无线传感器网络中定位问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴的无线网络技术,无线传感器网络在工业、农业、环境监控、军事和抢险救灾等领域有着广泛的应用前景。在许多应用中,节点位置至关重要,离开位置信息,监测事件或者感知数据也失去了实际应用价值。而每个传感器节点均配置GPS收发器,成本和能耗较高,不符合无线传感器网络各方面的约束,必须研究适合无线传感器特点的自定位算法。本文围绕无线传感器网络中的定位问题,针对现有研究的不足,结合无线传感器网络的特点,分别对静止网络、信标节点移动网络和移动网络下的定位相关问题进行了相应研究。
     本文首先对静态网络定位进行了研究。在增量或多跳测距定位中定位误差或测距误差容易造成累积,对后继节点的定位精度影响较大。现有一些非测距集中式算法仅使用网络连通信息,也能够获取较高的定位精度,并无需考虑测距误差问题。然而通常需收集网络全局信息,通信开销较大。针对以上缺点,本文提出了一种基于支持向量回归的半集中式定位算法。首先收集各信标节点间的连通信息到中心节点作为训练样本,然后使用支持向量回归技术得到连通信息到节点位置之间的回归函数,分发此函数到网内各节点,普通节点即可使用此函数完成自身位置估计。并且为了增加训练样本,对邻居信标节点大于等于三个的,使用基于RSSI测距的最小二乘法进行定位,升级为新的信标节点。实际上是一个测距和非测距的混合算法,但避免了全局网络信息的收集,缓解了测距误差的累积。
     集中式定位通信开销大、扩展性差,对于资源受限的、自组织无线传感器网络来说,具有一定的局限性。通过把定位问题转化为无约束优化问题,本文提出了一种基于混合禁忌搜索的分布式定位算法。为减轻测距误差的影响和获取较好的邻域解生成区间,设计了一个选择算子,选择合适的信标节点参与定位。接着,使用信标节点信息获取初始解。最后,使用禁忌搜索和模拟退火相结合的混合策略进行位置优化,进一步提高了定位精度,本质上也是一种二阶段求精定位算法。仿真表明本文算法在不同噪音因子和信标节点下能够获取较高定位精度。
     与大多数静态网络定位算法中假定部署一定比例的信标节点不同,在移动信标辅助定位中,使用一个或几个移动信标节点在部署区域内移动来协助普通节点进行位置估计,有效节约了网络成本。而信标节点的移动路径对定位性能具有很大的影响,但目前关注比较少,提出了几种基于某种曲线的静态路径规划方法,未考虑定位过程中的实时信息,对不规则网络拓扑不太适用。本文针对静态路径规划方法的不足,提出了一个更具灵活性的动态启发式路径规划方法。首次提出了使用定向天线技术来解决路径规划问题,通过配置了定向天线阵列的移动信标与邻居节点的通信,可收集邻近普通节点的分布和信标信息接收情况,以此在线决策信标节点的移动。为减少信息收集带来的通信开销,提出了一次决策两次移动的信标移动方法。仿真表明本文的动态方法能够有效避免非节点部署区域的遍历,避免了不必要的信息发送,减少了移动距离,并保持了较高的定位覆盖率。
     在移动无线传感器网络中,普通节点和信标节点均可按某种方式移动,导致网络拓扑和节点间的连通性不断发生变化,给定位带来了一定的难度和新的要求。为提高定位算法的收敛速度,增强定位结果的时效性和精度,本文提出了一种基于动态网格划分的蒙特卡罗定位算法。首先提出了最远距离选择模型,在保证一定定位精度的情况下减少参与的信标节点数,节约能耗。接着根据信标节点构建采样区域,限定采样范围,并引入了概率方法来计算最大采样次数。最后,进行采样、过滤和位置估计,并且改变了常用蒙特卡罗的过滤方法,使用误差补偿的运动模型进行样本过滤,避免了过滤阶段大量的循环计算开销。仿真表明本文算法在保证一定定位精度的情况下,节约了采样次数和能耗,减少了处理时间。
     最后,为了更好的研究无线传感器网络的各方面特性,分析算法在实际系统中的性能,设计并实现了一个无线传感器网络原型系统。系统使用自己设计的硬件节点,运行ZigBee通信协议,开发了终端软件来管理和监控节点信息。并且,使用基于RSSI的测距方法,对提出的定位算法进行了验证、分析。
As a new type of wireless ad hoc network, wireless sensor networks have wide applications including industry, agriculture, environmental observation, military, and collecting information in disaster prone areas. Knowledge of nodes location is an essential requirement for many applications. Without location information of sensor nodes, the sensed data or the detection of events is nonsense. However, because each sensor with a GPS device is expensive in terms of cost and energy consumption, it is infeasible due to various resource constraints such as miniature size, low-complexity, limited battery power. Therefore, self-localization for wireless sensor networks has been presented and studied. Based on the key characters of wireless sensor networks and the limitations of current research, this thesis focuses on localization issues and related problems from stationary, beacon nodes moving and mobile wireless sensor networks.
