膀胱ICC细胞在神经源性膀胱兴奋性改变中的作用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的探讨膀胱Cajal间质细胞(Interstitial cell of Cajal,ICC)在神经源性膀胱兴奋性改变中的作用。神经源性膀胱(Neurogenic bladder,NGB)是临床上常见的一种膀胱功能障碍,脊髓损伤是其常见原因之一。主要有两种类型:骶髓损伤(Sacral cord injury,SCI)和骶髓上损伤(Suprasacral cord injury,SSCI),骶髓损伤会导致逼尿肌无反射(Detrusor areflexia,DA),表现为排尿期膀胱不能收缩或者收缩无力;而骶髓上损伤会导致逼尿肌反射亢进(Detrusor hyperreflexia,DH),表现为储尿期出现膀胱自发或诱发的收缩。既往对神经源性膀胱发病机理的研究多进行的是神经病理学研究,传统理论认为,骶髓损伤的部位在骶髓初级排尿中枢,膀胱失去初级排尿中枢的控制,表现为排尿期不能出现收缩;骶髓上损伤的部位为骶髓以上,骶髓初级排尿中枢保存完整,失去高位中枢的控制,膀胱出现反射亢进的表现。但这些理论对神经病变后逼尿肌水平何种病变的下游机制解释不清,进一步的研究也发现,神经源性膀胱的膀胱壁也出现一系列的病理改变,包括肌细胞排列紊乱,分布不均匀;肌细胞间隙增宽或不均匀,弹性纤维减少,胶原纤维增生;中间连接减少,伴有缝隙连接的出现等等,但两种不同的病变都有类似的病理改变,显然还有我们未知的病理生理改变导致了膀胱功能的继发性改变。
     Cajal间质细胞是胃肠道平滑肌活动的起搏细胞,参与胃肠道基本电节律(Basic electrical rhythm,BER)的产生、传递电信号以及介导肠神经和平滑肌之间的信号调节。ICC细胞保持正常的结构、功能及分布,对胃肠动力的产生和功能调控至关重要,其分布密度的异常和细胞网络完整性破坏与一些胃肠动力紊乱性疾病如Hirschsprung’s病和慢性传输型便秘的发生密切相关。近年来国内外学者用相差显微镜、免疫组织化学分析和电镜技术研究人或动物具有自发性活动的平滑肌标本发现,ICC细胞普遍存在于各种器官,包括泌尿道的肾盂、输尿管和膀胱,但ICC细胞在泌尿道的作用还不清楚。研究发现泌尿道存在ICC细胞,且具有自发性兴奋的特征。进一步研究发现,在先天性肾盂输尿管连接部梗阻患者,肾盂输尿管连接部ICC细胞数量减少;在先天性巨结肠-巨膀胱-小肠蠕动失迟缓症患者,膀胱ICC细胞数量也是减少的;在人膀胱出口梗阻引起的过度活动膀胱中ICC细胞数量增加;本课题组的前期研究也发现,在大鼠膀胱出口梗阻引起的逼尿肌不稳定模型中,膀胱ICC细胞数量也明显增加,这些都提示ICC细胞可能在膀胱活动中起重要作用。因此,我们推测不同部位脊髓损伤后膀胱功能出现了典型的逼尿肌反射亢进和逼尿肌无反射表现,是否与ICC细胞的变化有关?
     ICC细胞特异性表达c-kit受体(Kit是一种编码酪氨酸激酶受体的原癌基因),Kit信号通路对细胞的发育和表型维持至关重要。甲磺酸伊马替尼(Glivec)是一个选择性的c-kit受体酪氨酸激酶抑制剂,经美国FDA批准用于治疗费城染色体阳性的慢性髓样白血病和c-kit阳性的胃肠道间质肿瘤。研究发现Glivec不仅可以抑制胃肠道ICC细胞的表达,还可以抑制离体豚鼠膀胱自发性活动和逼尿肌的自发性动作电位,说明ICC细胞可能参与了膀胱的自发性活动和逼尿肌的自发性动作电位。
     本课题拟通过对比研究骶髓上及骶髓损伤后逼尿肌反射亢进和逼尿肌无反射膀胱ICC细胞数量变化、兴奋性变化及用Glivec阻断从细胞水平、组织水平和在体水平阻断ICC后,观察ICC细胞兴奋性变化、肌条自发性活动的变化和膀胱功能的改变,探讨膀胱ICC细胞在逼尿肌反射亢进和逼尿肌无反射膀胱兴奋性改变中的作用。
     方法本课题以成年雌性SD大鼠为研究对象,建立骶髓及骶髓上损伤实验模型,围绕正常组、膀胱造瘘组、骶髓上损伤组及骶髓损伤组之间的对比进行以下研究:1、形态学研究:免疫荧光标记各组膀胱ICC细胞,观察各组膀胱ICC细胞数量的变化,探讨ICC细胞数量变化与膀胱兴奋性改变的可能关系。2、功能学研究:急性分离各组膀胱的ICC细胞,激光共聚焦显微镜检测膀胱ICC细胞自发性钙波变化、即细胞兴奋性的变化,观察ICC细胞兴奋性变化与膀胱兴奋性改变的可能关系。3、甲磺酸伊马替尼(Glivec)阻断ICC细胞对膀胱兴奋性的影响:①细胞水平:用Glivec阻断ICC细胞的c-kit受体,观察阻断c-kit受体后膀胱ICC细胞兴奋性的变化。②组织水平:进行不同组别的膀胱肌条实验,在实验过程中加入Glivec,观察肌条自发性收缩的变化。③在体水平:进行大鼠膀胱充盈性测压实验,经尾静脉注射Glivec,观察膀胱兴奋性改变。
     结果
     1、成功制作了脊髓损伤后逼尿肌反射亢进和逼尿肌无反射两种动物模型。
     2、形态学研究显示:骶髓上损伤大鼠膀胱ICC细胞数量较正常组和膀胱造瘘组明显增加,膀胱造瘘组和正常组大鼠膀胱ICC细胞无明显差异,骶髓损伤组膀胱ICC细胞数量较正常组和膀胱造瘘组减少。
     3、成功进行了大鼠膀胱ICC细胞的急性分离和鉴定。
     4、功能学研究显示:骶髓上损伤大鼠膀胱ICC细胞自发性兴奋性较正常组和膀胱造瘘组明显增加,膀胱造瘘组大鼠和正常组大鼠膀胱ICC细胞自发性兴奋性无明显差异,骶髓损伤组膀胱ICC细胞自发性兴奋性较正常组和膀胱造瘘组降低。
     5、Glivec可以以剂量依赖性的方式抑制膀胱ICC细胞的自发性钙波,低浓度(1×10-6mol/L)的Glivec对逼尿肌反射亢进大鼠膀胱ICC细胞自发性钙波有抑制作用,而5×10-5mol/L的Glivec对逼尿肌无反射大鼠膀胱ICC细胞自发性钙波有抑制作用。
     6、在一定的前负荷(1g)下,各组大鼠膀胱表现了不同的自发性收缩,逼尿肌反射亢进大鼠膀胱自发性收缩的幅度高于逼尿肌无反射大鼠膀胱。
     7、Glivec可呈剂量依赖性的方式降低膀胱逼尿肌肌条自发性收缩的幅度,低浓度(1×10-5mol/L)的Glivec对逼尿肌反射亢进大鼠膀胱逼尿肌肌条自发性收缩的幅度有抑制作用,而5×10-4mol/L的Glivec对逼尿肌无反射大鼠膀胱逼尿肌肌条自发性有抑制作用。任何浓度的Glivec对肌条自发性收缩的频率无影响。
     8、10mg/kg的Glivec可以增加逼尿肌反射亢进大鼠膀胱容量和顺应性,对逼尿肌无反射大鼠膀胱容量和顺应性无明显影响。20mg/kg的Glivec抑制逼尿肌反射亢进膀胱充盈过程中的自发性收缩
     结论
     1、不同部位脊髓损伤引起的逼尿肌反射亢进和逼尿肌无反射大鼠模型中,膀胱ICC细胞数量和兴奋性出现了不同的变化。
     2、Glivec阻断ICC细胞后,抑制了逼尿肌反射亢进肌条的自发性收缩,增加了逼尿肌反射亢进膀胱容量和膀胱顺应性,并抑制了膀胱的不自主收缩;而不能抑制逼尿肌无反射肌条的自发性收缩,膀胱容量和顺应性无明显增加。
     3、膀胱ICC细胞数量增多和兴奋性的增加参与了逼尿肌反射亢进的功能改变,而ICC细胞数量的减少和兴奋性的降低可能与逼尿肌无反射有关。
     4、Glivec可增加逼尿肌反射亢进大鼠膀胱容量和顺应性,抑制膀胱不自主收缩,提示Glivec可能为逼尿肌反射亢进的治疗提供一个新的思路。
Background and objective
     The aim of this study is to investigate the role of interstitial cell of Cajal(ICC) in excitability change of neurogenic bladder. Neurogenic bladder, which is always caused by spinal cord injury, is a common bladder dysfunction. According to the segment of lesion, spinal cord injury can be classified as sacral cord injury(SCI) and Suprasacral cord injury(SSCI). SCI induce detrusor areflexia(DA), which displays contraction dysfunction or atony in bladder during voiding phase. SSCI induce detrusor hyperreflexia (DH), which displays spontaneous or evoked contraction in bladder during filling phase. According to the traditional theory, the bladder without the control of primary micturition center may display no contraction during voiding phase when the injury locates at sacral cord primary micturition center. The bladder under the control of primary micturition center and without the control of high centeral may display hyperreflexia when the injury locates at upper sacral cord. However, these theories can not explain the further changes of detrusor after nerve injury, such as muscle cells arranging disorder and maldistribution, intercellular space widening or nonuniform with decrease of elastic fibers and increase of collagen fibers, or decrease of intermediate junction following with appearance of gap junction. Moreover, SCI and SSCI always have the similar pathological change, which indicates we have not get enough data on the pathophysiological changes inducing the changes of bladder function.
