图的对称性与曲面嵌入
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究群论在图论中的应用,内容主要涉及到代数图论(第二章至第八章)和拓扑图论(第九章至第十一章)两个研究领域.
     第一章是引言部分,主要介绍本文所要用到的一些有关群和图的基本概念,以及本文将要研究的问题、相关的背景知识和本文取得的相关成果.
     在第二章,我们给出了5度非正规Cayley图的两个充分条件.由此,构造了一些连通的5度非正规Cayley图的无限类,其中三类为非交换单群上的Cayley图.另外,我们还决定了A_5的所有连通5度非正规Cayley图,从而推广了徐明曜和徐尚进[Science in China A,47(2004)593-604]的关于A_5的连通3、4度Cayley图正规性结果.应用该结果,我们还决定了A_5的所有5度非CI Cayley图,而徐明曜等[Science in China A,44(2001)1503-1508]则证明A_5为4-CI群.
     在第三章,我们首先给出了阶为二倍的两个不同的奇素数乘积的连通3度对称图的分类,该结果和Feng等[J.Combin.Theory B,97(2007)627-646;J.Austral.Math.Soc.A,81(2006)153-164]的结果一起完成了阶为三个素因子的乘积的连通3度对称图的分类;其次,我们还给出了阶为三个素因子的乘积连通3度点传递的非Cayley图的分类;最后,通过决定2pq阶连通3度Cayley图的正规性,我们给出了2pq阶连通3度非对称Cayley图的分类,其中p,q为两个不同的奇素数.这样,本章完成了2pq阶连通3度点传递图的分类.
     在第四章,我们分类了M(o|¨)bius-Kantor图(即广义Petersen图GP(8,3))的边传递循环正则覆盖.作为应用,给出了16p阶3度对称图的分类,其中p为任一素数.
     第五、六、七章是关于具有某种对称性质的小度数图的分类的.第五章给出了二倍无平方因子阶的3度1-正则图的分类.第六章给出了2pq阶4度1-正则图的分类,其中p,q为任意素数.第七章给出了p~4阶4度半传递图的分类.
     在第八章,我们研究了5度对称图的点稳定子群.给定图X,设G≤Aut(X),s≥1为整数.若G在X的s-弧集合上传递但在(s+1)-弧集合上非传递,则称图X为(G,s)-传递的;特别地,称(Aut(X),s)-传递图X为s-传递图.对任一连通5度(G,s)-传递图X,令G_v为顶点v∈V(X)在G中的点稳定子群.Weiss在文献[Math.Proc.Camb.Phil.Soc.,85(1979)43-48]中证明若G_v可解,则s≤3.在第八章,我们进一步证明当s=1时,G_v同构于Z_5,D_(10)或D_(20);当s=2时,G_v同构于Frobenius群F_(20)或F_(20)×Z_2;当s=3时,G_v同构于F_(20)×Z_4.利用该结果,我们还证明了所有非交换单群上的连通5度1-传递Cayley图都是正规的.
     第九章是关于正则地图的.设p和q为素数,Du等在文献[J.AlgebraicCombin.,19(2004)123-141]中分类了以pq阶简单图为基图的正则地图.在第九章,我们分类了以4p阶简单图为基图的正则地图.这些地图包括12个零散的地图和六个无限类,其中两个无限类为以完全二部图K_(2p,2p)为基图的正则地图,另外四个无限类分别为群Z_(4p),Z_2~2×Z_p和D_(4p)上的正则平衡Cayley地图.
     最后两章是关于地图计数的.Mull等在文献[Proc.Amer.Math.Soc.,103(1988)321-330]中给出了一个地图的同构类的计数方法.利用该方法,他们计算了以完全图和轮图为基图的图的同构类的个数.Mull在文献[J.Graph Theory,30(1999)77-90]中进一步发展了这个方法,并得到了以完全二部图为基图的图的同构类的计数公式.在第十章,我们将Mull等的方法推广到允许有环和重边的连通图上,并给出了以两类著名图类:环束和双极图为基图的地图同构类的计数公式.
     称地图M为可反射的,若它同构于它的镜面影象.在第十一章,我们给出了可反射地图的同构类的一个计数方法,并将该方法应用到了完全图、环束、双极图和轮图等著名图类中.进一步,我们还证明了这些图的地图‘几乎’都是非可反射的,即为手性的(当顶点个数无限增长时).
This paper mainly investigates the application of group theory to graph theory. Some results related to algebraic graph theory (Chapters 2-8) and topological graph theory (Chapters 9-11) are obtained.
     In Chapter 1, some basic definitions in group theory and graph theory are first given. Then we introduce some research problems and the background regarding these problems, and the main work in this paper are also briefly introduced.
     In Chapter 2, two sufficient conditions for non-normal Cayley graphs are given and by using the conditions, several infinite families of non-normal Cayley graphs are constructed, of which three are Cayley graphs on the finite non-abelian simple groups. As an application, all connected non-normal Cayley graphs of valency 5 on A_5 are determined, which generalizes a result about the normality of Cayley graphs of valency 3 or 4 on A_5 determined by M.Y. Xu and S.J. Xu [Science in China A, 47 (2004) 593-604]. Further, we classify all non-CI Cayley graphs of valency 5 on A_5, while M.Y. Xu et al. [Science in China A, 44 (2001) 1503-1508] proved that A_5 is a 4-CI group.
     In Chapter 3, the classification of cubic symmetric graphs of order twice a product of two distinct odd primes is first given, and this together with Feng et al. [J. Combin. Theory B, 97 (2007) 627-646; J. Austral. Math. Soc. A, 81 (2006) 153-164] complete the classification of cubic symmetric graphs of order a product of three primes. In addition, all the connected cubic vertex-transitive non-Cayley graphs of order a product of three primes are also classified. At last, by determining the normality of connected cubic Cayley graphs of order 2pq, all the cubic non-symmetric Cayley graphs of order 2pq are classified, where p, q are two distinct odd primes. As a result, all the connected cubic vertex-transitive graphs of order 2pq are classified.