     This thesis firstly studies the localization problems in static wireless sensor networks. In incremental or multi-hop range-based localization algorithms, the ranging error or localization error can be easily accumulated, and this will affect the localization accuracy of successor nodes. Some range-free centralized localization algorithms can obtain high localization accuracy only using network connectivity information and do not need to consider the ranging error. However, centralized localization needs to collect the information of the entire network to base station, thus the communication cost is high and it consumes too much energy. Aiming at these drawbacks, we present a semi-centralized localization algorithm based on support vector regression. The base node collects all connectivity information between beacon nodes and applies these collected information as training samples to run the training procedure by using support vector regression method. As a result, a regression function can be derived and be distributed to all sensors in the network. Then, normal nodes can perform the estimation of locations using the function based on the connectivity to all beacon nodes. In order to increase the number of training samples, the normal nodes having minimum three anchor nodes as neighbors are upgraded to anchor nodes. Least-square method with RSSI-based ditance measurements are applied to those normal nodes so that they can locate their positions. Our algorithm is composed of range-based method and range-free method. But it can avoid collecting global network information and so reduce the accumulation of the ranging errors.
     For resource-limited and self-organized wireless sensor networks, centralized localization methods are impractical because of the high communication overhead and bad scalability. We turn the localization problem into an unconstrained optimization problem and propose a distributed localization algorithm based on hybrid taboo search. In order to alleviate the effect of ranging error and get a good interval to generate neighboring solutions, a selection operator is presented to select several suitable anchor nodes to take part in the localization procedure. Subsequently, information of anchor nodes is used to obtain initial estimate of location of nodes. Finally, an optimization procedure is performed by using a hybrid method composed of taboo search and simulated annealing. This improves the accuracy of the estimation of the initial location. The simulation shows that the proposed algorithm has a good accuracy on localization when noise factors and the number of anchor nodes are different. Instead of having some anchor nodes in the most of existing current localization methods, mobile anchor node-assisted localization algorithm only needs one or several anchor nodes which traverse the deployment area to help normal nodes locate. Such architecture significantly reduces the cost of networks. However, the path of mobile anchor node has a direct impact on the performance of these approaches. And not too much research work has been done on this. Several static path planning methods for mobile anchor node have been presented based on a certain curve. Such static methods cannot make use of the real-time information in localization process, and are unsuitable for irregular network topology. To improve the static methods, we propose a novel heuristic dynamic path planning method with a better flexibility. It is the first time that directional antenna technology is used to solve the path planning problem. By communicating with neighborhood normal nodes, mobile anchor node configured with directional antenna array can detect the number of distributed normal nodes and the number of beacon which each normal node has received from it. Based on the knowledge, the mobile anchor node can make on-line decision for its moving. In order to reduce the communication overhead, the mobile anchor node make one decision and move twice. The simulation results show that our dynamic planning method can effectively avoid covering the areas where no sensor nodes are deployed. This reduces the distance of the moving path and the amount of messages transmitted by mobile anchor. The simulations also indicate that our method provides good localization coverage.
     In mobile wireless sensor networks, the network topology and the connectivity between all the nodes continually change because of the mobility of normal nodes and anchor nodes. Therefore, this brings more complicated and difficult problems in localization. In order to enhance the convergence speed of localization algorithm and improve the localization accuracy and timeliness, we present a Monte-Carlo localization algorithm based on dynamic grid division. Firstly, we construct a farthest distance selection model. The model can save the system energy by reducing reduce the number of anchors taking part in localization, and keep a good localization accuracy. Then, these selected anchor nodes are used to create the region to draw samples from. In addition, a probabilistic approach is introduced to calculate the maximum sampling number. Finally, sampling, filtering and location estimation are executed. Unlike the existing Monte-Carlo algorithms, a mobility model with error compensation is applied to filter the samples. This model can reduce the computing overhead for a large number of loop computing. The simulation demonstrates that our algorithm reduces the sampling numbers, energy consumption and the processing time and still has a good localization accuracy.
