具有几乎单群弧传递作用的图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图的对称性研究中,确定图的自同构群是具有基本重要性的工作.本文主要研究具有有限几乎单群G-弧传递作用图Γ的全自同构群Aut(Γ).
     首先,本文提出了T-正规性的概念,这是Cayley图正规性的自然推广,给出了具有单群T-传递作用的图具有T-正规性的充分条件.利用这一充分条件,证明了度数不大于20或是素数度的具有几乎单群G-弧传递作用的图,除了有限个例外,都具有soc(G)-正规性.特别的,在图的度数为3时,排除了所有的例外.利用T-正规性确定了具有几乎单群弧传递作用图的自同构群结构.
     然后,本文给出了一种构造具有几乎单群弧传递作用图的方法,利用这种方法构造了Aut(Γ)-非拟本原但G-拟本原的G-弧传递图Γ的两个无限族.据作者所知,目前这样的图只有两个无限族,是分别由李才恒[53]和方新贵等人[36]构造的.
     最后,作为上述结果的应用,本文确定了3度的G-弧传递图Γ的全自同构群Aut(Γ),即证明了Aut(Γ) = Ree(q)或者Aut(Γ) =Ree(q)×Z_2,其中G = Ree(q) (q≥27);并且构造出了所有此类图,其中存在图Γ使得Aut(Γ) = Ree(q)×Z_2.
A fundamental problem in determining the structure of a graphΓisthe problem of finding its full automorphism group Aut(Γ). This work ismainly to investigate the full automorphism group Aut(Γ) ofΓ, given itsalmost simple subgroup G.
     First, a new concept, namely, T-normal graph is introduced, whichis a natural generalization of the concept of normal Cayley graph. Thenwe consider T-vertex-transitive graphs with T a nonabelian simple groupand obtain a sufficient condition under which one can guarantee thatΓisa T-normal graph. Applying the result to G-arc-transitive graphsΓ, weprove that if the valency v(Γ) ofΓis at most 20 or a prime, thenΓisa soc(G)-normal graph for all but finite possibilities of soc(G). In par-ticular, if v(Γ) = 3, we eliminate all exceptions, that is, ifΓis a cubicG-arc-transitive graph thenΓis soc(G)-normal. By the T-normality, wedetermine the structure of the automorphism group Aut(Γ) ofΓ.
     Next, a construction is given for an infinite family of G-arc-transitivegraphs. Using this construction we give two family of quasiprimitve arc-transitive graphs which have non-quasiprimitive full automorphism groups.To the author’s best knowledge, the only two infinite families of suchgraphs are constructed by Li [53] and Fang et al. [36], respectively.
     Finally, as an application of the above results, we completely deter-mine the automorphism group Aut(Γ) of cubic G-arc-transitive graphΓwith G = Ree(q)(q≥27), and, namely, we prove that Aut(Γ) = Ree(q) or Aut(Γ) = Ree(q)×Z_2. Moreover, we construct all cubic Ree(q)-arc-transitive graphs, amongst which exits there graphsΓsuch that Aut(Γ) =Ree(q)×Z_2.
引文
[1] B.Alspach, M.D.Conder, D.Marusic and M.Y.Xu, A classification of2-arc-transitive circulants, J. Alg. Combin. 5 (1996), 83-86.
    [2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson,Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
    [3] L.Banai, Arc transitive covering digraphs and their eigenvalues, J.graph theory, 9 (1985), 363-370.
    [4] Y.G.Baik, Y.Q.Feng, H.S.Sim and M.Y.Xu, On the normality of Cay-ley graphs of abelian groups, Algebra Colloq, 5 (1998), 297–304.
    [5] R.W.Baddeley, Two-arc transitive graphs and twisted wreath prod-ucts, J. Alg. Combin. 2 (1993), 215-237.
    [6] L.W.Beineke and R.J.Wilson, Topics in Algebraic Theory, CambridgeUniversity Pres, 2004.
    [7] N.Biggs, Algebraic Graph Theorys, Cambridge University Pres,1974.
    [8] N.Biggs and A. T.White, Permutation Groups and CombinatorialStructure, Cambridge University Press, 1979.
    [9] J.van Bon, A.M.Cohen and H.Cuypers, Affine distance-transitivegraphs and classical groups, J. Comb. Theory, Ser. A, 110 (2005),291-335.
    [10] P.J.Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc. 13 (1981), 1-22.
    [11] C.Y.Chao, On the classification of symmetric graphs with a primenumber of vertices, Trans. Amer. Math. Soc. 158(1971), 247-256.