     In Chapter 4, the edge-transitive cyclic regular coverings of M(o|¨)bius-Kantor graph, that is, the generalized Petersen graph GP(8,3), are classified and using this, we classify cubic symmetric graphs of order 16p, where p is a prime number.
     In Chapters 5-7, the small valent graphs with some symmetric properties are considered. Chapter 5 gives a classification of cubic one-regular graphs of order twice a squaxe free integer. Chapter 6 classifies all tetravalent one-regular graphs of order 2pq for any primes p and q. Chapter 7 gives a classification of tetravalent half-transitive graphs of order p~4 for each prime p.
     In Chapter 8, the vertex stabilizers of symmetric graphs of valency 5 are considered. A graph X, with a subgroup G≤Aut(X), is said to be (G,s)-transitive, for some s≥1, if G is transitive on s-arcs but not on (s+1)-arcs, and s-transitive if it is (Aut(X),s)-transitive. For a connected (G, s)-transitive graph X of valency 5, let G_v be the stabilizer of a vertex v∈V(X) in G. Weiss [Math. Proc. Camb. Phil. Soc., 85 (1979) 43-48] proved that if G_v is solvable then s≤3 and in Chapter 8, it is proved that G_v is isomorphic to the cyclic group Z_5, the dihedral group D_(10) or the dihedral group D_(20) for s = 1, the Frobenius group F_(20) or F_(20)×Z_2 for s = 2, or F_(20)×Z_4 for s=3. Using this, we prove that every connected 1-transitive Cayley graph of valency 5 on a non-abelian simple group is normal.
     Chapter 9 is about the regular maps. For two primes p and q, Du et al. [J. Algebraic Combin., 19 (2004) 123-141] classified the regular maps of graphs of order pq. In Chapter 9, all pairwise non-isomorphic regular maps of graphs of order 4p are constructed explicitly and the genera of such regular maps are computed. As a result, there are twelve sporadic and six infinite families of regular maps of graphs of order 4p; two infinite families are regular maps with the complete bipartite graphs K_(2p,2p) as underlying graphs and the other four infinite families are regular balanced Cayley maps on the groups Z_(4p), Z_2~2×Z_p and D_(4p).
     The last two chapters are about the enumeration of maps. Mull et al. [Proc. Amer. Math. Soc., 103 (1988) 321-330] developed an approach for enumerating the isomorphism classes of maps of graphs, and by using this, they enumerated the isomorphism classes of maps of the complete graphs and the wheel graphs. The approach was further developed by Mull [J. Graph Theory, 30 (1999) 77-90] to obtain a formula for enumerating the isomorphism classes of maps of complete bipartite graphs. In Chapter 10, Mull et al.'s approach is generalized to any con-nected graph with loops or multiple edges, and by using this method, we enumerate the isomorphism classes of maps of a bouquet of circles and a dipole.
     A map is reflexible if it is isomorphic to its mirror image. In Chapter 11, we introduce a method for enumerating the isomorphism classes of reflexible maps of connected graphs, and apply it to the complete graphs, the bouquets of circles, the dipoles and the wheel graphs to count their isomorphism classes of reflexible or non-reflexible (called chiral) maps. Furthermore, it is proved that 'almost all' maps of these graphs are chiral (when the number of vertices is growing).
引文
[1] B. Alspach, D. Maru(?)i(?), L. Nowitz, Constructing graphs which are 1/2-transitive, J. Austral. Math. Soc. A, 56 (1994) 391-402.
    