     ICCs act as the pacemaker of smooth muscle activation in gastrointestinal tract. They play a role in producing gastrointestinal basic electrical rhythm(BER), transmitting electrical signal and mediating the signal between intestinal nerve and smooth muscle. It’s important for ICCs to maintain normal structure, distribution and function to regulate gastrointestinal motility. The abnormal distribution of ICCs and the destroy of cellular network may related with gastrointestinal motility disorders, such as Hirschsprung’s disease and chronic transmitting constipation. Recently, several investigators found that there are ICCs in many organs, such as renal pelvis, ureter and bladder, using phase contrast microscope, immunohistochemical anlysis and electron microscopy. However, the role of ICCs in urinary tract is still unknown. Studies demonstrated that ICCs in urinary tract presented spontaneous excitability. Some further studies indicated that the number of ICCs in the pyeloureteral junction decreased in patients with congenital pyeloureteral junction obstruction, and the number of ICCs in bladder decreased in patients with megacystis-microcolon intestinal hypoperistalsis syndrome. The munber of ICCs increased in overactivity bladder with the bladder outlet obstruction. Previously we found that ICCs increased significantly in bladder with BOO in rats model, which indicated ICCs may contribute to bladder activity. Therefor, we speculate that ICCs may contribute to detrusor hyperreflexia or detrusor areflexia in neurogenic bladder.
     C-kit receptors, which determined by a proto-oncogene kit encoding tyrosine kinase receptors, specially express in ICCs. The signal mediated by kit is important to maintain the development and function of cells. Imatinib mesylate (Glivec) is a selective inhibitor of c-kit receptor tyrosine kinases, and has USA Food and Drug Administration approval for the treatment of Philadelphia chromosome-positive chronic myeloid leukaemia and c-kit positive gastrointestinal stromal tumours. The data demonstrate that Glivec block kit signaling expression in gastrointestinal tract, and can suppress the spontaneous activity in bladder and the spontaneous action potential in detrusor in guinea pigs, suggests that ICCs contribute to the spontaneous activity in bladder and the spontaneous action potential in detrusor.
     The present study purposes to investigate the role of ICCs in the changes of detrusor hyperreflexia and detrusor areflexia in the bladder. We detect the changes of quantity and excitability of the ICCs in rats with detrusor hyperreflexia and detrusor areflexia, respectively. And we observe the changes of excitability of ICCs, the spontaneous activity of strips and bladder function, using c-kit receptor inhibitor Glivec to block ICCs in vitro and in vivo.
     Methods
     Female SD rats were used in the present study. These rats were randomly divided into normal group, post-cystostomy group, SSCI group and SCI group. The following studies were performed: 1. The bladders of rats were harvested in 4-6 weeks after spinal cord injury or cystostomy. The number of ICCs in each group was counted by immunofluorescence staining. 2. The ICCs of bladder in each group were freshly dispersed and the spontaneous calcium waves of ICCs were detected using laser confocal microscopy. 3. The changes of the spontaneous calcium waves of ICCs, the spontaneous contraction of the bladder strips and the changes of bladder function were detected after Glivec blocked the ICCs in each group.