    [12] Y.Cheng and J.Oxley, On weakly symmetric graphs of order twice aprime, J. Combin. Theory Ser. B 42(1987), 196-211.
    [13] M.D.Conder, Symmetries of Cayley graphs and graphs underlyingregular maps, http://www.math.auckland.ac.nz/?conder.
    [14] M.D.Conder, Trivalent (cubic) symmetric graphs on up to 2048 ver-tices, http://www.math.auckland.ac.nz/?conder/symmcubicgraphs.tar.gz.
    [15] M.D.Conder, An infinite family of 5-arc-transitive cubic graphs, ArsCombin. 25A (1988), 95-108.
    [16] M.D.Conder and P.Dobcsanyi, Trivalent symmetric graphs on up to768 vertices, J. Combin. Math. Combin. Comput. 40 (2002).
    [17] M.D. Conder, C.H. Li and C.E. Praeger, On weiss conjecture for finitelocally primitive graphs, Proceedings of Edinburgh Math. Soc., 43(2000), 129-138.
    [18] M.D.Conder and P.Lorimer, Automorphism groups of symmetricgraphs of valency 3, J. Comb. Theory Ser B, 47 (1989), 60-72.
    [19] M.D.Conder and G. Walker, The infinitude of 7-arc-transitive graphs,J. Algebra, 208 (1998), 619-629.
    [20] J.D.Dixon, B.Mortimer, Permutation Groups, Springer-Verlag, 世界图书出版公司, 1996.
    [21] D.Z.Djokovic, On regular graphs I, J. Comb. Theory, 10 (1971), 253-263.
    [22] D.Z.Djokovic, On regular graphs II, J. Comb. Theory, 12 (1972),252-259.
    [23] D.Z.Djokovic and G.L.Miller, Regular groups of automorphisms ofcubic graphs, J. Comb. Theory Ser B, 29 (1980), 195-230.
    [24] S.Du, D.Marusic and A.O. Waller, On 2-arc-transitive covers of com-plete graphs, J. Combin. Theory, Ser B 74, 276-290 (1998).
    [25] X.G.Fang and C.E.Praeger, Finite two-arc transitive graphs admittinga Suzuki simple group, Communications in Algebra, 27 (1999), 3727-3754.
    [26] X.G.Fang and C.E.Praeger, Finite two-arc transitive graphs admittinga Ree simple group, Communications in Algebra, 27 (1999), 3755-3769.
    [27] X.G.Fang, C.E.Praeger and J.Wang, On the automorphism group ofCayley graphs of finite simple groups, J. London Math. Soc. (2), 66(2002), 563-578.
    [28] X.G.Fang and C.E.Praeger, On graphs admitting arc-transitive ac-tions of almost simple groups, J. Algebra, 205 (1998), 37-52.
    [29] X.G. Fang, C.E. Praeger and J. Wang, 有限单群的局部本原 Cayley图, Science in China (Series A), 30 (2000), 699-706.
    [30] X.G.Fang, Construction and classification of some families of almostsimple 2-arc transitive graphs, Ph.D. Thesis, University of WesternAustralia, 1995.
    [31] X.G.Fang, L.J.Jia and J.Wang, On the automorphism groups of sym-metric graphs admitting an almost simple group, to appear in Europ.J. Combinatoriacs.
    [32] X.G.Fang J.Wang and M.Y.Xu, On 1-arc-regular graphs, Europ. J.Combinatorics 23 (2002), 785-791.
    [33] X.G.Fang, C.H.Li and J.Wang, Finite vertex primitive 2-arc regulargraphs, J. Algebraic Combin. 25 (2007), 125-140.
    [34] X.G. Fang, C.H. Li, and M.Y. Xu, On edge-transitive Cayley Graphsof Valency four, Europ. J. Combinatorics 25(2004), 1107-1116.
    [35] X.G. Fang, C.H. Li and J. Wang, M.Y. Xu, On cubic Cayley graphsof finite simple groups, Discrete Mathematics, 244(2002), 67-75.
    [36] X.G.Fang, G.Havas and J.Wang, A family of non-quasiprimitivegraphs admitting a quasiprimitive 2-arc transitive group action, Eu-rop. J. Combin. (1999)20, 551-557.
    [37] Y.Q. Feng and M.Y. Xu, Normality of tetravalent Cayley graphs ofodd prime-cube order and its application, Acta Math. Sin. (Engl.Ser.) 21 (2005), no. 4, 903–912.
