多移动机器人地图构建的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术在各个领域的广泛应用和发展,在研究和应用双重需求的推动下,多机器人系统的研究已受到国内外研究结构和产业界的重视,并逐步成为一个充满活力、充满挑战的领域。在一些面向任务的应用中,地图构建是实现多机器人系统自主导航、在未知环境中完成复杂智能任务的关键,也集中体现了多机器人系统的感知能力和智力水平。因此,如何利用多个机器人来构建精确有效的环境地图,无疑是多机器人研究中一个重要且关键的课题。
     本文围绕多机器人研究中基本而关键的建图问题,深入研究了多机器人群连续避障和避碰策略、基于相对观测量的同时定位与建图(SLAM)方法以及局部地图融合等相关内容。
     论文首先研究了多机器人建图过程中的避障和避碰问题。针对声纳机器人建立了基于避障子行为状态的方向选择规则,配合检测到的当前障碍物方位,来选择正确的避障方向;在多机器人避碰策略上,建立了一种无交通灯的交叉路口避碰模型,在此模型中,设计了优先通过权评价函数以决定机器人谁将获得优先通过交叉路口的权利。多机器人系统的整体避碰关系则利用有向图来描述,并通过逐步消除图中各个环路来解决死锁问题。
     其后提出了一种基于扩展卡尔曼滤波器(EKF)的多机器人同时定位与建图的新方法。该方法首先利用支持向量机对EKF-SLAM方法予以改进,根据新息相关性,自适应地调节测量噪声方差,有效地解决了噪声的统计特性与实际不符合时滤波器发散的现象,提高了SLAM精度。之后,将该种应用于单机器人的改进EKF-SLAM方法应用于多个机器人,在机器人会合时测量彼此之间的相对距离和角度,以利用该相对观测量进行局部地图的坐标转换与融合。考虑到传感器观测信息的不确定性会降低坐标转换精度,引入联合兼容分枝定界(Joint Compatibility Branch and Bound,JCBB)算法进行路标的增强匹配,利用匹配路标信息进一步降低地图融合过程中的误差和计算复杂度。与常规的多机器人SLAM方法相比,该方法无需已知机器人的相对起始位置信息,不要求各机器人构建的局部地图重叠,限制条件少,在实际应用中具有更大的灵活性。
     针对多个声纳机器人,研究了基于粒子滤波器的多机器人FastSLAM方法。首先将常规粒子滤波器与粒子群优化算法有机结合,引入最新的机器人观测信息以调整粒子的提议分布,从而在保证算法精度的同时,极大地减少了定位与建图所需的粒子数,并有效缓解了粒子退化现象。此外,考虑到常规的重采样过程容易引起样本贫化现象,引入了概率算子以增加粒子的多样性。之后,将该种改进的FastSLAM方法扩展到多机器人系统中,利用机器人会合时的相对观测量来初始化粒子滤波器,并利用虚拟机器人将所有机器人在会合前后的观测值融合成为全局栅格地图。实验结果表明该方法具有较高的精度、稳定性以及灵活的地图表示方式。
     考虑到在实际环境中,机器人可能无法满足至少相遇一次的条件,提出一种基于栅格融合的多机器人建图方法。该方法让各机器人独立探索环境并对不同的局部栅格地图予以融合。在地图融合过程中,无需考虑机器人相对位置的先验信息,而是以栅格地图相似度为度量标准,利用距离变换和改进的遗传算法高效、快速地搜索各局部地图之间的最大重叠部分,进而予以融合。实验结果表明,该方法无需考虑机器人的位置信息,限制条件少,更适合于声纳机器人的实际建图应用。
     在论文的最后,总结了整篇论文的工作,指出了进一步研究探索的方向。
Robotics has already been widely developed and used in many fields. Urged by investigation and application, research of multi-robot system has received more and more attention, and it is gradually becoming an active field full of challenge. In some tasks, such as military operation, aviation, services and RoboCup, map building is not only very important to accomplish autonomous navigation and other complex intelligent tasks, but also embodies perception ability and intelligence of multi-robot systems. So it is an important and key problem of research on multi-robot to building environment map accurately and effectively by multiple robots.
