机器人同步定位与建图中数据关联问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人同步定位与建图(SLAM)问题是移动机器人在未知环境中实现真正自主必须解决的关键问题,是当前移动机器人学界的研究重点和热点之一。SLAM包含状态估计和数据关联两部分。其中,状态估计是指对环境特征的位置以及机器人定位的估计过程;数据关联是指建立在不同时间、不同地点获得的传感器测量之间、传感器测量与地图特征之间或者地图特征与地图特征之间的对应关系,以确定它们是否源于环境中同一物理实体的过程。数据关联为状态估计提供输入,正确的数据关联是实现正确的状态估计的前提。随着机器人运行环境的日益复杂和非结构化,SLAM中数据关联相关问题研究的重要性日益突显。
     SLAM中主要有以下三个子问题涉及数据关联:递增建图与定位,循环闭合和多机器人SLAM中的地图合并。递增建图与定位中的数据关联研究如何确定当前连续的传感器观测之间或者当前时刻的观测与最近所创建的局部地图中特征间的关联关系,该问题即为通常意义下的数据关联问题,本文称其为局部数据关联;循环闭合中的数据关联研究机器人沿不同的路径回到某一循环的起点时,如何确定当前创建的局部地图中的特征与以前所创建的循环起点处地图中特征之间的关联关系,本文称其为循环数据关联;地图合并中的数据关联研究多个局部地图中的特征间的关联关系,本文称其为多机器人数据关联。这三类数据关联的差别在于问题解空间大小不同。本论主要文针对上述三类数据关联问题展开了研究,取得了以下成果:
     (1)在分析现有的描述数据关联问题的数学模型局限性的基础上,根据SLAM中数据关联问题的特点,应用关联树模型描述SLAM中数据关联问题的解空间,将数据关联问题建模为针对关联树的图搜索过程,提出了一种更为清晰直观的图模型结构。在适当的节点耗散值定义下,证明了关联树节点耗散值随深度增加的单调递增性。根据关联树模型,应用人工智能中的图搜索理论对主要的数据关联算法进行了分类,并从算法的时间复杂度、空间复杂度和最优性等方面对这些算法进行了分析比较。
     (2)应用示例分析了SLAM中修正过去“错误的”1数据关联的必要性。利用针对关联树“好的优先”回溯搜索,并结合基于最小二乘的完全SLAM状态估计方法,提出了一种基于关联树有限深度回溯搜索数据关联的递增式完全SLAM算法(Incremental Full SLAM with Limited Backtracking Search Data Association—BTK_SLAM)。该算法将状态估计的最小二乘残差作为关联树节点耗散值,并实现了该耗散值的递增式计算,从而引入了由状态估计到数据关联的直接反馈。算法可以在线检测并修正过去错误的数据关联,因此在系统误差较大时依然可以获得较好的状态估计。另外,设计了合理的关联树剪枝方法以减少计算量。
     (3)针对闭环问题始终存在的根本原因一直未得到完善的理论分析解答这一问题,本文以线性高斯SLAM问题为研究对象,对机器人定位估计的收敛特性进行了详细的理论分析,证明了SLAM本质上是航迹推算式(Dead-reckoning alike)的自定位过程:随着机器人对未知区域的不断探索,其定位估计误差总体上递增且不收敛,即无上界。闭环问题始终存在的根本原因正是源于机器人定位估计的不收敛性。当机器人沿不同路径回到某一循环起点时,其定位误差可能会非常大,递增建图和定位技术难以获得相容一致的地图估计,必须采取其他方法单独处理闭环过程。
     (4)以使得机器人尽早检测到循环地形,并尽快实现循环闭合为目的,本文将机器人探索策略与闭环过程相结合提出了一种在线主动闭环方法。该方法将闭环过程与增量式SLAM过程相分离,并应用多阶段决策对主动闭环过程进行建模。自主机器人根据相互承接的多个决策过程的决策结果选择合适的行为,并应用改进的非完整地图中的粒子滤波定位实现闭环确定。该方法将循环数据关联问题转化为机器人在闭环处的全局定位问题,并应用粒子滤波实现定位估计,从而将高维关联空间中的搜索问题转化为多个连续低维空间当中的搜索问题。由于该主动闭环方法不受具体的递增建图和定位方法的限制,所以它实际上是一个实现机器人未知环境探索过程中在线自主闭环的模型框架,具有通用性。
     (5)多机器人SLAM中,当局部地图间的相对位置已知时,可以应用局部数据关联技术解决多机器人数据关联问题,此时地图合并问题的难度将大大降低。为此,本文提出了一种基于粒子簇滤波定位的地图合并算法,主要解决局部地图相对位置未知时如何正确计算局部地图间的相对位置关系问题。该算法通过实现一个机器人的探索路径在另外一个机器人建立的局部地图中的全局定位确定局部地图间的相对位置关系,这种相对位置关系称为合并假设。算法主要采取两方面措施保证生成正确的合并假设:一是将机器人路径分段并分别确定每段路径的全局定位,每段路径的一个定位估计称为一个局部合并假设,然后通过多个局部合并假设间的相容性检验确定全局合并假设;二是应用粒子簇滤波定位算法获得每段路径的多个定位估计,从而减少丢失正确的局部假设的可能。
The simultaneous localization and mapping (SLAM) problem is one of the key problems for a mobile robot to be truly autonomous in an unknown environment, and has been an important and active research topic in mobile robotics community. The SLAM problem consists of two components: state estimation and data association. State estimation is the problem of estimating the location of the robot and individual features in the environment. And data association is the problem of determining whether or not two sensor measurements observed at different places and time, two features in different partial maps, or one sensor measurement and one map feature correspond to the same object in the physical world. Since the data association process provides inputs for the state estimation process, correct data association is the precondition to achieve correct state estimation. It is becoming necessary to study the data association problem in depth, as the environments in which mobile robots operate are becoming more and more complex and unstructured.