     Results
     1、We successfully create the rat model with detrusor hyperreflexia and detrusor arereflexia.
     2、There are significantly more ICCs in bladder of SSCI rats than that in normal and post-cystostomy rats bladder. The quantity of ICCs in normal bladder is similar to that in post-cystostomy bladder. There are significantly less ICCs in bladder of SCI rats than that in normal and post-cystostomy rats bladder.
     3、We successfully freshly disperse and identify ICCs in rats bladder.
     4、The spongtanous excitability of ICCs in SSCI rats is higher than that in normal and post-cystostomy rats. The spongtanous excitability of ICCs in normal rats is similar to that in post-cystostomy rats. The spongtanous excitability of ICCs in SCI rats is lower than that in normal and post-cystostomy rats.
     5、The spontaneous calcium waves of ICCs in bladder is suppressed by Glivec with dose dependent. Glivec in low concentration(1×10-6mol/L) suppress the spontaneous calcium waves of ICCs in bladder with detrusor hyperreflexia, while 5×10-5mol/L Glivec suppress the spontaneous calcium waves of ICCs in bladder with detrusor areflexia.
     6、Each group has different spontaneous contractions of bladder in rats with unvarying preload(1g). The amplitude of spontaneous contractions of bladder with detrusor hyperreflexia in rats is higher than that in bladder with detrusor areflexia.
     7、The amplitude of spontaneous contraction of detrusor strips is inhibited by Glivec application with dose dependent. Glivec in low concentration(1×10-5mol/L) suppress the amplitude of spontaneous contraction of detrusor strips with detrusor hyperreflexia in rats, while 5×10-4mol/L Glivec suppress the amplitude of spontaneous contraction of detrusor strips with detrusor areflexia.
     8、Glivec(10mg/kg) increase the bladder capacity and compliance in rats with detrusor hyperreflexia and can not influence the bladder capacity and compliance in rats with detrusor areflexia. The spontaneous contraction of bladder can be suppressed by Glivec(20mg/kg) during the storage phase.
     Conclusion
     1. ICCs in rat bladder with spinal cord injury, including SSCI and SCI,occur to the changes of quantity and excitability.
     2. Glivec can suppress the spontaneous contraction of detrusor strips, increase the bladder capacity and compliance, and inhibit the spontaneous contraction of bladder with detrusor hyperreflexia by blocking ICCs, whereas it can not suppress the spontaneous contraction of detrusor strips, increase the capacity and compliance of bladder with detrusor arereflexia by blocking ICC.
     3. The increase of ICCs quantity and excitability may contribute to the bladder function of detrusor hyperreflexia, and the decrease of ICCs quantity and excitability may involve in the bladder function of detrusor arereflexia.
     4. Glivec increase the bladder capacity and compliance, and inhibit the spontaneous contraction of bladder with detrusor hyperreflexia. These results indicate that Glivec may be a new strategy for the clinical treatment of detrusor hyperreflexia.
引文
1. Nijman RJ. Neurogenic and non-neurogenic bladder dysfunction. Curr Opin Urol, 2001;11(6):577-583.
    2. Elbadawi A, Resnick NM, Dorsam J, et al. Structural basis of neurogenic bladder dysfunction. I. Methods of prospective ultrastructural study and overview of the findings. J Urol, 2003;169(2):540-546.
    3. Haferkamp A, Dorsam J, Resnick NM, et al. Structural basis of neurogenic bladder dysfunction. II. Myogenic basis of detrusor hyperreflexia. J Urol, 2003;169(2):547-554.
    4. Haferkamp A, Dorsam J, Resnick NM, et al. Structural basis of neurogenic bladder dysfunction. III. Intrinsic detrusor innervation. J Urol, 2003;169(2):555-562.
    5. Cajal.S.R Sur les ganglions et plexus nerveux de I’intestin. Compt Rend Soc Biol, 1893;45:217-233.
    6. Hanani M, Freund HR. Interstitial cells of Cajal-their role in pacing and signal transmission in the digestive system. Acta Physiol Scand, 2000;170(3):177-190.
    7. Huizinga JD, Robinson TL, Thomsen L. The search for the origin of rhythmicity in intstinal contraction; from tissue to single cells. Neuro gastroenterol Motil, 2000;12(1):3-9.
    8. Komuro T. Structure and Organization of Interstitial Cells of Cajal in the Gastrointestinal Tract. J Physiol. 2006; 576: 653–658.
    9. Metzger R, Schuster T, Till H, et al. Cajal-like cells in the human upper urinary tract. J Urol, 2004;172:769-772.
    10. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol, 2003;284:925-929.
    11. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol, 2002;168(2):832-836.
    12. Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol, 2003;170:2420-2422.
    13. Piotrowska AP, Rolle U, Solari V, et al. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon intestinalhypoperistalsis syndrome. BJU Int, 2004;94:143–146.
    14. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int, 2006,97(3):612-616.
    15.封建立,李龙坤,杨景,等。不稳定逼尿肌中ICCs细胞与逼尿肌收缩的关系。第三军医大学学报,2008;30(07):558-560.
    16. Vannucchi MG. Receptors in interstitial cells of Cajal: identification a possible physiological roles. Microsc Res Tech, 1999;47(5):325-335.
    17. Hashitani H, Fukuta H, Takano H, et al. Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pigurinary bladder. J Physiol, 2001;530(Pt2):273-286.
    18. Fry CH, Wu C, Sui GP. Cellular properties of human suburtohtelial myofibroblasts- their role in bladder sensation. Neurourol Urodyn, 2003;22(1):374-375.
    19. Kubota Y, Kajioka S, Biers SM, et al. Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations. Auton Neurosci, 2004;115(1-2): 64-73.
    20. Popescu LM, Vidulescu C, Curici A, et al. Imatinib inhibits spontaneous rhythmic contractions of human uterus and intestine. Eur J Pharmacol, 2006;546(1-3):177-81.
    21. Kubota Y, Biers SM, Kohri K, et al. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn, 2006;25(3):205-10.
    22. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int, 2006;97(3):612-616.
    23. Pikov V, Wrathall JR. Coordination of the bladder detrusor and the external urethral sphincter in a rat model of spinal cord injury: effect of injury severity. J Neurosci, 2001;21(2):559-569.