     Finally, for better research the characters of wirelss sensor networks and analysis the performance of the proposed algorithms in real system, we implemented a prototype system for wireless sensor networks. The nodes of the system are designed by ourselves with ZigBee protocal to communicate among the nodes. In our system, we write a program to manage and supervise the information from nodes. Furthermore, one proposed localization algorithm is evaluated on the prototype system based on RSSI ranging technology.
引文
[1] Asada G, Pottie G.J, Kaiser W.J, et al. Wireless integrated network sensors. Communications of the ACM, 2000, 43(5): 51-58
    [2] Chong C, Kumar S. Sensor networks: Evolution, opportunities, and challenges. Proceedings of IEEE, 2003, 91(8): 1247-1256
    [3] Akyildiz IF, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey. IEEE Communications Magazine, 2002, 40(8): 102-114
    [4] Chuan-Ming Liu, Chuan-Hsiu Lee, Li-Chun Wang. Distributed clustering algorithms for data-gathering in wireless mobile sensor networks. Journal of Parallel and Distributed Computing, 2007,67(11):1187-1200
    [5] http://www.sainc.com/sensit/
    [6] Pister K. Smart Dust: Autonomous sensing and communication in a cubic millimeter, http://robotics.eecs.berkeley.edu/~pister/SmartDust/
    [7] Project Sun SPOT: Sun small programmable object technology, http://www.sun- spotworld.com/
    [8] WINS: Wireless Integrated network sensors, http://www.janet.ucla.edu/WINS/
    [9] http://nms.csail.mit.edu/
    [10]μAMPS:μ-Adaptive Multi-domain Power aware Sensors, http://www-mtl.mit.edu /researchgroups/icsystems/uamps/
    [11]任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7): 1282-1291
    [12]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报,2003,14(10):1717-1727
    [13]于海斌,曾鹏,王忠锋等.分布式无线传感器网络通信协议研究.通信学报,2004, 25(10): 102-110
    [14]李方敏,徐文君,刘新华.无线传感器网络功率控制技术.软件学报, 2008,19(3):716-732
    [15]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展.计算机研究与发展,2005, 42(1):163-174
    [16]马华东,陶丹.多媒体传感器网络及其研究进展.软件学报,2006,17(9): 2013-2028
    [17]唐勇,周明天,张欣.无线传感器网络路由协议研究进展.软件学报,2006, 17(3):410-421
    [18]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法.软件学报, 2006,17(3): 422-433
    [19]周四望,林亚平,聂雅琳等.无线传感器网络中基于数据融合的移动代理曲线动态路由算法研究.计算机学报,2007,20(6):894-904
    [20]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法.软件学报,2005,16(5):857-868
    [21] Rabacy JJ, Ammer MJ, da Silva Jr. JL,et al. Picorodio supports ad hoc ultra-low power wireless networking. Computer, 2000,33(7):42-48
    [22] Capkun S, Hamdi M, Hubaux J-P. GPS-Free positioning in mobile ad-hoc networks. Cluster Computing, 2002,5(2):157-167
    [23] Chris Karlof, David Wagner. Secure Routing in Sensor Networks: Attacks and Countermeasures. First IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage,Alaska,May 2003
    [24] Alberto Cerpa, Deborah Estrin. Ascent: Adaptive self-configuring sensor network topologies.ACM SIGCOMM Computer Communication Review, 2002,32(1):62-62
    [25]宋光明,葛运建.智能传感器网络研究与发展.传感技术学报,2003(2):107-112
    [26] Institute of Electrical and Electronics Engineers, Inc.IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet(TEDS) Formats: IEEE Std 145112-1997.1997-09
    [27]于海斌,曾鹏,梁翰.智能无线传感器网络系统.北京:科学出版社,2006
    [28] Lan F.Akyildiz, Welilian Su, Yogesh Sankarasubramaniam, et al.A Survey on Sensor Networks. IEEE Communications, August 2002, 102-114
    [29]孙利民,李建中,陈渝,朱红松.无线传感器网络,清华大学出版社, 2005
    [30] http: / /www. tinyos. net
    [31] http: / /mantis. cs. colorado. edu
    [32] http: / /projects. nesl. ucla. edu /public / sos22x/