    [38] The GAP Group, GAP–Groups, Algorithms and Programming, Ver-sion 4.4.
    [39] A.Gardiner, Arc transitivity in graphs, Quart. J. Math. Oxford (2), 24(1973), 399-407.
    [40] A.Gardiner, Arc transitivity in graphs II, Quart. J. Math. Oxford (2),25 (1974), 163-167.
    [41] A.Gardiner, Doubly primitive vertex stabilisers in graphs, Math. Z.135, 257-266, (1974).
    [42] A.Gardiner and C.E.Praeger, On 4-valent symmetric graphs, Europ.J. Combin., 15 (1995), 375 –381.
    [43] A.Gardiner and C.E.Praeger, A characterization of certain families of4-valent symmetric graphs, Europ. J. Combin., 15 (1995), 383 –397.
    [44] D.M.Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math.111 (1980), 377-406.
    [45] C. D. Godsil, On the full automorphism group of a graph, Combina-torica, 1 (1981), 243–256.
    [46] R.M. Guralnick, Subgroups of prime power index in a simple group ,Journal of Algebra. 81(1983), 304-311.
    [47] A.Hassani, L,Nochefranca and C.E.Praeger, Finite two-arc transitivegraphs admitting a two-dimensional projective linear group, J. GroupTheory 2 (1999), 335-353.
    [48] R.Heydemann, B.Ducourthial, Cayley graphs and interconnectionnetworks, in: Graph symmetry: Algebraic Methods and Applications,NATO Series C, Vol. 497, Kluwer Academic Publishers, Dordrecht,1997, 167-224.
    [49] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
    [50] B. Huppert and N.Blackburn, Finite groups III, Springer-Verlag,Berlin, 1982.
    [51] A.A.Ivanov, Distance-transitive graphs and their classification,in:“Investigations in the algebraic theory of combinatorial objects”(I.A.Faradzev et al.,eds), Math. Appl.(Soviet Ser) 84, Kluwer, Dor-drecht, 1994, 283-378.
    [52] A.A.Ivanov and C.E.Praeger, On finite affine 2-arc transitive graphs,European J. Combin. 14 (1993), 421-444.
    [53] C.H.Li, A Family of Quasiprimitive 2-arc Transitive Graphs whichHave Non-quasiprimitive Full Automorphism Groups, Europ. J.Combinatorics (1998) 19, 499–502
    [54] C.H.Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The Uni-versity of Western Australia, 1996.
    [55] C.H.Li, C.E.Praeger, A. Venkatesh and S.Zhou, Finite locally-quasiprimitive graphs, Discrete Mathematics 246 (2002), 197-218.
    [56] C.H.Li, On finite s-transitive graphs of odd order, J. Combin. TheorySer B 81, 307-317 (2001).
    [57] C.H.Li, Z.P.Lu and D.Marusic, On primitive permutation groups withsmall suborbits and their orbital graphs, J. Algebra 279 (2004), 749-770.
    [58] M.W.Liebeck and J.Saxl, Primitive permutation groups containingan element of large prime order, J. London Math. Soc. (2) 31(1985),237-249.
    [59] M.W.Liebeck, C.E.Praeger and J. Saxl, Transitive subgroups of prim-itive permutation groups, J. Algebra 234, 291-361 (2000).
    [60] V.M.Levchuk and Ya.N.Nuzhin, Structure of Ree groups, AlgebraLogika, 24 (1985), 26-41.
    [61] P.Lorimer, Vertex-transitive graphs: Symmetric graphs of prime va-lency, J. Graph Theory 8 (1984), 55-68.
    [62] C.E.Praeger, Finite transitive permutation groups and finite vertex-transitive graphs, in: Graph symmetry: Algebraic Methods and Ap-plications, NATO ASI Series C, Vol.97, Kluwer Academic Publish-ers, Dordrecht, 1997, 277-318.
    [63] C.E.Praeger, An O,Nan-Scott theorem for finite quasiprimitive permu-tation groups and an application to 2-arc transitive graphs, J. LondonMath. Soc.(2) 47 (1993), 227-239.
    [64] C.E.Praeger, Finite quasiprimitive graphs, in “Surveys in Combina-torics”, pp.65-85, London Math. Soc. Lecture Note Ser. 241, Cam-bridge Univ. Press, Cambridge, 1997.
    [65] C.E.Praeger, Finite transitive permutation groups and bipartitevertex-transitive graphs, Illinois J. Math. 47 (2003), 461-475.