    24.金锡御,宋波。临床尿动力学[M]。北京:人民卫生出版社,2002;269-285.
    25.张武合,宋波,胡利发,等。神经源性、梗阻性和特发性逼尿肌不稳定模型的建立和尿动力学测定。西北国防医学杂志, 2007;28(3)198-199.
    26. Kwon BK, TomR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine, 2002;27(14):1504-1510.
    27. Linsenmeyer TA, Ottenweller J. Bladder stones following SCI in the Sprague-Dawleyrat. J Spinal Cord Med, 2003;26(1):65-68.
    28.章慧平,陈忠,叶章群,等。多节段脊髓平面损伤后大鼠神经源性膀胱模型的制备。临床外科杂志,2007;15(3):196-197.
    29. de Groat WC. Anatomy of the central neural pathways controlling the lower urinary tract. Eur Urol, 1998;34(Suppl1):2–5.
    30. Amaser M S, Lehman S L. The effect of urinary bladder shape on it mechanic during filling. J Biomech, 1995;6:725-752.
    31. Yndaele JJ. Correlation between clinical neurological data and urodynamyc function in spinal cord injury patients. Spinal Cord, 1997;35(2):322-341.
    32.张亚萍,张宽学,罗金燕,等。糖尿病大鼠肠道Cajal间质细胞结构变化的研究。中华内科杂志, 2002;41(5):310-312.
    33. Isozaki Hirota S, Miyagawa J, Taniguchi M, et al. Deficiency of c-kit positive cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-bstruction. Am J Gastroenterol, 1997;92:332-334.
    34. Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol, 2003;98(3):618-624.
    35. Shafik A, Shafik AA, EI-Sibai O, etal. Electricactivity of the colon in subjects with constipation due to total colonic inertia:an electrophysiologic study. Arch Surg, 2003;138(9):7-11.
    36.于彬,梅峰,童卫东,等。慢传输便秘患者结肠壁内Cajal细胞的形态学研究。消化外科,2004;3(3):185-189.
    37. Torihashi S, Ward SM, Sanders KM. Development of c-kit positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology, 1997;112(1), 144-155.
    38. Kitamura Y, Hirotab S. Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci. 2004;61(23): 2924-2931.
    39. Pinheiro CAN, Gomez RS, Guatimosin C, et al.The effect of sevoflurane on intracellular calcium concentration from cholinergic cells.Brain Research Bullitin, 2006;69(2):147-152.
    40. Liu PS, Chiung YM, Kao YY. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y cells. Toxicology andapplied pharmacology, 2006;211 (2):106-114.
    41. Schwarz EC, Wissenbach U, Niemeyer BA, et al. TRPV6 potentiates calcium- dependent cell proliferation. Cell Calcium, 2006;2(39):163-173.
    42. Xu YJ, Saini HK, Sukhinder K, et al. Mechanisms of lysophosphatidic acid–induced increase in intracellular calcium in vascular smooth muscle cells.Cell Calicium, 2005; 38 (6):569-579.
    43. Bradley E, Hollywood MA, Johnston L, et al. Contribution of reverse Na+/Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra.J Physiol, 2006;574(Pt 3):651-661.
    44. Sergeant GP, Hollywood MA, McCloskey KD, et al. Specialised pacemaking cells in the rabbit urethra[J]. J Physiol, 2000;526(2):359-366.
    45. Johnston L, Sergeant GP, Hollywood MA, et al. Calcium oscillations in interstitial cells of the rabbit urethra.J Physiol, 2005;565(Pt 2):449-461.
    46. Sergeant GP, Hollywood MA, McHale NG, et al. Ca2+ signalling in urethral interstitial cells of Cajal. J Physiol, 2006;576(Pt 3):715-720.
    47. Maruyama T, Kanaji T, Nakade S, et al. 2-Aminoethoxydiphenylborate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem, 1997;122:498–505.
    48. Sergeant GP, Hollywood MA, McCloskey KD, et al. Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra.Am J Physiol Cell Physiol, 2001;280: C1349–C1356.
    49. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev, 1999;79:763–854.
    50. Lang RJ, Zoltkowski BZ, Hammer JM, et al. Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol, 2007;177(4):1573-1580.
    51. Bramich NJ, Brading AF. Electrical properties of smooth muscle in the guinea-pig urinary bladder. J Physiol, 1996;492:185-198
    52. Sui GP, Wu C, Fry CH. The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells. J Urol, 2001;65:627-633.
    53. Hashitani H, Brading AF. Electrical properties of detrusor smooth muscles from the pigand human urinary bladder. Br J Pharmacol, 2003;140:146-158.
    54. Shigeko Torihashi, Toyoshi Fujimoto, Claudia Trost, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal. Journal of Biochem, 2002;277(21): 19191–19197.
    55. Buchdunger E, O'Reilly T, Wood J. Pharmacology of imatinib (STI571).Eur J Cancer, 2002;38(Suppl 5):S28-36.
    56. Savage DG, Antman KH: Imatinib mesylate-a new oral targeted therapy. N Engl J Med, 2002;346:683-693.
    57. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al. Effect of tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal tumour. N Engl J Med, 2001;344: 1052–1056.
    58. Heinrich MC, Blanke CD, Druker BJ, et al. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol, 2002;20:1692-1703.
    59. MV Chandu de SILVA, Robin REID. Gastrointestinal Stromal Tumors (GIST): C-kit Mutations,CD117 Expression, Differential Diagnosis and Targeted Cancer Therapy with Imatinib. Pathology Oncology Research, 2003;l9(1):13-19.
    60. Beckett EA, Ro S, Bayguinov Y, et al. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn, 2007;236(1):60-72.
    61. Tong WD, Liu BH, Zhang LY, et al. Decreased interstitialcells of Cajal in the sigmoid colon of patients with slow transit constipation. Int J Colorectal Dis, 2004;19: 467-473.
    62. Porcher C, Baldo M, Henry M, et al. Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn’s disease. Am J Gastroenterol, 2002; 97: 118-125.
    63. Jain D, Moussa K, Tandon M, et al. Role of interstitial cellsof Cajal in motility disorders of the bowel. Am J Gastroenterol, 2003; 98: 618-624.
    64. Rolle U, Piotrowska AP, Nemeth L, et al. Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med. 2002; 126(8):928-33.
    65. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology, 1999;117 (1):140-148.
    66. Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol, 2001; 536 (Pt 2) :555-568.