     This work focuses on the basic and important problem in multiple robots research—multi-robot map building. It addresses the problem of continuous obstacle avoidance and collision avoidance strategy, simultaneous localization and mapping (SLAM) based on relative observations and local map merging of a mobile robot team.
     First, the problem of multi-robot obstacle avoidance and collision avoidance is discussed. Aiming at sonar robots, a kind of direction selection rules based on the avoiding sub-behavior states is designed, to choose the right avoiding direction, with the cooperation of the current obstacle orientation been detected. For the collision avoidance strategy of multi robots, a model named "No-Traffic-Light-Crossing" is built. In this model, a Pass-Priority evaluating function is designed, to decide which of the robots in the model will gain the pass priority. Digraph is used to describe the avoidance relation of multi-robot system, and the "dead-lock" problem will be solved through stepwise eliminate the cycles of the digraph.
     Second, a novel approach to multi-robot simultanieous localization and mapping (SLAM) based on Extended Kalman Filter (EKF) is presented. The EKF-SLAM approach is improved by support vector machines. According to relativity of innovation, the measurement noise covariance was adjusted adaptively. The method could cope with divergence problem caused by the insufficiently knowing of the prior filter statistics and improve the accuracy of SLAM. Then, the improved EKF-SLAM approach used in a single robot in common was extended to a multi-robot system. Relative observations between robots when meeting was processed to execute coordinate transformation and map merging. In addition, by considering the uncertainty of sensor information, an improved matching of landmarks was introduced to the process of map fusion to increase accuracy of localization and mapping. Compared with typical ones, this approach can accomplish multi-robot simultaneous localization and mapping accurately and effectively without using any initial pose information of robots and no need for robots to explore duplicate areas, so as to be more suitable for a variety of complex cases in application with less restrictions.
     Aiming at multiple sonar robots, a multi-robot FastSLAM approach is discussed. First, the standard particle filter and particle swarm optimization algorithm are incorporated into the filtering framework of this approach. The newest observations are introduced to adjust particles' proposal distribution, so as to largely reduce the sample size necessary for localization and mapping and effectively relieve the particle degeneracy problem while ensuring the algorithm precision. In addition, considering that the typical resampling process always leads to the loss of diversity in particles, a probabilistic operator is introduced to keep the diversity of particle swarm. Second, the improved FastSLAM approach is extended to a multi-robot system. The relative observations when robots' meeting is used to initialize the particle filter, and the subsequent and prior observations from robots are combined into a global grid map by using virtual robots. Experimental results show the approach has high accuracy and stability as well as flexible map representations.
     Considering that the robots may never encounter at all in real environment, a multi-robot mapping approach based on grid matching is presented. The approach lets all robots operate individually and then tries to merge the different local grid maps into a single global one. Without using any pose information of robots, the process of map merging is performed by measuring the similarity between grid maps. Distance transforms and an improved genetic algorithm are used to effectively search the maximum overlap at which the local maps can be joined together. Experimental results show that this approach can accomplish multi-robot map building accurately and effectively without using any robots' position information, and be more suitable for sonar robots in applications for mapping with less restrictions.
     Finally, we summarize the general work of this thesis and give a short outlook on possible future research.