    [33] Sivrikaya F, Yener B. Time synchronization in sensor networks: A survey. IEEE Network, 2004,18(4):45-50
    [34] Vuran M C, Akan O B, Akyildiz I F. Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks, 2004, 45(3):245-259
    [35] Venkitasubramaniam P, Adireddy S. Sensor networks with mobile access: optimal random access and coding. IEEE Journal on Selected areas inCommunications, 2004, 22(6):1058-106
    [36] J Elson, L Girod , D Estrin1. Fine-grained time synchronization using reference broadcasts. The 5th Symp on Operation System Design and Implementation, Boston , 2002
    [37] S Ganeriwal, R Kumar, M Srivastava1. Timing-sync protocol for sensor networks. The 1st ACM Conf on Embedded Networked Sensor Systems,Los Angeles, 2003
    [38] H Dai, R Han1. TSync :A lightweight bidirectional time synchronization service for wireless sensor networks. ACM Mobile Computing and Communications Review,2004,8(1):125-139
    [39] M. Roussopoulos,M. Baker. Controlled Update Propagation in Peer-to-Peer Networks. In Proceedings of USENIX Annual Technical Conference,2003
    [40] S.H.L. Liang,V. Tao, A. Croitoru. The Design and Prototype of a Distributed Geospatial Infrastructure for Smart Sensor Webs. In Proceedings of the 6th AGILE Conference on Geographic Information Science,2003
    [41] J.R. Polastre, D. Culler. Design and Implementation of Wireless Sensor Networks for Habitat Monitoring, University of California at Berkeley, 2003
    [42] Cerpa A, Elson J, Hamilton M, et al. Habitat monitoring: application driver for wireless communications technology. In: Proc. of ACM SIGCOMM, Costa Rica, 2001, 20-41
    [43] Noury N, Herve T, Rialle V, et al. Monitoring behavior in home using a smart fall sensor and postion sensors. In: Proc. of the IEEE-EMBS Special Topic conference on microtechonloyies in medicine and biology, Lyon, France, 2000, 607-610
    [44] Sibbald B. Use computerized systems to cut adverse drug events: report. CMAJL Canadian Medical association Journal, 2001, 164(13): 1878
    [45] http://www.agingtech.org
    [46] http://sensorwebs.jpl.nasa.gov/
    [47] Li M,Liu Y,Chen L. Non-threshold based event detection for 3D environment monitoring in sensor networks. In: Proc. of IEEE ICDCS, Canada, June 2007,9
    [48] Li M,Liu Y. Underground structure monitoring with wireless sensor networks. In: Proc. of ACM/IEEE IPSN. Cambridge,Massachusetts,USA,April 2007,69-78
    [49] http://www.rfidjournal.com/article/view/3625/
    [50]汪炀.无线传感器网络定位技术研究:[中国科学技术大学博士学位论文].安徽:中国科技大学,2007
    [51] Andy Harter, Andy Hopper, Pete Steggles, et al. The Anatomy of a Context-Aware Application. Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking, MOBICOM'99, Seattle, Washington, USA, August 1999,59-68
    [52] L. Doherty, K. S. J. Pister, L. El Ghaoui. Convex Position Estimation in Wireless Sensor Networks. Proc. IEEE Infocom 2001, Anchorage AK, April 2001
    [53] Shang Y, Ruml W, Zhang Y, Fromherz M. Localization from mere connectivity. In:Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing,Annapolis,USA:ACM,2003,201-212
    [54] Pratik Biswas , Yinyu Ye. Semidefinite programming for ad hoc wireless sensor network localization. In Proceedings of the third international symposium on Information processing in sensor networks, April 26-27, 2004, Berkeley, California, USA
    [55] P. Biswas, T.-C. Liang, K.-C. Toh,et al. Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng., 2006,3(4) : 360-370
    [56] Nicolescu D, Nath B. Ad-Hoc positioxung systems (APS). In: Proc. of the 2001 IEEE Global Telecommunications Conf. Vol.5, San Antonio: IEEE Communications Society, 2001. 2926.2931.