    67. Shimojima N, Nakaki T, Morikawa Y, et al. Imatinib blocks spontaneous mechanical activities in the adult mouse small intestine: possible inhibition of c-Kit signaling. Pharmacology, 2005;74(2):95-99.
    68. Hashitani H, Hayase M, Suzuki H. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach. Br J Pharmacol, 2008;154(2):451-459.
    69. Kubota Y, Kajioka S, Biers SM, et al. Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations. Auton Neurosci 2004; 115: 64–73
    70. Kubota Y, Biers SM, Kohri K, et al. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn, 2006;25(3):205-10.
    71. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU Int, 2006;97(3):612-616.
    72. Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol, 2004; 22:935–942.
    73. De-Groat WC. A neurogenic basis for the overactive bladder. Urology, 1997;50(6A Suppl):36-52,53-56.
    74. Brading AF. A myogenic basis for the overactive bladder. Urology, 1997;50(6A Suppl):57-67,68-73.
    75.王永权,方强,路扬,等。牵张负荷对豚鼠膀胱ICCs细胞内钙波的影响。第三军医大学学报。2008;30(07):574-577.
    76. Sui G.P, Wu C, Fry CH. Electrical characteristics of suburothelial cells isolated from the human bladder. J Urol, 2004;171:938–943.
    1. Cajal SR. Sur les ganglions et plexus nerveux de I’intestin. Compt Rend Soc Biol, 1893; 45:217-233.
    2. Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol,1998;513: 203-213.
    3. Lee JC, Thuneberg L, Berezin I, et al. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal. Am J Physiol, 1999;277:409-423.
    4. Thomsen L, Robinson TL, Lee JC, et al. Interstitial cells of Cajal generate a rhythmic pacemaker current . Nat Med,1998;4: 848-851.
    5. Ordog T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol, 1999; 518: 257-269.
    6. Hanani M, Freund HR. Interstitial cells of Cajal-their role in pacing and signal transmission in the digestive system. Acta Physiol Scand, 2000; 170(3): 177-190
    7. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology, 1999; 117: 140-148.
    8. Rolle U, Piotrowska AP, Nemeth L, et al. Altered distribution of interstitial cells of Cajal in Hirschsprung’s disease. Arch Pathol Lab Med, 2002; 126(8):928-933.
    9. Feldstein AE, Miller SM, El-youssef M, et al. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks. J Pediatr Gastroenterol Nutr, 2003; 36(4):492-497.
    10. Popescu LM, Hinescu ME, Ionescu N, et al. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005; 9:169–190.
    11. Ciontea SM, Radu E, Regalia T, et al. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med, 2005; 9: 407–420.
    12. Popescu LM, Ciontea SM, Cretoiu D, et al. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005; 9: 479–523.
    13. Radu E, Regalia T, Ceafalan L, et al. Cajal-type cells from human mammary gland stroma: phenotype characteristics in cell culture. J Cell Mol Med, 2005; 9: 748–752.
    14. Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma: Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005; 9: 893–910.
    15. Hinescu ME, Popescu LM. Interstitial Cajal-like cells (ICLC) in human atrial myocardium. J Cell Mol Med, 2005; 9: 972–975.
    16. Hinescu ME, Gherghiceanu M, Mandache E, et al. Interstitial Cajal-like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization. J Cell Mol Med, 2006; 10: 243–257.
    17. Popescu LM, Gherghiceanu M, Hinescu ME, et al. Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC). J Cell Mol Med, 2006; 10: 429–458.
    18. Harhun MI, Pucovsky V, Povstyan OV, et al. Interstitial cells in the vasculature. J Cell Mol Med, 2005; 9: 232–243.
    19. Harhun M, Gordienko D, Kryshtal D, et al. Role of intracellular stores in the regulation of rhythmical [Ca2+]i changes in interstitial cells of Cajal from rabbit portal vein. Cell Calcium 2006; 40: 287–98.
    20. Klemm MF,Exintaris B,Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol, 1999; 519(Pt3):867-884.
    21. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol. 2002; 168(2):832-836.
    22. Kobayashi S. The structure of the autonomic and apparatus in the guinea-pig small intestine and the problem of the interstitial cells of Cajal. Acta Med Biol, 1990;38:103-127.
    23. Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst,1992;37:75-88.
    24. Zhou DS, Komuro T. Ultrastructure of the zinc iodide-osmic acid staining cells in guinea pig small intestine. J Anat,1995;187:481-485.
    25. Ward SM, Burke EP, and Sanders KM. Use of rhodamine-123 to label and lesion interstitial cells of Cajal in canine colonic circular muscle. Anat Embry, 1990;182:215-224.
    26. Xue C, Ward SM, Shuttleworth CW, Sanders KM. Identification of interstitial cells incanine proximal colon using NADH diaphorase histochemistry. Histochemistry, 1993;99:373-384.
    27. Anderson CR, Edwards SL. Subunit of cholera toxin labels interstitial cells of Cajal in the gut of rat and mouse. Histochemistry, 1993;100:457-464.
    28. Hanani M, Louzon V, Miller SM, Faussone-Pellegrini MS. Visualization of interstitial cells of Cajal in the mouse colon by vital staining. Cell Tissue Res, 1998;292: 275-282.
    29. Hanani M, Belzer V, Rich A, Faussone Faussone-Pellegrini SM. Visualization of interstitial cells of Cajal in living, intact tissues. Microsc Res, 1999;47:336-343.
    30. Shuttleworth CW, Xue C, Ward SM, et al. Immunohistochemical localization of 3’, 5’-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience, 1993;56:513-522.
    31. Young HM, McConalogue K, Furness JB, et al. Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity. Neuroscience, 1993;55:583-596.
    32. Xue C, Pollock J, Schmidt HW, Ward SM, Sanders KM. Expression of nitric oxide synthase by interstitial cells of the canine proximal colon. J Auton Nerv Syst, 1994;49:1-14.
    33. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development, 1992;116:369-375.
    34. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of intestinal cells and electrical rhythmicity in murine intestine. J Physiol, 1994;480:91-97.
    35. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature, 1995;373:347-349.
    36. Torihashi S, Ward SM, Nishikawa SI, et al. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res, 1995;280:97-111.
    37. Burns AJ, Herbert TM, Ward SM, Sanders KM. Interstitial cells of Cajal in theguinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res, 1997;290:11-20.
    38. Davidson RA,McCloskey KD. Morphology and localization interstitial cells in the guinea pig bladder: Structural relationships with smooth muscle and neurons.J Urol,2005;173(4):1385-1390.