    [2] B. Alspach, M.Y. Xu, 1/2-transitive graphs of order 3p, J. Algebraic Combin., 3 (1994) 347-355.
    
    [3] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., 29 (1977) 329-336.
    
    [4] Y.G. Baik, Y.-Q. Feng, H.S. Sim, M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq., 5 (1998) 297-304.
    
    [5] N.L. Biggs, Three remarkable graphs, Canad. J. Math., 25 (1973) 397-411.
    
    [6] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
    
    [7] N.L. Biggs, A.T. White, Permutation groups and combinatorial structures, Cambridge University Press, Cambridge. 1979.
    
    [8] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput., 24 (1997) 235-265.
    
    [9] I. Z. Bouwer, The Foster Census, Charles Babbage Research Centre, Winnipeg, 1988.
    
    [10] W. Brisley, I.D. Macdonald, Two classes of metabelian p-groups, Math. Z., 112 (1969) 5-12.
    
    [11] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc., 158 (1971) 247-256.
    
    [12] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B, 42 (1987) 196-211.
    
    [13] M.D.E. Conder, P. Dobcs(?)nyi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40 (2002) 41-63.
    
    [14] M.D.E. Conder, R. Jajcay, T. Tucker, Regular t-balanced Cayley maps, J. Combin. Theory B. 97 (2007) 453-473.
    
    [15] M.D.E. Conder, C.E. Praeger, Remarks on path-transitivity in finite graphs, European J Combin., 17 (1996) 371-378.
    
    [16] M.D.E. Conder, D. Maru(?)i(?), A tetravalent half-arc-transitive graph with nonabelian vertex stabilizer, J. Combin. Theory B, 88 (2003) 67-76.
    
    [17] J.H. Conway, R.T. Curties, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
    
    [18] H.S.M. Coxeter, R. Frucht, A new trivalent symmetrical graph with 110 vertices, Ann. N.Y. Acad. Sci., (319) 1979 141-152.
    
    [19] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Leipzig, 1901; Dover Publ., 1958.
    
    [20] J.D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
    
    [21] D.(?). Djokovi(?), G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory B, 29 (1980) 195-230.
    
    [22] E. Dobson, A. Malni(?), D. Maru(?)i(?), L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies, J. Combin. Theory B, 97 (2007) 371-380.
    
    [23] E. Dobson, D. Witte, Transitive permutation groups of prime-squared degree, J. Algebraic Combin., 16 (2002) 43-69.
    
    [24] S.F. Du, Y.-Q. Feng, J.H. Kwak, M.Y. Xu, Cubic Cayley graphs on dihedral groups, in Mathematical Analysis and Applications, Narosa Publishing House, New Delhi, 2004, 224-235.
    
    [25] S.F. Du, G. Jones, J.H. Kwak, R. Nedela, M. (?)koviera, Regular embeddings of K_(n,n) where n is a power of 2, I: metacyclic case, European J. Combin., 28 (2007) 1595-1609.
    
