Streutker CJ, Huizinga JD, Driman DK, Riddell RH (2007) Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 50:176-89.
    [15] Kubota Y, Biers SM, Kohri K, Brading AF (2006) Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn 25:205-210.
    [16] Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler, J. P. Fredberg, J. J. (2007) Universal physical responses to stretch in the living cell. Nature;447:592-595.
    [17] Lagou M, Drake MJ, Markerink VANIM, J DEV, Gillespie JI (2006) Interstitial cells and phasic activity in the isolated mouse bladder. BJU Int 98:643-650.
    [18] Mirone V, Imbimbo C, Longo N, Fusco F (2007) The detrusor muscle: an innocent victim of bladder outlet obstruction. Eur Urol 51:57-66.
    [19] Gillespie JI, Markerink-van Ittersum M, de Vente J (2004) cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int 94:1114-1124.
    [20] Yamazawa T, Iino M (2002) Simultaneous imaging of Ca2+ signals in interstitial cells of Cajal and longitudinal smooth muscle cells during rhythmic activity in mouse ileum. J Physiol 538:823-835.
    [21] Faussone-Pellegrini MS (2006). Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med 10:20-23.
    [22] Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL(2001) C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol (Berl) 204:11-26.
    [23] Sergeant GP, Hollywood MA, McHale NG, Thornbury KD (2006) Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol ;576:715-720.
    [24] Hashitani H, Suzuki H (2007) Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol;583:505-519.
    [25] Bradley E, Hollywood MA, Johnston L, Large RJ, Matsuda T, Baba A, Baba, A. McHale, N. G.Thornbury, K. D. Sergeant, G. P. (2006) Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol 574:651-661.
    1. Brading, A. F.: Acetylcholine and the overactive bladder. Eur Urol, 51: 881, 2007
    2. Kielb, S. J., Clemens, J. Q.: Comprehensive urodynamics evaluation of 146 men with incontinence after radical prostatectomy. Urology, 66: 392, 2005
    3. Srikrishna, S., Robinson, D., Cardozo, L. et al.: Management of overactive bladder syndrome. Postgrad Med J, 83: 481, 2007
    4. Abrams, P., Andersson, K. E.: Muscarinic receptor antagonists for overactive bladder. BJU Int, 100: 987, 2007
    5. Brading, A. F.: A myogenic basis for the overactive bladder. Urology, 50: 57, 1997
    6. Plumb, F., Colfelt, R.: The genesis of vesical rhythmicity. AMA Arch Neurol, 2: 487, 1960
    7. Drake, M. J., Harvey, I. J., Gillespie, J. I.: Autonomous activity in the isolated guinea pig bladder. Exp Physiol, 88: 19, 2003
    8. Gillespie, J. I., Markerink-van Ittersum, M., de Vente, J.: cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int, 94: 1114, 2004
    9. McCloskey, K. D., Gurney, A. M.: Kit positive cells in the guinea pig bladder. J Urol, 168: 832, 2002
    10. Hashitani, H., Yanai, Y., Suzuki, H.: Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol, 559: 567, 2004
    11. van der, A. F., Roskams, T., Blyweert, W. et al.: Identification of kit positive cells in the human urinary tract. J Urol, 171: 2492, 2004
    12. Lyons, A. D., Gardiner, T. A., McCloskey, K. D.: Kit-positive interstitial cells in the rabbit urethra: structural relationships with nerves and smooth muscle. BJU Int, 99: 687, 2006
    13. Gillespie, J. I., Markerink-van Ittersum, M., De Vente, J.: Endogenous nitric oxide/cGMPsignalling in the guinea pig bladder: evidence for distinct populations of sub-urothelial interstitial cells. Cell Tissue Res, 325: 325, 2006
    14. Li, L., Jiang, C., Hao, P. et al.: Changes in T-type calcium channel and its subtypes in overactive detrusor of the rats with partial bladder outflow obstruction. Neurourol Urodyn, 26: 870, 2007
    15. Sanders, K. M., Ordog, T., Ward, S. M.: Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol, 282: G747, 2002
    16. Li, L., Jiang, C., Hao, P. et al.: Changes of gap junctional cell-cell communication in overactive detrusor in rats. Am J Physiol Cell Physiol, 293: C1627, 2007
    17. Streutker, C. J., Huizinga, J. D., Driman, D. K. et al.: Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology, 50: 176, 2007
    18. Ward, S. M., McLaren, G. J., Sanders, K. M.: Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol, 573: 147, 2006
    19. Lee, H. T., Hennig, G. W., Fleming, N. W. et al.: The mechanism and spread of pacemaker activity through myenteric interstitial cells of cajal in human small intestine. Gastroenterology, 132: 1852, 2007
    20. Davidson, R. A., McCloskey, K. D.: Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol, 173: 1385, 2005
    21. Kubota, Y., Hashitani, H., Shirasawa, N. et al.: Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction. Neurourol Urodyn, 27: 330, 2007
    22. Sergeant, G. P., Hollywood, M. A., McHale, N. G. et al.: Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol, 576: 715, 2006
    23. Sergeant, G. P., Johnston, L., McHale, N. G. et al.: Activation of the cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spatial spread of Ca2+ waves. J Physiol, 574: 167, 2006
    24. Biers, S. M., Reynard, J. M., Doore, T. et al.: The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int, 97: 612, 2006
    25. Kubota, Y., Biers, S. M., Kohri, K. et al.: Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn, 25: 205, 2006
    26. Pluja, L., Alberti, E., Fernandez, E. et al.: Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol, 281: G255, 2001
    27. Bradley, E., Hollywood, M. A., Johnston, L. et al.: Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol, 574: 651, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700