    39. Komuro T. Comparative morphology of interstitial cells of Cajal: ultrastructural characterization. Microsc Res Tech, 1999;47:267-285.
    40. Faussone-Pellegrini MS, Thuneberg L. Guide to the identification of interstitial cells of Cajal. Microsc Res Tech, 1999;47:248-266.
    41. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol, 1999;62:295-316.
    42. McCloskey KD , Gurney AM. Kit positive cells in the guinea pig bladder. J Urol,2002;168(2):832-836.
    43. Sui GP,Rothery S,Dupont E,et al. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int,2002;90(1):118-129.
    44. Piotrowska PA, Rolle U, Solari V, et al. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon-intestinal hypoperistalsis syndrome. BJU Int, 2004;94(1): 143-146.
    45. Shafik A, El-Sibai O, Shafik AA, et al. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker. Urology, 2004;64(4):809-813.
    46. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder.J Urol,2002;168(2):832-836.
    47. McCloskey KD. Characterization of outward currents in interstitial cells from the guinea pig bladder. J Urol, 2005;173(1):296-301.
    48. Kubota Y, Biers SM, Kohri K, et al. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourol Urodyn, 2006;25(3):205-10.
    49. Hashitani H,Fukuta H,Takano H,et al. Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol, 2001;530(Pt2):273-286.
    50. Johnston L, Carson C, Lyons AD, et al. Cholinergic-induced Ca2+ signaling ininterstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol, 2008;294(3):645-655.
    51. Fry CH, Wu C, Sui GP. Cellular properties of human suburothelial myofibroblasts-their role in bladder sensation. Neurourol Urodyn, 2003;22(1):374-375.
    52.王永权,方强,路扬,等.牵张负荷对豚鼠膀胱ICCs细胞内钙波的影响.第三军医大学学报. 2008. 30(07), 574-577.
    53. Isozaki Hirota S, Miyagawa J, Taniguchi M, et al. Deficiency of c-kit positive cells in patients with a myopathic form of chronic idiopathic intestinal pseudo-bstruction.Am J Gastroenterol,1997,92:332-334.
    54. Jain D, Moussa K, Tandon M, et al. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol, 2003;98(3):618-624.
    55. Shafik A, Shafik AA, EI-Sibai O, etal. Electricactivity of the colon in subjects with constipation due to total colonic inertia: an electrophysiologic study. Arch Surg, 2003, 138(9):7-11.
    56.于彬,梅峰,童卫东,等.慢传输便秘患者结肠壁内Cajal细胞的形态学研究.消化外科,2004,3(3):185-189.
    57. Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol, 2003;170(1):2420-2422.
    58. Biers SM, Reynard JM, Doore T, et al. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor[J]. BJU Int JT - BJU international, 2006,97(3):612-6。
    59.封建立,李龙坤,杨景,等.不稳定逼尿肌中ICCs细胞与逼尿肌收缩的关系.第三军医大学学报. 2008. 30(10), 894-896.
    60.路扬,李龙坤,王永权,等.牵张负荷对大鼠膀胱ICCs细胞数量及c-kit表达的影响.第三军医大学学报. 2008. 30(07), 570-573.
    1. Tanagho EA, Schmidt RA. Electrical stimulation in the clinical management of the neurogenic bladder. J Urol,1988,140(2):1331-1339
    2. Barrington FJ. The relation of the hindbrain to micturition. Brain,1991;44(23): 423-426
    3. Blok BFM, Willemsen ATM, Holstege G. A PET study on brain control of micturition in humans. Brain, 1997;120(8):111-121.
    4. Blok BFM, Holstege G. Electrical stimulation of the sacral dorsal gray commissure evokes relaxation of the external urethral sphincter in the cat. Neurosci Lett, 1998;249(6):68-70.
    5. Blok BFM , De Weerd H, Holstege G. The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett, 1997; 233(7):109-112.
    6. Sie JA , Blok BFM , De Weerd H. Ultrastructural evidence for direct projections from the pontine micturition center to glycine immunoreactive neurons in the dorsal gray commissure in the cat. J Comp Neurol, 2001;429:631-637.
    7. Habler HJ, Janig W. Myelinated primary afferent s of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. J Physiol, 1993;463:449-460.
    8. Floyd K, Hick VE , Morrison J F. Mechanosensitive afferent units in the hypogast ric nerve of the cat. J Physiol, 1999;259:457-471.
    9. Gosling JA, Dixon JS , Lendon RG. The autonomic innervation of the human male and female bladder neck and proximal urethra. Urol, 1977;118(2):302-305.
    10. Lincoln J, Burnstock G. Autonomic innervation of the urinary bladder and urethra. Nervous Control of the Urogenital System. London: Harwood Academic Publishers, 1993;45:33-68
    11. Gabella G, Davis C. Distribution of afferent axons in the bladder of rats. J Neurocytol, 1998;27:141-155.
    12. Hollabaugh RS, Steiner MS. Neuroanatomy of the male rabbit dosphincter. Urology, 1997;49(3):426 - 434.
    13. DeGroat WC. Anatomy and physiology of t he lower urinary tract. Urol Clin Nort h Am, 1993;20:383-391.
    14. Yoshimura N, Sasa M, Yoshida O. Mediation of micturition reflex by centralnorepinephrine from the locus coeruleus in the cat. J Urol, 1990;143:840 - 843.
    15. Holstege G, Griffiths D. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol, 1986;250:449- 461.
    16. Loewy AD, Saper CB, Baker RP. Descending projections from the pontine micturition center. Brain Res, 1979;172:533-538.
    17. Matsumoto G, Hisamitsu T, de Groat WC. Role of glutamate and NMDA receptors in the descending limb of the spinobulbospinal micturition reflex pathway of the cat. Neurosci Lett, 1995;183:58-62.
    18. Blok BFM, de Weerd H, Holstege G. Ultrastructural evidence for the paucity of projections from the lumbosacral cord to the Mregion in the cat. A new concept for the organization of the micturition reflex with the periaqueductal gray as the central relay. J Comp Neurol, 1995;359 :300-309.
    19. Noto H, Roppolo JR, Steers WD. Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Res, 1991;549 :95-105.
    20. At hwal BS, Berkley KJ, Hussain I. Brain responses to changes in bladder volume and urge to void in healthy men. Brain, 2001;124:369-377.
    21. Gjone R. Excitatory and inhibitory bladder responses to stimulation of limbic, diencephalic and mesencephalic structions in the cat. Acta Physiol Scand,1966; 66:91-102.