    [26] S.F. Du, G. Jones, J.H. Kwak, R. Nedela, M. (?)koviera, Regular embeddings of K_(n,n)where n is a power of 2,Ⅱ: nonmetacyclic case, submitted.
    
    [27] S.F. Du, J.H. Kwak, R. Nedela, A classification of regular embeddings of graphs of order a product of two primes, J. Algebraic Combin., 19 (2004) 123-141.
    
    [28] S.F. Du, J.H. Kwak, R. Nedela, Regular embeddings of complete multipartite graphs, European J. Combin., 26(2005) 505-519.
    
    [29] S.F. Du, J.H. Kwak, R. Nedela, Classification of regular embeddings of hypercubes of odd dimension, Discrete Math., 307 (2007) 119-124.
    
    [30] S.F. Du, D. Maru(?)i(?), O. Waller, On 2-arc-transitive covers of complete graphs, J. Combin. Theory B, 74 (1998) 276-290.
    
    [31] 杜少飞,王芙蓉,PSL(2,p)上的弧传递3度Cayley图,中国科学,A辑,35 (2005)961-971.
    
    [32] S.F. Du, R.J. Wang, M.Y. Xu, On the normality of Cayley digraphs of order twice a prime, Austral. J. Combin., 18 (1998) 227-234.
    
    [33] X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Math., 244 (2002) 67-75.
    
    [34] X.G. Fang, C.H. Li, M.Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Combin., 25 (2004) 1107-1116.
    
    [35] X.G.Fang, C.E. Praeger, J. Wang, On the automorphism groups of Cayley graphs of finite simple groups, J. London Math. Soc., 66 (2002) 563-578.
    
    [36] W. Feit, J.G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963) 775-1029.
    
    [37] Y.-Q. Feng, On vertex-transitive graphs of odd prime-power order, Discrete Math., 248 (2002) 265-269.
    
    [38] Y.-Q. Feng, J.H. Kwak, s-Regular cubic graphs as coverings of the complete bipartite graph K_(3,3), J. Graph Theory, 45 (2004) 101-112.
    
    [39] Y.-Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p~2, Science in China A, 49 (2006) 300-319.
    
    [40] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Austral. Math. Soc. A, 81 (2006) 153-164.
    
    [41] Y.-Q. Feng, J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B, 97 (2007) 627-646.
    
    [42] Y.-Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p~2, European J. Combin., 26 (2005) 1033-1052.
    
    [43] Y.-Q. Feng, J.H. Kwak, R.J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups, Chin. Ann. Math. B, 22 (2001) 281-286.
    
    [44] Y.-Q. Feng, J.H. Kwak, M.Y. Xu, s-Regulax cubic Cayley graphs on abelian or dihedral groups, Research Report No. 53, Institute of Math., Peking Univ., 2000.
    
    [45] Y.-Q. Feng, J.H. Kwak, M.X. Xu, Cubic s-regular graphs of order 2p~3, J. Graph Theory, 52 (2006) 341-352.
    
    [46] Y.-Q. Feng, Z.P. Lu, M.Y. Xu, Automorphism groups of Cayley digraphs, preprint.
    
    [47] Y.-Q. Feng, K.S. Wang, s-Regular cyclic coverings of the three-dimentional hypercube Q_3, European J. Combin., 24 (2003) 719-731.
    
    [48] Y.-Q. Feng, K.S. Wang, C,X. Zhou, Tetravalent half-transitive graphs of order 4p, European J. Combin., 28 (2007) 726-733.
    
    [49] Y.-Q. Feng, M.Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math., 305 (2005) 354-360.
    
    [50] Y.-Q. Feng, J.-X. Zhou, Semisymmetric graphs, Discrete Math., in press.
    
    [51] E. Flapan, N. Weaver, Intrinsic chirality of complete graphs, Proc. Amer. Math. Soc, 115 (1992) 233-236.
    
    [52] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakten Gruppe, Compositio Math., 6 (1938) 239-250.
    
    [53] R. Frucht, A one-regular graph of degree three, Canad. J. Math., 4 (1952) 240-247.
    
    [54] R. Frucht, J.E. Graver, M.E. Watkins, The groups of the generalized Petersen graphs, Proc. Camb. Phil. Soc., 70 (1974) 211-218.
    