引文
[1]蔡自兴.机器人学.北京:清华大学出版社,2000:1-50
    [2]Burgard W,Cremers A,Fox D,et al.The interactive museum tour-guide robot.Proceedings of National Conference on Artificial Intelligence,Madison WI:AAAI Press,1998,19(11):11-18
    [3]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究.机器人,2000,22(6):519-526
    [4]李磊,叶涛,谭民,等.移动机器人技术研究现状与未来.机器人,2002,24(5):475-480
    [5]国家863计划智能机器人专家组编著.机器人博览.北京:中国科学技术出版社,2001:1-100
    [6]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2002,17(4):385-390
    [7]王卫华,陈卫华,席裕庚.基于不确定信息的移动机器人地图创建研究进展.机器人,2001,23(6):563-568
    [8]Thrun S.Robotic mapping:a survey.Pittsburgh:Technical Report CMU-CS-02-111,Carnegie Mellon University,2002:1-10
    [9]Parker L E,Schneider F E,Schultz A C.Multi-robot systems.From swarms to intelligent automata,Volume Ⅲ:Proceedings from the 2005 International Workshop on Multi-Robots Systems.Berlin:Springer,2005:1-302
    [10]Fatikow S,Jasper D,Edeler C,et al.Cameraman:A multirobot system for nanohandling in a scanning electron microscope.Proceedings of the 2008IEEE International Conference on Robotics and Automation.Pasadena,Clifornia:IEEE Press,2008,437-442
    [11]Asada M,Veloso M,Kraetzschmar G K,et al.A review of robot world cup soccer research issures RoboCup:Today and tomorrow.Berlin:Springger,2008:1-100
    [12]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005:1-200
    [13]吴镇炜,谈大龙.多机器人系统研究.机器人,2002,22(7):713-718
    [14]谭民,范永,徐国华.机器人群体协作与控制的研究.机器人,2001,23(2):178-182
    [15]原魁,李园,房立新.多移动机器人系统研究发展近况.自动化学报, 2007,33(8):785-794
    [16]Leonard J,Durrant-Whyte H.Dynamic map building for an autonomous mobile robot.The International Journal on Robotics Research,1992,11(4):286-298
    [17]王卫华,陈卫华,席裕庚.移动机器人地图创建中的不确定传感信息处理.自动化学报,2003,29(2):267-274
    [18]Moravec H P,Elfes A.High resolution maps from wide-angle sonar.Proceedings of the 1985 IEEE International Conference on Robotics and Automation.St.Louis USA:IEEE Press,1985:116-121
    [19]Konolige K.Improved occupancy grids for map building.Autonomous Robots,1997,4(4):351-367
    [20]Thrun S,Fox D,Burgard W.Probabilistic mapping of an environment by a mobile robot.Proceedings of the 1998 IEEE International Conference on Robotics & Automation.Leuven Belgium:IEEE Press,1998:1546-1551
    [21]Limketkai B,Biswas R,Thrun S.Learning occupancy grid maps of non-stationary objects with mobile robots in indoor environments.Proceedings of the 2002 International Symposium on Experimental Robotics.Italy:Springer,2002:222-231
    [22]Schiele B,Crowley J L.A comparison of position estimation techniques using occupancy girds.Proceedings of the 1994 IEEE International Conference on Robotics and Automation.San Francisco CA:IEEE Press,1994:1628-1634
    [23]Chatila R,Laumond J P.Position referencing and consistent world modeling for mobile robots.Proceedings of the IEEE International Conference on Robotics and Automation.Saint Louis USA:IEEE Press,1985:138-145
    [24]Lu F,Milios E.Globally consistent range scan alignment for environment mapping.Autonomous Robots,1997,4(4):333-349
    [25]Kortenkamp D,Huber E,Bonassi,et al.The 1996 AAAI mobile robot competition and exhibition.AI Magazine,1997,18(2):25-32
    [26]Kuc R,Siegel M W.Physically based simulation model for acoustic sensor robot navigation.IEEE Transactions on Pattern analysis machine Intelligence,1987,9(6):766-778
    [27]Ohya A,Nagashima Y,Yuta S.Explore unknown environment and map construction using ultrasonic sensing of normal direction of walls. Proceedings of the IEEE Intemational Conference on Robotics and Automation.San Diego CA:IEEE Press,1994:485-492.
    [28]Kuipers B,Byun Y T.A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations.Robotics and Autonomous Systems,1991,8(1):47-63.