    [57] Niculescu D, Nath B. DV-based positioning in ad hoc networks. Journal of Telecommunication Systems, 2003,22(1-4):267-280
    [58] Savvides A, Han C-C, Srivastava MB. Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proc. of the 7th Annual Int'1 Conf. on Mobile Computing and Networking. Rome: ACM Press, 2001:166-179
    [59] T. He, C. Huang, B.M. Blum, et al. Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on Mobile computing and networking(New York, NY, USA), ACM Press, 2003:81-95
    [60] J. Hightower, G. Boriello, R.Want. Spot on: An Indoor 3D Location Sensing Technology Based on RF Signal Strength. Technical Report 2000-02-02,University of Washington, 2000
    [61] P. Bahl, V. N. Padmanabhan. RADAR: An In-Building RF-Based User Location and Tracking System. In Proceedings of the IEEE INFOCOM’00, March 2000
    [62] N. Patwari, A. O. Hero, M. Perkins, et al. Relative Location Estimation inWireless Sensor Networks. IEEE Transactions on Signal Processing, 2003,51(8):2137-2148
    [63] B. H. Wellenhoff, H. Lichtenegger , J. Collins. Global Positions System: Theory and Practice. Fourth Edition. Springer Verlag, 1997
    [64] N. B. Priyanath, A. Chakraborty, H. Balakrishna. The cricket location support system. In Mobile Computing and Networking, 2000
    [65] A. Savvides, H. Park, M. Srivastava. The bits and flops of the n-hop multilateration primitive for node localization problems. In Proceedings of ACM WSNA’02, September 2002
    [66] A. Nasipuri,K. Li. A directionality based location discovery scheme for wireless sensor networks. In Proceedings of ACM WSNA’02, September 2002
    [67] D. Niculescu,B. Nath. Ad Hoc Positioning System (APS) using AoA. In Proceedings of IEEE INFOCOM’03, San Francisco, CA, USA, 2003
    [68] R. Nagpal. Organizing a Global Coordinate System from Local Information on an Amorphous Computer. A.I. Memo1666, MIT A.I. Laboratory, August 1999
    [69] N. Bulusu, J. Heidemann, D. Estrin. GPS-less low cost outdoor localization for very small devices. In IEEE Personal Communications Magazine,2000, 7(5):28-34
    [70] Dragos Niculescu,Badri Nath. Localized positioning in ad hoc networks. In Proceedings of First IEEE Interntional workshop on Sensor Network Protoco1s And ApPlicatlons, Anchorage, Alaska, USA:IEEE Comunications societies,2003:42-50
    [71] Bulusu N. Self-Configuring localization systems [Ph.D. Thesis]. Los Angeles: University of California, 2002
    [72] Want R, Hopper A, Falcao V, et al. The active badge location system. ACM Trans. on Information Systems, 1992,10(1): 91-102
    [73] Welch G, Bishop G, Vicci L, et al. The HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments. In: Proc. of the ACM Symp. on Virtual Reality Software and Technology,London:ACM Press, 1999.
    [74] Robert J. Orr, Gregory D. Abowd. The Smart Floor:A Mechanism for Natural User Identification and Tracking,2000:275-276
    [75] Hazas M, Ward A. A high performance privacy-oriented location system. In: Proc. of the 1st IEEE Int’l Conf. on Pervasive Computing and Communications. Fort Worth: IEEE Computer Society, 2003:216-233
    [76]肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法.计算机研究与发展, 2007,44(3): 399-405
    [77] X. Nguyen, M. Jordan, B. Sinopoli. A kernel-based learning approach to ad hoc sensor network localization. ACM Transactions on Sensor Networks, 2005,1(1):134-152
    [78] Duc A. Tran, Thinh Nguyen. Localization In Wireless Sensor Networks Based on Support Vector Machines. IEEE Transactions on Parallel and Distributed Systems, 2008
    [79] A. Howard, M.J. Mataric, G.S. Sukhatme. Relaxation on a mesh: a formalism for generalized localization. IEEE/RSJ International Conference on Intelligent Robots and Systems (Wailea, Hawaii),2001:1055 -1060
    [80] S. Nawaz, S. Jha. A Graph Drawing Approach to Sensor Network Localization. IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, 2007.