    [55] M.L. Furst, J.L. Gross, R. Statman, Genus distributions for two classes of graphs, J. Combin. Theory B, 46 (1989) 22-36.
    
    [56] A. Gardiner, C.E. Praeger, On 4-valent symmetric graphs, European J. Combin., 15 (1994) 375-381.
    
    [57] A. Gardiner, C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European J. Combin., 15 (1994) 383-397.
    
    [58] C.D. Godsil, On the full automorphism groups of a graph, Combinatorica, 1(1981) 243-256.
    
    [59] C.D. Godsil, The automorphism groups of some cubic Cayley graphs, European J. Combin., 4 (1983) 25-32.
    
    [60] D.C. Guo, A classification of symmetric graphs of order 30, Austral. J. Combin., 15(1997) 277-294.
    
    [61] D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
    
    [62] J.L. Gross, D.P. Robbins, T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory B, 47 (1989) 292-306.
    
    [63] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignment, Discrete Math., 18 (1977) 273-283.
    
    [64] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
    
    [65] H. Harary, Graph Theory, Addison-Wesley, U.S.A. and Canada, 1969.
    
    [66] A. Hassani, M.A. Iranmanesh, C.E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, J. Combin. Math. Combin. Comput., 28(1998) 187-213.
    
    [67] B. Huppert, Eudiche Gruppen I, Springer-Verlag, Berlin, 1967.
    
    [68] R. Jajcay, J.(?)ir(?), Skew-morphisms of regular Cayley maps. Discrete Math., 244 (2002) 167-179.
    
    [69] L.D. James, G.A. Jones, Regular orientable imbeddings of complete graphs, J. Combin. Theory B, 39 (1985) 353-367.
    
    [70] G.A. Jones, R. Nedela, M. (?)koviera, Regular embeddings of K_(n,n) where n is an odd prime power, European J. Combin., 28 (2007) 1863-1875.
    
    [71] G.A. Jones, D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc., 37 (1978) 273-207.
    
    [72] J.H. Kwak, Y.S. Kwon, Regular orientable embeddings of complete bipartite graphs, J. Graph Theory, 50 (2005) 105-122.
    
    [73] J.H. Kwak, Y.S. Kwon, Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs, Discrete Math., 308 (2008) 2156-2166.
    
    [74] J.H. Kwak, J. Lee, Genus polynomials of dipoles, Kyungpook Math. J., 33 (1993) 115-125.
    
    [75] J.H. Kwak, J.M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sinica English Ser., 22 (2006) 1305-1320.
    
    [76] J.H. Kim, J. Lee, Genus distributions for bouquets of dipoles, J. Korean Math. Soc, 35 (1998) 225-234.
    
    [77] K. Kutnar, A. Malni(?), D. Maru(?)i(?), Chirality of toroidal molecular graphs, J. Chem. Inf. Model., 45 (2005) 1527-1535.
    
    [78] C.H. Li, On isomorphisms of connected Cayley graphs Ⅲ, Bull. Austral. Math. Soc., 58 (1998) 137-145.
    
    [79] C.H. Li, The solution of a problem of Godsil on cubic Cayley graphs, J. Combin. Theory B, 73 (1998) 140-142.
    
    [80] C.H. Li, On isomorphism of connected Cayley graphs, Discrete Math., 178 (1998) 109-122.
    
    [81] C.H. Li, Finite CI-groups are soluble, Bull. London Math. Soc, 31 (1999) 419-423.
    
    [82] C.H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc., 358 (2006) 4605-4635.
    
    [83] C.H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps Ⅱ, J. Combin. Theory B, in press.
    
    [84] C.H. Li, Z.P. Lu, D. Maru(?)i(?), On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra, 279 (2004) 749-770.
    
    [85] C.H. Li, Z.P. Lu, H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory B, 96 (2006) 164-181.
    
    [86] C.H. Li, C.E. Praeger, The finite simple groups with at most two fusion classes of every order, Comm. Algebra, 24 (1996) 3681-3704.
    
    [87] C.H. Li, A. Seress, On vertex-transitive non-Cayley graphs of square-free order, Des. Codes Cryptogr., 34 (2005) 265-281.
    