    22. Blok BFM, Sturms LM, Holstege G. Brain activation during micturition in women. Brain, 1998;121:2033–2042.
    23. Krane RJ, siroky MB. Classification of neurourologic disorders.In: krane RJ, siroku MB. Clinical neurourology. 2nd, brown &co, 1979. 143-158.
    24. Wein AJ. Classification of neurogenic voiding dysfunction. J urol, 1981;125: 695-698.
    25. Wurc, Chend. Managing the neurogenic bladder in spinal cord injury. Maryland, Gahtersburg: yarkony GM Aspen publishers, Inc, 1994. 41-57.
    26. Al-Ali M, Salman G, Rasheed A, et al. Phenoxybenzamine in the management of neuropathic bladder following spinal cord injury. Aust N Z J Surg, 1999;69(9):660 - 663.
    27. Chancellor MB, Erhard MJ, Rivas DA. Clinical effect of alpha-antagonism by terazosin on external urinary sphincter function. J Am Paraplegia Soc,1993;16 (4):207– 214.
    28. Andersson KE, Chapple CR. Oxybutynin and the overactive bladder. World J Urol 2001;19:319–323.
    29. Kaefer M, Pabby A, Kelly M, et al. Improved bladder function after prophylactic treatment of the high risk neurogenic bladder in newborns with myelomeningocele. J Urol 1999;162:1068–1071.
    30. Aslan AR, Kogan BA. Conservative management in neurogenic bladder dysfunction. Curr Opin Urol 2002;12:473–477.
    31. Dik P, Klijn AJ, van Gool JD, et al. Early start to therapy preserves kidney function in spina bifida patients. Eur Uro, 2006;l49:908–913.
    32. Mulcahy JJ, James HE, Mcroberts JW. Oxybutynin chloride of myelomeningocele patients. J Urol, 1977;118:95-96.
    33. Greenfield SP, Fera M. The use of intravesical oxybutynin chloride in children with neurogenic bladder. J Urol, 1991;146:532-534.
    34. Massad CA, Kogan BA, Trigorocha FE. The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol, 1992, 148:595-597.
    35. Buyse G, Waldeck K, Verpoorten C, et al. Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urol, 1998;160:892–896.
    36. De Wachter S, Wyndaele JJ. Intravesical oxybutynin: a local anesthetic effect on bladder C afferents. J Urol, 2003;169:1892–1895.
    37. Kim Y, Yoshimura N, Masuda H, et al. Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder afferent pathways. Urology, 2005;65: 238–242.
    38. Groat D, Kawatani WC, Hisamitsu M, et al. Mechanisms underlying the recovery of urinary bladder function following spinal cord injury. J Auton Nerv Sys, 1990;30 (suppl) :71-78.
    39. Fowler CJ, Beck RO, Gerrard S, et al. Intravesical capsaicin for treatment of detrusor hyperreflexia. J Neurol Neurosury Psychiat, 1994;57:169-173.
    40. Cruz F, Guimaraes M, Silva C, et al. Desensitization of bladder sensory fibers byintravesical capsaicin has long lasting clinical and urodynamic effects in patients with hyperactive or hypersensitive bladder dysfunction. J Urol, 1997;157: 585-589.
    41. Wiart L, Joseph PA, Petit H, et al. The effects of capsaicin on the neurogenic hyperreflexic detrusor. A double blind placebo controlled study in patient with spinal cord disease. Preliminary results. Spinal Cord, 1998;36:95-99.
    42. Dasgupta P, Chandiramani V, Parkinson MC, et al. Treating the human bladder with capsaicin: is it safe ? Eur Urol, 1998;33:28-31.
    43. Simpson LL. The origin structure and pharmalogical activity of botulinum toxin. Pharmacol Rev, 1981;33(3):155-165.
    44. Scott AB. Botulinum toxin injection onto extraocular muscles as an alternative to strabismus surgery. Ophthalmology, 1980;87:1044-1049.
    45. Scott AB, Kennedy RA, Stubbs HA. Botulinum A toxin injection as a treatment for blepharospasm. Arch Ophthal, 1985;103: 347.
    46. Mauriello JA. Treatment of begin essential blepharospasm and hemifacial spasm with botulinum toxin: a preliminary study of 68 patients ophthal. Plastic Reconstruct Surg, 1985; 4: 283.
    47. Tsui JK, Mak EE, Carruthers J, et al. A pilot study on use of botulinum toxin in spasmodic torticollis.Can J Neurol Sci, 1985;12:314.
    48. Jankovic J, Schwartz K, Donovan DT. Botulinum toxin treatment of cranialcervical dystonia, spasmodic dysphonia, other focal dystonias and hemifacial spasm. J Neurol Neurosurg Psychiatry, 1990;53:633-639.
    49. Psricha PJ, Ravich WJ, Henrichs TR, et al. Intrasphincteric botulinum toxin for treatment of achalasia. N Engl J Med, 1995;322:774-778.
    50. Dysktra DD, Sidi AA. Treatment of detrusor-sphincter dyssynergia with botulinum A toxin: a double-bland study. Arch Phys Med Rehab, 1990;71: 24.
    51. Popat R, Apostolidis A, Kalsi V, et al. A comparison between the response of patients with idiopathic detrusor overactivity and neurogenic detrusor overactivity to the first intradetrusor injection of botulinum-A toxin. J Urol. 2005;174(3):984-989.
    52. Karsenty G, Denys P, Amarenco G, et al. Botulinum toxin A (Botox) intradetrusor injections in adults with neurogenic detrusor overactivity/neurogenic overactive bladder: a systematic literature review, 2008;53(2):275-287
    53. Kalsi V, Apostolidis A, Popat R, et al.Quality of life changes in patients with neurogenic versus idiopathic detrusor overactivity after intradetrusor injections of botulinum neurotoxin type A and correlations with lower urinary tract symptoms and urodynamic changes. Eur Urol, 2006;49(3):528-35.
    54. Reitz A, Denys P, Fermanian C, at al. Do repeat intradetrusor botulinum toxin type a injections yield valuable results? Clinical and urodynamic results after five injections in patients with neurogenic detrusor overactivity.Eur Urol. 2007;52(6):1729-35.
    55. Lapides J, Ananias C , Diokno R, et al. Further observation on self-catherization. J Urol, 1976,85:169-171.
    56. Geraniotis E, koff SA, Enrile B. The prophyiactic use of clean intermittent catherazation in the treatment of infants and young children with myelomenimgcele and neurogenic bladder dysfunction. J Urol, 1988;139:85 - 220.