    [81] T. Kamada,S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Leters, 1989,31(1):7-15
    [82] HyukLim, Jennifer C.Hou. Localization for Anisotropic sensor Networks. In 24th Annual Joint Conference of the IEEE Computer and Communications societies, Miami,Florida:IEEE Publication,2005:138-149
    [83] A. Man-Cho So , Y. Ye. Theory of semide-nite programming for sensor network localization. SODA '05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA, USA), Society for Industrial and Applied Mathematics, 2005:405-414
    [84] Chen Meng, Zhi Ding, Soura Dasgupta. A Semidefinite Programming Approach to Source Localization in Wireless Sensor Networks. IEEE Signal Processing Letters,2008,(15):253-256
    [85] X F Shen, Zh Wang, P Jiang,et al. Connectivity and RSSI based localization scheme for wireless sensor networks. IEEE 2005 Int'l Conf on Intelligent Computing,Hefei,2005
    [86]王继春,黄刘生,徐宏力等.基于Voronoi图的无需测距的无线传感器网络节点定位算法.计算机研究与发展, 2008,45(1): 119-125
    [87] Ning Yu, Jiangwen Wan, Qing Song, et al. An Improved DV-Hop Localization Algorithm in Wireless Sensor Networks.2006 IEEE International Conference on Information Acquisition, 2006,6:638-643
    [88] Shuang Tian, Xinming Zhang, Pengxi Liu, et al. A RSSI-Based DV-Hop Algorithm for Wireless Sensor Networks. International Conference on WirelessCommunications. Networking and Mobile Computing, 2007:2555-2558
    [89] A. Boukerche, H.A.B. Oliveira, E.F. Nakamura, et al. A Voronoi Approach for Scalable and Robust DV-Hop Localization System for Sensor Networks. In Proceedings of 16th International Conference on Computer Communications and Networks,2007:497-502
    [90]于宁,万江文,吴银锋.无线传感器网络定位算法研究.传感技术学报,2007,20(1):187-192
    [91] Hongyang Chen, Kaoru Sezaki, Ping Deng, et al. An improved DV-Hop localization algorithm for wireless sensor networks. 3rd IEEE Conference on Industrial Electronics and Applications,2008:1557-1561
    [92] Yishang Wheeler Ruml. Improved MDS-Based Localization. Proceedings of the 23rd Conference of the IEEE Communicaitons Society(Infocom2004), HongKong. China: IEEE InfoCom,2004:45-57
    [93]罗海勇,李锦涛,赵方等.一种基于加权多尺度分析技术的鲁棒节点定位算法.自动化学报,2007,34(3):288-297
    [94] Ji X, Zha H Y. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies,Hong Kong,China, 2004:2652-2661
    [95] Costa J A, Patwari N, Hero A O. Distributed weighted multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks,2006, 2(1):39-64
    [96]季检,石胜飞,李建中.一种适用于无线传感器网络的健壮的有序定位算法.计算机研究与发展,2008,45(1):131-137
    [97] Hui Liu, Xun Luo, Yingwei Yao. Two manifold learning techniques for sensor localization. IEEE International Conference on Systems, Man and Cybernetics,2007:2114-2118
    [98]李善仓,傅鹏,张德运.无线传感器网络中的分布式节点定位方法.西安交通大学学报, 2007,41(12):1418-1422
    [99] Sheu Jang-Ping, Chen Pei-Chun, Hsu Chih-Shun. A Distributed Localization Scheme for Wireless Sensor Networks with Improved Grid-Scan and Vector-Based Refinement. IEEE Transactions on Mobile Computing, 2008,7(9):1110-1123
    [100] Mihail L. Sichitiu, Vaidyanathan Ramadurai. Localization of Wireless Sensor Networks with a Mobile Beacon. In: Proc. of the IEEE Int'l Conf. on MobileAd-Hoc and Sensor Systems. IEEE Computer Society, 2004. 174-183
    [101] K.-F. Ssu, C.-H. Ou, H. C. Jiau. Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 2005,54(3):1187-1197
    [102] Zhuhong you, Max Q.-H. Meng, Huawei Liang, et al. An Localization Algorithm in Wireless Sensor Networkcs Using a Mobie Beacon Node. Proceedings of the 2007 International Conference on Information Acquisition. Jeju City, Korea, 2007
    [103] P. N. Pathirana, N. Bulusu, et al. Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing, 2005, 4(3):285-296
    [104] Guo-Lin Sun, Wei Guo. Comparison of distributed localization algorithms for sensor network with a mobile beacon. IEEE International Conference on Networking, Sensing and Control, Chengdu, China, 2004
    [105] Bin Xiao, Hekang Chen, Shuigeng Zhou. Distributed Localization Using a Moving Beacon in Wireless Sensor Networks. IEEE Transactions on parallel and distributed systems,2008,19(4):1-14
    [106] A. Arora, P. Dutta, S. Bapat, et al. A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks Journal,2004,46(5):605-634
    [107] S. de Vlaam. Object tracking in a multi sesnor network[Master thesis]. Deflt University of Technology,Computer Engineering Parallel and Distributed Systems, 2004
    [108] P. Juang, H. Oki, Y. Wang,et al. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experience with zebranet. In ASPLOS-X’02, San Jose, CA, October 2002