    [88] C.H. Li, J.(?)ir(?), Regular maps whose groups do not act faithfully on vertices, edges or faces, European J. Combin., 26 (2005) 521-541.
    
    [89] D.M. Li, Genus distribution for circular ladders, Northeast. Math. J., 16 (2000) 181-189.
    
    [90] D.M. Li, Genus distributions of Mobius ladders, Northeast. Math. J., 21 (2005) 70-80.
    
    [91] Y.T. Li, Y.-Q. Feng, Cubic Cayley graphs of order 4p, preprint.
    
    [92] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, 8 (1984) 55-68.
    
    [93] P. Lorimer, Trivalent symmetric graphs of order at most 120, European J. Combin., 5 (1984) 163-171.
    
    [94] M. Lovre(?)i(?) Sara(?)in, A note on generalized Petersen graphs that are also Cayley graphs, J. Combin. Theory B, 69 (1997) 226-229.
    
    [95] A. Malni(?), Group actions, coverings and lifts of automorphisms, Discrete Math., 182 (1998) 203-218.
    
    [96] A. Malni(?), D. Maru(?)i(?), Constructing 4-valent 1/2-transitrive graphs with a nonabelian automorphism group, J. Combin. Theory B, 75 (1999) 46-55.
    
    [97] A. Malni(?), D. Marui(?)i(?), Constructing 1/2-arc-transitrive graphs of valency 4 and vertex stabilizer Z_2×Z_2, Discrete Math., 245 (2002) 203-216.
    
    [98] A. Malni(?), D. Maru(?)i(?), S. Miklavi(?), P. Poto(?)nik, Semisymmetric elementary abelian covers of the M(o|¨)bius-Kantor graph, Discrete Math., 207 (2007) 2156-2175.
    
    [99] A. Malni(?), D. Maru(?)i(?), P. Poto(?)nik, C.Q. Wang, An infinite family of cubic edgebut not vertex-transitive graphs, Discrete Math., 280 (2004) 133-148.
    
    [100] A. Malni(?), D. Maru(?)i(?), N. Seifter, Constructing infinite one-regular graphs, European J. Combin., 20 (1999) 845-853.
    
    [101] A. Malni(?), R. Nedela, M. (?)koviera, Lifting graph automorphisms by voltage assignments,European J. Combin., 21 (2000) 927-947.
    
    [102] A. Malni(?), R. Nedela, M. (?)koviera, Regular homomorphisms and regular maps, European J. Combin., 23 (2002) 449-461.
    
    [103] D. Maru(?)i(?), On vertex symmetric digraphs, Discrete Math., 36 (1981) 69-81.
    
    [104] D. Maru(?)i(?), Cayley properties of vertex symmetric graphs, Ars Combin., 16B (1983) 297-302.
    
    [105] D. Maru(?)i(?), Vertex transitive graphs and digraphs of order p~k, Ann. Discrete Math., 27 (1985) 115-128.
    
    [106] D. Maru(?)i(?), A family of one-regular graphs of valency 4, European J. Combin., 18 (1997) 59-64.
    
    [107] D. Maru(?)i(?), On 2-arc-transitivity of Cayley graphs, J. Combin. Theory B, 87 (2003) 162-196.
    
    [108] D. Maru(?)i(?), R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin., 19 (1998) 345-354.
    
    [109] D. Maru(?)i(?), R. Nedela, On the point stabilizers of transitive groups with non-self-paired suborbits of length 2, J. Group Theory, 4 (2001) 19-43.
    
    [110] D. Maru(?)i(?), R. Nedela, Partial line graph operator and half-arc-transitive group actions, Math. Slovaca., 51 (2001) 241-257.
    
    [111] D. Maru(?)i(?), R. Nedela, Finite graphs of valency 4 and girth 4 admitting half-transitive group actions, J. Austral. Math. Soc. A, 73 (2002) 155-170.
    
    [112] D. Maru(?)i(?), T. Pisanski, Symmetries of hexagonal graphs on the torus, Croat. Chemica Acta, 73 (2000) 69-81.
    