    [66] C.E.Praeger, Bipartite 2-arc-transitive graphs, Australasian J. Com-bin. 7 (1993), 21-36.
    [67] C.E.Praeger, Imprimitive symmetric graphs, Ars Combinatoria19A(1985), 149-163.
    [68] C.E.Praeger, Permutation group and normal subgroups, ICM 2002,Vol.II, 67-76.
    [69] C.E.Praeger, J.Saxl and K. Yokohama, Distance transitive graphs andfinite simple groups, Proc. London Math. Soc. (3) 55 (1987), 1-21.
    [70] C.E.Praeger and M.Y.Xu, A characterization of a class of symmetricgraphs of twice prime valency, European J. Combin. 10(1989), 91-102.
    [71] C.E.Praeger, R.J.Wang and M.Y.Xu, Symmetric graphs of order aproduct of two distinct primes, J. Combin. Theory Ser. B 58(1993),299-318.
    [72] R.Ree, A family of simple groups associated with the simple Lie alge-bra of type (G2), Amer. J. Math. 83 (1961), 432-462.
    [73] G.Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964),426-438.
    [74] C.C.Sims, Graphs and finite permutation groups, Math. Z. 95 (1967),76-86.
    [75] D.H.Smith, Primitive and imprimitive graphs, Quart. J. Math. Oxford(2) 22 (1971), 551-557.
    [76] M.Suzuki, A new type of simple group of finite order, Proc. Nat. Acad.Sci. U.S.A. 46 (1960), 868-870.
    [77] M.Suzuki, On a class of doubly transitive groups, Annals of Mathe-matics 75 (1962), 105-145.
    [78] W.T.Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc.43 (1947), 459-474.
    [79] W.T.Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11, 621-624, (1959).
    [80] H.N.Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc.121 (1966), 62-89.
    [81] R.Weiss, s-transitive graphs, colloq. Math. Soc. Janos Bolyai 25(1978), 827-847.
    [82] R.Weiss, Groups with a (B,N)-pair and locally transitive graphs,Nagoya Math J. 74 (1979), 1-21.
    [83] R.Weiss, U¨ber symmetrische graphen und die projektiven gruppen,Arch. Math. 28 (1977), 110-112.
    [84] R.Weiss, An application of p-factorization methods to symmetricgraphs, Math. Proc. Cambridge Phil. Soc. 85 (1979), 43-48.
    [85] R.Weiss, Permutation groups with projective unitary subconstituents,Proc. Amer. Math. Soc. 78 (1980), 157-161.
    [86] R.Weiss, Elations of graphs, Acta Math. Acad. Sci. Hunger. 34(1979), 101-103.
    [87] R.Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1(3)(1981), 309-311.
    [88] R.Weiss, Presentations for (G,s)-transitive graphs of samll valency,Proc. Cambridge Phil. Soc. 101 (1987), 7-20.
    [89] H.Wielandt, Finite Permutation Groups, Academic Press, New York,1964.
    [90] R.J.Wilson, Introduction to Graph Theory, Longman, 1985.
    [91] J.Wang, The primitive permutation groups with an orbital of lenth 4,Comm. Algebra 20 (1992), 889-921.
    [92] W.J. Wong, Determination of a class of primitive permutation groups,Math. Z. 99, (1967), 235-246.
    [93] M.Y.Xu, Automorphism groups and isomorphism of Cayley digraphs,Discrete Math. 182 (1998), 309-319.
    [94] S.J.Xu, X.G.Fang, J.Wang and M.Y.Xu, On cubic s-arc transitiveCayley graphs of finite simple groups, European J. Combinatorics 26(2005), 133-143.
    [95] S.J.Xu, X.G.Fang, J.wang and M.Y.Xu, 5-arc transitive cubic Cayleygraphs on finite simple groups, European J. Combinatorics 28 (2007),1023-1036.
    [96] H.Li, J.Wang, L. Wang and M.Y.Xu, Vertex primitive graphs of ordercontaining a large prime factor, Communications in Algebra, 22(9),3449-3477 (1994).
    [97] 曲海鹏, 有限单群上的 4 度 Cayley 的对称性, 北京大学博士论文,2001.
    [98] 徐明曜, 有限群导引(上)(第二版), 科学出版社, 2001.
    [99] 徐明曜, 黄建华, 李慧陵, 李世荣, 有限群导引(下), 科学出版社, 2001.
    [100] 王长群, 王殿军, 徐明曜, 有限群的正规 Cayley 图, 中国科学,28(1998), 131-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700