    [29]Choset H,Konuksven I,Burdick J W.Sensor based planning for a planar Rod Robot.Proceedings of the 1996 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.Albuquerque NM USA:IEEE Press,1996:3584-3591
    [30]Mataric M J.A distributed model for mobile robot environment-learning and navigation.Massachusetts Institute of Technology:Technical Report AITR-1228,Cambridge,1990:1-10
    [31]Savelli F,Kuipers B.Loop-closing and planarity in topological map-building.Proceedings of the 2004 IEEE International Conference on Intelligent Robots and Systems.Francesco Savelli:IEEE Press,2004,2(2):1511-1517
    [32]Thrun S,Bucken A.Integrating grid-based and topological maps for mobile robot navigation.Proceedings of the 13th National Conference on Artificial Intelligence.Portland Oregon:AAAI Press,1996:944-950
    [33]Ducker T,Saffiotti A.Building globally consistent grid maps from topologies.Proceedings of the 6th International IFAC Symposium on Robot Control.Vienna Austria:Elsevier Press,2000:357-361
    [34]Thrun S,Gutmann J,Fox D,et al.Integrating topological and metric maps for mobile robot navigation:A statistical approach.Proceedings of the 15th National Conference on Artificial Intelligence.Madison Wisconsin:AAAI Press/The MIT Press,1998:989-995
    [35]庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究.控制与决策,2005,20(7):815-822
    [36]Cox I J.Blanche—an experiment in guidance and navigation of an autonomous mobile robot.IEEE Transactions on Robotics and Automation,1991,7(3):193-204
    [37]Borenstein J,Feng L.UMBmark:A benchmark test for measuring odometry errors in mobile robot.Proceedings of the 1995 SPIE Conference on Mobile Robot.Philadelphia Pennsylvania:SPIE Press,1995:22-26
    [38]Chong K S,Kleeman L.Accurate odometry and error modelling for a mobile robot.Proceedings of the 1997 IEEE International Conference on Robotics and Automation.Albuquerque NM:IEEE Press,1997:2783-2788
    [39]Martinelli A,Siegwart R.Estimating the odometry error of a mobile robot during navigation.Proceedings of European Conference on Mobile Robots.Warsaw.Poland:Zturek Press Warschau,2003:1-6
    [40]Elfes A.Sonar-based real-world mapping and navigation.IEEE Journal of Robotics and Automation,1987,3(3):249-265
    [41]Moravec H.Sensor fusion in certainty grids for mobile robots.AI Magazine archive,1988,9(2):61-74.
    [42]Thrun S,Fox D,Burgard W.A probabilistic approach to concurrent mapping and localization for mobile robots.Machine Learning,1998,31(5):29-53
    [43]Olson C F.Probabilistic self-localization for mobile robots.IEEE Transactions On Robotics and Automation,2000,16(1):55-66.