    [113] D. Maru(?)i(?), R. Scapellato. Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup. J. Graph Theory, 16 (1992) 375-387
    
    [114] D. Maru(?)i(?), R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica, 14 (1994) 187-201.
    
    [115] D. Maru(?)i(?), R. Scapllato, Permutation groups, vertex-transitive graphs and semiregular automorphisms, European J. Combin., 19 (1998) 707-712.
    
    [116] D. Maru(?)i(?), R. Scapellato, B. Zgrabli(?), On quasiprimitive pqr-graphs, Algebra Colloq., 2 (1995) 295-314.
    
    [117] D. Maru(?)i(?), A. Waller, Half-transitive graphs of valency 4 with prescribed attachment numbers, J. Graph Theory, 34 (2000) 89-99.
    
    [118] D. Maru(?)i(?), M.Y. Xu, A 1/2-transitive graph of valency 4 with nonsolvable group of automorphisms, J. Graph Theory, 25 (1997) 133-138.
    
    [119] B.D. McKay, Transitive graphs with fewer than 20 vertices, Math. Comp., 33 (1979) 1101-1121.
    
    [120] B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphsI, J. Austral. Math. Soc. A, 56 (1994) 53-63.
    
    [121] B.D. McKay, C.E. Praeger, Vertex-transitive graphs which are not Cayley graphsⅡ, J. Graph Theory, 22 (1996) 321-334.
    
    [122] B.D. McKay, G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin., 30 (1990) 161-176.
    
    [123] R.C. Miller, The trivalent symmetric graphs of girth at most six, J Combin Theory B, 10 (1971) 163-182.
    
    [124] A.A. Miller, C.E. Praeger, Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, J. Algebraic Combin., 3 (1994) 77-111.
    
    [125] B.P. Mull, Enumerating the orientable 2-cell imbeddings of complete bipartite graphs, J. Graph Theory, 30 (1999) 77-90.
    
    [126] B.P. Mull, R.G. Rieper, A.T. White, Enumerating 2-cell imbeddings of connected graphs, Proc. Amer. Math. Soc., 103 (1988) 321-330.
    
    [127] R. Nedela, M.(?)koviera, Which generalized Petersen graphs are Cayley graphs?, J. Graph Theory, 19 (1995) 1-11.
    
    [128] R. Nedela, M. (?)koviera, Regular maps of canonical double coverings of graphs, J. Combin. Theory B, 67 (1996) 249-277.
    
    [129] R. Nedela, M. (?)koviera, Regular maps from voltage assignments and exponent groups, European J. Combin., 18 (1997) 807-823.
    
    [130] C.P. Praeger, Finite primitive permutation groups: survey, in Groups-Canberra, Springer-Verlag, Berlin, (1990) 63-84.
    
    [131] C.E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc., 60 (1999) 207-220.
    
    [132] C.E. Praeger, G.F. Royle. Constructing the vertex transitive graphs of order 24. J. Symbolic Comput., 8 (1989) 309-326.
    
    [133] C.E. Praeger. R.J. Wang, M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory B, 58 (1993) 299-318.
    
    [134] C.E. Praeger, M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory B, 59 (1993) 245-266.
    
    [135] H.P. Qu, J.S. Yu, On isomorphisms of Cayley digraphs on dihedral groups, Austral. J. Combin., 15 (1997) 213-220.
    
    [136] R.B. Richter, J. (?)ir(?), R. Jajcay, T.W. Tucker, M.E. Watkins, Cayley maps, J. Combin. Theory B, 95 (2005) 189-245.
    
    [137] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
    
    [138] B.O. Sabidussi, Vertex-transitive graphs, Monash Math, 68 (1964) 426-438.
    
    [139] G. Sabidussi, On a class of fix-point-free graphs, Proc. Amer. Math. Soc., 9 (1958) 800-804.
    
    [140] N. Seifter, V.I. Trofimov, Automorphism groups of covering graphs, J. Combin. Theory B, 71 (1977) 67-72.
    
    [141] A. Seress, On vertex-transitive, non-Cayley graphs of order pqr, Discrete Math., 182 (1998) 279-292.
    
    [142] C.C. Sims, Graphs and finite permutation groups, Math. Z., 95 (1967) 76-86.
    