    57. Wilson MC. Clean intermittent catheterization and self-catheterization.Br J Nurs. 2008;17(18):1140.
    58. Crowe H.A guide to clean intermittent self-catheterisation. Aust Nurs J. 2003;10(9):Suppl 1-2.
    59. Schurch B, Rodic B, Jeanmonod D. Posterior sacral rhizotomy and intradural anterior sacral root stimulation for treatment of the spastic bladder in spinal cord injured patients. J Urol, 1997;157:610-614.
    60. Van Kerrebroeck PE. The role of electrical stimulation in voiding dysfunction. Eur Urol, 1998;34(suppl 1):2-30.
    61. Hohenfellner M, Schultz D, Dahms S, et al. Bilateral chronic sacral neuromodulatio for treatment of lower urinary tract dysfunction. J Urol, 1998;160:821-824.
    62. Robin S, Sawan M, Abdel Gawad M, et al. Implantable stimulation system dedicated for neural selective stimulation. Med Biol Eng Comput, 1998;36:490 -492.
    63. Hong CH, Lee HY, Jin MH, et al. The effect of intravesical electrical stimulation on bladder function and synaptic neurotransmission in the rat spinal cord after spinal cord injury.BJU Int. 2009;103(8):1136-1141.
    64. Spinelli M, Malaguti S, Giardiello G, et al. A new minimally invasive procedure for pudendal nerve stimulation to treat neurogenic bladder: description of the method and preliminary data.Neurourol Urodyn. 2005;24(4):305-309.
    65. Feifer A, Corcos J. Contemporary role of suprapubic cystostomy in treatment of neuropathic bladder dysfunction in spinal cord injured patients.Neurourol Urodyn. 2008;27(6):475-479.
    66. Morrow JW. Bladder rehabilitation in patients with old spinal cord injuries with bladder neck incision and external sphincterotomy. J Urol, 1997;117:164.
    67. Pan D, Troy A, Rogerson J, et al. Long-term outcomes of external sphincterotomy in a spinal injured population. J Urol. 2009;181(2):705-709.
    68. Filippo RE, Bochner BH, Skinner DG. An alternative ureteroileal reimplantation used in augmentation cystoplasty for neurogenic bladder with bilateral vesico-ureteral reflux. J Urol, 1998;160:1416-1417.
    69. Scott FB, Bradley WE, Timm GW. Treatment of urinary incontinence by an implantable prosthetic urinary sphincter.J Urol, 1974;112 (1) :75-80.
    70. Gonzalez R , Dewolf WC. The artificial bladder sphincter AS2721 for the treatment of incontinence in patients with neurogenic bladder. J Urol, 1979;121 (1) :71-72.
    71. Hamid R, Khastgir J, Arya M, Patel HR, Shah PJ.Experience of tension-free vaginal tape for the treatment of stress incontinence in females with neuropathic bladders.Spinal Cord. 2003;41(2):118-121.
    72. Zhang Yu-hai, Shao Qiang, Wang Ji-ning. Eveloping the bladder with displacement of flap of the rectus abdominis muscle for the treatment of neurogenic bladder. J Urol, 1990;144:1194-1196.
    73. Conzen MA, Sollmann H. Reinnervation of the uniary bladder microsurgical reconstruction of transected caudal fibres. Urol Res, 1982;10:141-142.
    74. Vorstman B, Schlossberg S, Landy H, et al. Nerve crossover techniques or urinary bladder reinnervation. J Urol, 1987;137 :1043.
    75. Lin H, Hou CL, Zhong G, et al. Reconstruction of reflex pathways to the atonic bladder after conus medullaris injury: preliminary clinical results. Microsurgery. 2008;28(6): 429-35.
    76. de Oliveira Querne FA, da Silva DC, Padovani GP, et al. Bladder Autoaugmentation in Dogs: Assessment of Different Laparoscopic Methods. J Endourol. 2009 Mar 31.
    77. Gundeti MS, Eng MK, Reynolds WS, et al. Pediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy: completeintracorporeal--initial case report. Urology, 2008;72(5):1144-1147.
    78. Storm DW, Fulmer BR, Sumfest JM. Robotic-assisted laparoscopic approach for posterior bladder neck dissection and placement of pediatric bladder neck sling: initial experience.Urology, 2008;72(5):1149-1152.
    1. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 1996; 1 : 492– 515
    2. Maeda H, Yamagata A, Nishikawa S et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992; 16: 369–75
    3. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 1995; 280: 97–111
    4. Solari V, Piotrowska AP, Puri P. Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 2003; 170: 2420–2
    5. Metzger R, Schuster T, Till H, Stehr M, Franke FE, Dietz HG. Cajal-like cells in the human upper urinary tract. J Urol 2004; 172: 769–72
    6. Burton LD, Housley GD, Salih SG, Jarlebark L, Christie DL, Greenwood D. P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Auton Neurosci 2000; 84: 147–61
    7. Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the guinea pig prostate. J Urol 2002; 168: 315–22
    8. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG. Specialised pacemaking cells in the rabbit urethra. J Physiol 2000; 526: 359– 66
    9. Smet PJ, Jonavicius J, Marshall VR, de Vente J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 1996; 71: 337–48
    10. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol 2002; 168: 832–6
    11. Kubota Y, Kajioka S, Biers SM, Yokota E, Kohri K, Brading AF. Investigation of the effect of the c-kit inhibitor Glivec on isolated guinea-pig detrusor preparations. Auton Neurosci 2004; 15: 64–73
    12. Hashitani H, Brading AF, Suzuki H. Correlation between spontaneous electrical calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br J Pharmacol 2004; 141: 183–93
    13. Hashitani H, Fukuta H, Takano H, Klemm MF, Suzuki H. Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol 2001; 530: 273–86
    14. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol 2002; 168: 832–6
    15. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea-pig bladder: structural relationship with smooth muscle and neurons. J Urol 2005; 173: 1385–90
    16. Kubota Y, Biers SM, Kohri K, Brading AF. The effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurol Urodyn 2006; 25:205–210
    17. Sui GP, Wu C, Fry CH. Electrical characteristics of suburothelial cells isolated from the human bladder. J Urol 2004; 171: 938–43
    18. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. Gap junctions and connexion expression in human suburothelial interstitial cells. BJU Int 2002; 90: 118–29
    19. Piotrowska AP, Rolle U, Solari V, Puri P. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon intestinal hypoperistalsis syndrome. BJU Int 2004; 94: 143–6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700