    [44]Oriolo G,Ulivi G,Vendittelli M.Fuzzy maps:A new tool for mobile robot perception and planning.Journal of Robotic System,1997,14(3):179-197
    [45]Demirli K,Turksen I B.Sonar based mobile robot localization by using fuzzy triangulation.Robotics and Autonomous Systems,2000,2(33):109-123
    [46]Gasos J,Rosetti A.Uncertainty representation for mobile robots:perception,modeling and navigation in unknown environments.Fuzzy sets and systems,1999,107(1):1-24
    [47]Thrun S.Learning metric-topological maps for indoor mobile robot navigation.Artificial Intelligence,1998,99(1):21-71
    [48]罗荣华,洪炳熔,厉茂海.基于局部特征预测的栅格地图创建.哈尔滨工业大学学报,2004,36(7):877-880
    [49]Reina A,Gonazalez J.A two-stage mobile robot localization method by overlapping segment-based maps.Robotics and autonomous systems,2000,31(4):213-225
    [50]Borenstein J,Everett H R,Feng L.Mobile robot positioning:sensors and techniques.Journal of Robotics Systems.Special Issue on Mobile Robots,1997,14(4):231-249
    [51]王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展.机器人,2004,26(4):380-384
    [52]陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展.控制理论与应用,2005,22(3):455-460
    [53]罗荣华,洪炳熔.移动机器人同时定位与地图创建研究进展.机器人,2004,26(2):182-186
    [54]贺伟,梁昔明.未知环境中移动机器人SLAM问题的研究进展.微计算机信息,2005,21(3):170-180
    [55]Smith R,Self M,Cheeseman P.Estimating uncertain spatial relationships in robotics.In Editors:I.Cox and G.Wilfong,Autonomous Robot Vehicles.London:Springer-Verlag,1990:167-193
    [56]王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究.机器人,2005,27(1):41-45
    [57]Andrew J.Davison,Nobuyuki Kita.3D simultaneous localization and map-building using active vision for a robot moving on undulating terrain.Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Kauai:IEEE Press,2001:384-391
    [58]Nebot E,Masson F,Guivant J,et al.Robust simultaneous localization and mapping for very large outdoor environments.Proceedings of the 2002International Symposium on Experimental Robotics.Italy:Springer,2002:200-209
    [59]Leonard J,Durrant-Whyte H.Simultaneous map building and localization for an autonomous mobile robot.Proceedings of the IEEE International Workshop on Intelligent Robots and Systems.Osaka:IEEE Press,1991:1442-1447
    [60]Guivant J,Nebot E.Optimization of simultaneous localization and map building algorithm for real time implementation.IEEE Transactions on Robotics and Automation,2001,17(3):242-257
    [61]Montemerlo M,Thrun S,Koller D,et al.FastSLAM:A factored solution to the simultaneous localization and mapping problem.Proceedings of the 18th National Conference on Artificial Intelligence.Edmonton Alberta Canada:AAAI Press,2002:593-598
    [62]Fukuda T,Kawauchi Y,Asama H.Analysis and evaluation of cellular robotics(CEBOT)as a distributed intelligent system by communication information amount.Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems.Lbaraki Japan:IEEE Press,1990:827-834
    [63]Alami R,Fleury S,Herrb M,et al.Multi-robot cooperation in the MARTHA project.IEEE Transactions on Robotics and Automation,1998,5(1):36-47
    [64]Cao Y U,Fukunaga A S,Andrew B.Cooperative mobile robotics:antecedents and directions.Autonomous Robots,1997,4(1):7-27
    [65]Asama H,Habib M K,Endo I,et al.Functional distribution among multiple mobile robots in an autonomous and decentralized robot system.Proceedings of the IEEE International Conference on Robotics and Automation.Sacramento California USA:IEEE Press,1991:1921-1926
    [66]Parker L E.Designing control laws for cooperative agent teams.Proceedings of the IEEE International Conference on Robotics and Automation.Atlanta GA USA:IEEE Press,1993:582-587
    [67]Parker L E.Lifelong Adaptation in Heterogeneous Multi-Robot Teams:Response to Continual Variation in Individual Robot Performance.Autonomous Robots,2000,8(3):239-267