    [143] J. (?)ir(?), Regular maps on a given surface: A survey, in Topics in Discrete Mathematics,Springer-Verlag, Berlin, (2006) 591-609.
    
    [144] J.(?)ir(?), M. (?)koviera, Regular maps from Cayley graphs Ⅱ. Antibalanced Cayley maps, Discrete Math., 124 (1994) 179-191.
    
    [145] M. (?)koviera, J. (?)ir(?), Regular maps from Cayley graphs, Part 1: Balanced Cayley maps, Discrete Math., 109 (1992) 265-276.
    
    [146] E.T. Tesar, Genus distribution of Ringel ladders, Discrete Math., 216 (2000) 235-252.
    
    [147] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable: I. Bull. Amer. Math. Soc., 74 (1968) 383-437.
    
    [148] J. Turner, Point-symmetric graphs with a prime number of points, J. Combin. Theory, 3 (1967) 136-145.
    
    [149] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc., 43 (1947) 459-474.
    
    [150] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math., 11 (1959) 621-624.
    
    [151] W.T. Tutte, A non-Hamiltonian graph, Canad. Math. Bull., 3 (1960) 1-5.
    
    [152] 王长群,王殿军,徐明曜,有限群的正规cayley图,中国科学,A辑,28 (1998)131-139.
    
    [153] C.Q. Wang, M.Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D_(2n), European J. Combin., 27 (2006) 750-766.
    
    [154] 王长群,周志勇,二面体群上的4度正规Cayley图,数学学报, 49(2006) 669-678.
    
    [155] R. J. Wang, Half-transitive graphs of order a product of two distinct primes, Comn. Algebra, 22 (1994) 915-927.
    
    [156] R.J. Wang, M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory B, 58 (1993) 197-216.
    
    [157] M.E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory, 6 (1969) 152-164.
    
    [158] R.M. Weiss, (?)ber symmetrische Graphen vom Grad f(u|¨)nf, J. Combin. Theory B, 17 (1974) 59-64.
    
    [159] R.M. Weiss, (?)ber symmetrische Graphen deren Valenz eine Primzahl ist, Math. Z., 136 (1974) 277-278.
    
    [160] R.M. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc., 85 (1979) 43-18.
    
    [161] R.M. Weiss, s-Arc transitive graphs, in Algebraic Methods in Graph Theory, 2 (1981) 827-847.
    
    [162] R.M. Weiss, The non-existence of 8-transitive graphs, Combinatorica, 1 (1981) 309-311.
    
    [163] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
    
    [164] J. Xu, M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math., 25 (2001) 355-363.
    
    [165] 徐鹏,小度数Cayley图同构问题研究,硕士学位论文,北京交通大学,2007.
    
    [166] M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin., 1 (1992) 275-282.
    
    [167] 徐明曜,4度1-正则图的一点注记,科学通报,45(2000)2160-2162.
    
    [168] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182 (1998) 309-319.
    
    [169] M.Y. Xu, X.G. Fang, H.S. Sim, Y.G. Baik, Conjecture of Li and Praeger concerning the isomorphisms of Cayley graphs on A_5, Science in China A, 44 (2001) 1503-1508.
    
    [170] 徐明曜,黄建华,李慧陵,李世荣,有限群导引(下册),科学出版社,北京, 2001.
    
    [171] M.Y. Xu, S.J. Xu, Symmetry properties of Cayley graphs of small valencies on the alternating group A_5, Science in China A, 47 (2004) 593-604.
    
    [172] M.Y. Xu, Q.H. Zhang, J.-X. Zhou, Arc-transitive graphs of order 4p, Chin. Ann. Math. B, 25 (2004) 545-554.
    
    [173] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, 5-arc transitive cubic Cayley graphs of finite simple groups, European J. Combin., 26 (2005) 133-143.
    
    [174] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc transitive Cayley graphs on finite simple groups, European J. Combin., 28 (2007) 1023-1036.
    
    [175] 于汇霞,周进鑫,王玲丽,2p~2阶3度Cayley图,数学进展,35(2006)581-589.
    
    [176] C.X. Zhou, Y.-Q. Feng, Automorphism groups of cubic graphs of order 4p, Algebra Colloq., 14 (2007) 351-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700