    [109] Z. Butler, P. Croke, R. Peterson et al. Networked cows: Virtual fences for controlling cows. In WAMES, Boston, MA, June 2004
    [110] S.N. Simic. A learning-theory approach to sensor networks. Pervasive Computing. 2003,2(4):44-49
    [111] Xinghong Kuang, Huihe Shao. Maximum Likelihood Localization Algorithm Using Wireless Sensor Networks. First International Conference on Innovative Computing, Information and Control,Beijing, 2006
    [112] Lizhi Yang, Chuan Feng, W. Jerzy, et al. Adaptive Tracking in Distributed Wireless Sensor Networks. Proceedings of the 13th Annual IEEE InternationalSymposium and Workshop on Engineering of Computer Based Systems,2006
    [113] Chih-Yu Lin, Wen-Chih Peng, Yu-Chee Tseng. Efficient in-network moving object tracking in wireless sensor networks. IEEE Transactions on Mobile Computing, 2006,8(5):1044-1056
    [114] Fuemmeler, J.A. Veeravalli, V.V. Smart Sleeping Policies for Energy Efficient Tracking in Sensor Networks. IEEE Transactions on Signal Processing, 2008,56(5):2091-2101
    [115] L. Hu , D. Evans. Localization for mobile sensor networks. ACM MobiCom’04, Philadelphia, PA, USA,2004
    [116] B. Dil, S. Dulman, P. J. M. Havinga. Range-based localization in mobile sensor networks. In Third European Workshop on Wireless Sensor Networks,Zurich, Switzerland, Feb,2006. Lecture Notes in Computer Science, 3868:164-179
    [117] A. Baggio, K.G. Langendoen. Monte-Carlo Localization for Mobile Wireless Sensor Networks. 2nd Int. Conf. on Mobile Ad-hoc and Sensor Networks,Hongkong,China,2006
    [118] E. Stevens-Navarro, Vivekanandan, V., Wong, V.W.S. Dual and Mixture Monte Carlo Localization Algorithms for Mobile Wireless Sensor Networks. Wireless Communications and Networking Conference, March 2007:4024-4028
    [119] Yi Jiyoung, Yang Sungwon, Cha Hojung. Multi-hop based Monte Carlo Localization for Mobile Sensor Networks. Sensor, Mesh and Ad Hoc Communications and Networks,2007. 4th Annual IEEE Communications Society Conference on 18-21 June 2007:162-171
    [120] Tzu-Chien Chang,Kuochen Wang , Yi-Ling Hsieh. Enhanced Color-theory-based Dynamic Localization in Mobile Wireless Sensor Networks. IEEE Wireless Communications and Networking Conference, 2007
    [121] S.-H. Shee, K.-C. Wang , I.-L. Hsieh. Color-theory-based Dynamic Localization in Mobile Wireless Sensor Networks. In Proceedings of Workshop on Wireless Ad Hoc Sensor Networks, Aug 2005
    [122] Clément Saad, Abderrahim Benslimane, Jean-Claude Kǒnig. A Distributed Method to Localization for Mobile Sensor Networks. IEEE Wireless Communications and Networking Conference, 2007
    [123] Savarese C, Rabaey JM, Beutel J. Locationing in distributed ad-hoc wireless sensor network. In: Proc. of the 2001 IEEE Int’l Conf. on Acoustics, Speech, and Signal. Vol.4, Salt Lake: IEEE Signal Processing Society, 2001:2037-2040
    [124] C. Savarese, J.M. Rabaey, K. Langendoen. Robust positioning algorithms fordistributed ad-hoc wireless sensor networks. Proceedings of the General Track: 2002 USENIX Annual Technical Conference (Berkeley, CA, USA), USENIX Association, 2002:317-327
    [125] Honglei Miao, Kegen Yu, Juntti M.J. Positioning for NLOS Propagation: Algorithm Derivations and Cramer-Rao Bounds. IEEE Transaction on Vehicular Technology, 2007, 56(5):2568-2580
    [126] J. Schroeder, S. Galler, K. Kyamakya, et al. NLOS detection algorithms for Ultra-Wideband localization. 4th Workshop on Positioning, Navigation and Communication 2007(WPNC’07), Hannover, Germany. 2007:159-166
    [127] Zhi-li Wu,Chun-hung Li,Joseph Kee-Yin Ng, et al. Location estimation via Support Vector Regression. IEEE Transactions on Mobile Computing, 2007, 6 (3):311-321
    [128] Guolin Sun, Wei Guo. Robust mobile geo-location algorithm based on LS-SVM. Transactions on Vehicular Technology, 2005, 54(3):1037-1041
    [129]曾凡仔.基于核学习的非线性时间序列分析及其在金融工程中的应用[北京交通大学博士学位论文].北京:北京交通大学,2004
    [130]张学工.统计学习理论的本质.北京:清华大学出版社, 2000
    [131]杜树新,吴铁军.用于回归估计的支持向量机方法.系统仿真学报,2003,15(11): 1580-1633
    [132] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York,1998
    [133]孙国林.无线移动网络辅助定位算法研究[电子科技大学博士学位论文].成都:电子科技大学,2005
    [134] T. S. Rappaport. Wireless communications: principles and practice. in 2nd ed., Upper Saddle River, NJ: Prentice Hall PTR, 2002
    [135] K. Yedavalli, B. Krishnamachari, S. Ravula,et al. Ecolocation: a sequence based technique for RF localization in wireless sensor networks. 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, California, USA, April, 2005.