    [68]Kube C R,Bonabeau E.Cooperative Transport Ants and Robots.Robotics and Autonomous Systems,2000,30(1-2):85-101
    [69]Parker L E.Cooperative Robotics for Multi-Target Observation.Intelligent Automation and Soft Computing,1999,5(1):5-19
    [70]Goldberg D,Mataric M J.Coordinating Mobile Robot Group Behavior Using a Model of Interaction Dynamics.Proceedings of the 3th International Conference on Autonomous Agents.Seatle Washington:ACM Press,1999:100-107
    [71]苏丽颖,曹志强,王硕,谭民.多机器人对未知环境进行实时在线探测的一种方法.高技术通讯,2003,13(11):56-60
    [72]张洪峰,王硕,谭民,王龙.基于动态分区方法的多机器人协作地图构建.机器人,2003,25(2):156-162
    [73]Zlot R,Stentz A,Dias M B,et al.Multi-robot exploration controlled by a market economy.Proceedings of the 2002 IEEE International Conference on Robotics and Automation.Washington DC USA:IEEE Press,2002:3016-3023
    [74]Khabit O.Real time obstacle avoidance for manipulators and mobile robots.Internatioal Journal of Robotics Research,1986,5(1):90-98
    [75]张凤.基于加速度空间的移动机器人避碰规划研究:[博士学位论文].沈阳:中国科学院沈阳自动化研究所,2004
    [76]王硕,谭民.基于协商和意愿强度的多自主移动机器人避碰协作.高技术通讯,2001,10(11):70-73
    [77]Kato S,Nishiyama S,Takeno J.Coordinating Mobile Robots by Applying Traffic Rules.Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems.Raleigh:IEEE Press,1992:1535-1541
    [78]Howard A.Multi-robot mapping using manifold representations.Proceedings of the 2004 IEEE International Conference on Robotics and Automation.New Orleans LA:IEEE Press,2004:4198-4203
    [79]Thrun S.A probabilistic online mapping algorithm for teams of mobile robots.International Journal of Robotics Research,2001,20(5):335-363
    [80]Dedeoglu G,Sukhatme G.Landmark-based matching algorithm for cooperative mapping by autonomous robots.Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Systems.Tennessee USA:Springer Verlag,2000:251-260
    [81]Fenwick J,Newman P,Leonard J.Cooperative Concurrent Mapping and Localization.Proceedings of the IEEE International Conference on Robotics and Automation.Washington USA:IEEE Press,2000:1810-1817
    [82]Huang W H,Beevers K R.Topological map merging.The International Journal of Robotics Research,2005,24(8):601-613
    [83]Lakaemper R,Latecki L J,Wolter D.Incremental Multi-Robot Mapping.Proceedings of the 2005 IEEE International Conference on Intelligent Robtos and Systems.Edmonton Canada:IEEE Press,2005:3846-3851
    [84]Amigoni F,Gasparini S,Gini M.Building Segment-Based Maps without Pose Information.Proceedings of the IEEE,2006,94(7):1340-1359.
    [85]Fujimura K,Samet H.A hierarchical strategy for path planning among moving obstacles.IEEE Transactions on Robotics and Automation,1989,5(1):61-69
    [86]Zalama E.A real-time,unsupervised neural network for the low-level control of a mobile robot in a nonstationary environment.Neural Networks,1995,8(1):103-123
    [87]Fan C H,Chen W D,Xi Y G.Behavior-based implicit planning method and its application to robot soccer system.High Technology Letters,2005,1(11):43-48
    [88]Zu D,Han J,Tan D.MILP-based trajectory generation in relative velocity coordinates.Proceedings of the 2007 IEEE Conference on Decision and Controlm.New Orleans:IEEE Press,2007:1975-1980
    [89]Animesh C,Debasish G.Obstacle avoidance in a dynamic environment:a collision cone approach.IEEE Transactions on Systems,Man & Cybernetics,Part A,1998,28(5);562-574
    [90]蔡自兴,陈白帆,王璐,等.异质多移动机器人协同技术研究的进展.智能系统学报,2007,2(3):1-7
    [91]Jensfelt P,Christensen H I.Pose tracking using laser scanning and minimalistic environmental models.IEEE Transactions on Robotics and Automation,2001,17(2):138-147
    [92]Ribo M,Pinz A.A comparison of three uncertainty calculi for building sonar-based occupancy grids.Robotics and Autonomous Systems,2001,35(3):201-209