    [136] L. Tang, M. Crovella. Virtual landmarks for the Internet. in Proceedings of ACM Iiilemel Measltremenf Conference, 2003
    [137] http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
    [138] SIMIC SN,SASTRY S. Distributed localization in wireless ad hoc networks. UCB/ERL M02/26,UC Berkeley, 2002
    [139]王凌.智能优化算法及其应用.北京清华大学出版社,2001
    [140] Tam V, Cheng King-yip, Lui King-shan. Improving localization in wireless sensor networks with an evolutionary algorithm.Proceedings of Consumer Communications and Networking Conference, 2006:137-141
    [141] Poggi C, Mazzini G.. Collinearity for sensor network localization. Proceedings of the IEEE Vehicular Technology Conference, 2003:3040-3044
    [142] Vaishali Sadaphal, Bijendra Jain. Spread-based heuristic for sensor selection in sensor networks. Proceedings of COMSWARE 2006
    [143]孙佩刚,赵海,张文波等.普适计算中定位服务的参考点布置及选择算法.电子学报,2006,34(8):1456-1463
    [144] Anushiya Kannan, Guoqiang Mao, Branka Vucetic. Simulated annealing based wireless sensor network localization with flip ambiguity mitigation.Proceedings of IEEE Vehicular Technology Conference, 2006
    [145] D. Koutsonikolas, S. M. Das, Y. C. Hu. Path Planning of Mobile Landmarks for Localization in Wireless Sensor Networks.In Proc. of IEEE Distributed Computing Systems Workshops, 2006: 80-86
    [146] Bahi Jacques M.,Makhoul Abdallah ,Mostefaoui Ahmed . A Mobile Beacon Based Approach for Sensor Network Localization.Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, 2007
    [147] Rui Huang, Gergely V. Záruba. Static Path Planning for Mobile Beacons to Localize Sensor Networks. In the Proceedings of the Third IEEE International Workshop on Sensor Networks and Systems for Pervasive Computing, New York, March,2007
    [148] http://tech.c114.net/164/a140334.html
    [149] Chen Xun,Han Peng,et al. A Viable Localization Scheme for Dynamic Wireless Sensor Networks.Computer and Computational Seiences,First International Multi-Symposiums.Volume 2,April 2006:587-593
    [150] J. Yi, S. Yang, H. Cha. Multi-hop based Monte Carlo Localization for Mobile Sensor Networks. Fourth Annual IEEE Communications Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks (SECON 2007), San Diego, USA, June 2007
    [151] J. E. Handschin. Monte Carlo Techniques for Prediction and Filtering of Non-Linear Stochastic Processes. Automatica 6. 1970:555-563
    [152] Kullback S , Leibler R A. On information and sufficiency. Annas of Mathematical Statistics,l95l,22(1):79-86
    [153] D. Fox. KLD-sampling: Adaptive particle filters. Advances in Neural Information Processing Systems 14 (NIPS),Cambridge, MA, 2002
    [154] J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, second edition,1995
    [155] N. Johnson, S. Kotz, N. Balakrishnan. Continuous univariate distributions, volume 1. New York, John Wiley & Sons, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700