    [93]Hugh D W,Bailey T.Simultaneous Localization and Mapping(SLAM):Part I The Essential Algorithms.Robotics & Automation Magazine,IEEE,2006,13(2):99-108
    [94]Kalman R E.A new approach to linear filtering and prediction problems.Transaction of the ASME—Journal of Basic Engineering,1960,82(1):35-45
    [95]Dellaert F,Burgard W,Fox D,et al.Monte Carlo localization for mobile robots.Proceedings of the IEEE International Conference on Robotics and Automation.Detroit USA:IEEE Press,1999:1322-1328
    [96]Dissanayake G,Newman P,Durrant-Whyte H F,et al.A solution to the simultaneous localization and mapping(SLAM)problem.IEEE Transactions on Robotics and Automation,2001,17(3):229-241
    [97]Maybeck P S.Stochastic Models,Estimation and Control.New York:Academic Press,1979:1-141
    [98]Durrant-White H,Bailey T.Simultaneous Localization and Mapping (SLAM):Part I The Essential Algorithms.Robotics and Automation Magazine,2006,13(2):99-110
    [99]Liu S.An adaptive Kalman filter for dynamic estimation of harmonic signals.Proceedings of the 8th International Conference on Harmonics and Quality of Power.Athens Greece:IEEE Press,1998:636-640
    [100]Tsai C,Kura L.An adaptive robustizing approach to Kalman filtering.Automatica,1983,19(3):279-290
    [101]Escamilla-Ambrosio P J,Mort N.Multi-sensor data fusion architecture based on adaptive Kalman filter and fuzzy logic performance assessment. Proceedings of the 5th Intemational Conference on Information fusion.Annapolis USA:IEEE Press,2002:1542-1549
    [102]Sasiadek J Z,Wang Q,Zeremba M B.Fuzzy adaptive kalman filtering for INS/GPS data fusion.Proceedings of the 15th IEEE International Symposium on Intelligent Control.Patras:IEEE Press,2000:181-186
    [103]Mehra R K.On the identification of variances and adaptive Kalman filtering.IEEE Tansactions on Automation and Control,1970,2(15):175-184
    [104]Loebis D,Sutton R,Chudley J,et al.Adaptive tuning of a kalman filter via fuzzy logic for an intelligent auv navigation system.Control Engineering Practice,2004,12(12):1531-1539
    [105]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995:1-187
    [106]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.北京:科学出版社,2004:1-408
    [107]Suykens J A K,Van G T,Brabanter D J,et al.Least Squares Support Vector Machines.Singapore:World Scientific,2002:1-308
    [108]Smith R,Cheeseman P.On the representation and estimation of spatial uncertainty.International Journal of Robotics Research,1986,5(4):56-68
    [109]Neira J,Tardos J D.Data association in stochastic mapping using the joint compatibility test.IEEE Transactions on Robotics and Automation,2001,17(6):890-897
    [110]Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering.State Compute,2000,10(3):1-36
    [111]胡士强,敬忠良.粒子滤波算法综述.控制与决策,2005,20(4):361-366
    [112]Kennedy J,Eberhar R.Particles swarm optimization.Proceedings of the IEEE Conference on Neural Networks.Perth Australia:IEEE Press,1995:1942-1948
    [113]Liu J S.Metropolized independent sampling with comparisons to rejection sampling and importance sampling.Statistics and Computing,1996,6(2):113-119
    [114]Zou Y,Khing H Y,Seng C C.A new solution for specular reflection in the multi-ultrasonic sensor fusion for mobile Robots:[Master's Thesis].Singapore:Nanyang Technological University,2001:
    [115]Birk A.Learning geometric concepts with ean evolutionary algorithm. Proceedings of the 5th International Annual Conference on Evolutionary Programming.Cambridge:MIT Press,1996:83-90
    [116]Carpin S,Birk A,Jucikas Viktoras.On map merging.Robotics and Automonous Systems,2005,53(1):1-114
    [117]杜建军,刘丽,杨水山.生成距离图的同心圆窗口矩匹配快速算法.中国图象图形学报,2006,11(6):890-893
    [118]田莹,苑玮琦.遗传算法在图像处理中的应用.中国图象图形学报,2007,12(3):389-396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700