     There are three sub-problems in SLAM that involve data association: incremental localization and mapping, loop closing and map merging in multi-robot SLAM. In this dissertation, the data association problem in the incremental localization and mapping process is called local data association, which pertains to the correspondence relationships among sensor measurements obtained sequentially in time. The data association problem in the loop closing process is called loop data association, which pertains to the correspondences between features in the map built at present and features in the map built formerly at the point where the loop is closed. The data association problem in map merging process is called multi-robot data association, which pertains to the correspondences between features in the partial maps built by different robots. The three kinds of data association problems differ in the volume of their respective solution spaces. This dissertation is dedicated to the three sub-problems, and the three kinds of data association problems involved in them are mainly studied.
     Firstly, the dissertation analyses the character of the data association problem in SLAM and the limitations of its popular mathematical models, and then a concise and intuitionistic tree model, which is called correspondence tree (CT), is presented to describe the solution space of the data association problem in SLAM. The process to solve the data association problem is modeled as the tree searching process in CT. With an appropriate node cost defined, it is proven that the node cost in a path of CT is monotonically increasing with depth. Based on the CT model and using the tree searching theory of AI, the dissertation compares popular data association algorithms in terms of time complexity, space complexity and optimality.
     Secondly, the dissertation analyzes the necessity to revise past“false”1 data associations, and puts forward an incremental full SLAM algorithm with limited backtracking search data association (BTK_SLAM), which combines the“best-first”backtracking search strategy of CT with the least-squares state estimation method. The BTK_SLAM algorithm takes the least-squares residual produced by the state estimation process as CT’s node cost, which can be calculated incrementally, so a direct feedback is introduced from the state estimation process to the data association process. Since the BTK_SLAM algorithm can evaluate data associations and revise those false data associations on line, it can achieve good state estimation even when the system errors are large. In addition, practical pruning methods for the expanding of CT are proposed to reduce the computational complexity further.
     Thirdly, since the main reason why the loop closing problem in SLAM is unavoidable is still undiscorvered, the dissertation analyzes the convergent character of the robot localization estimation in SLAM, based on the linear Gaussian SLAM problem. It is proven that SLAM is a dead-reckoning alike self-localization process: when the robot continuously explores an unknown environment, the error of the robot self-localization estimation is generally increasing and divergent, that is the error has no upper limit. The divergency of the robot self-localization estimation is the essential reason why the loop closing is an issue at all. When the robot comes back to the start point of a big loop following a different path, its localization estimation error may be very large, and it might be impossible for incremental SLAM approaches to build a consistent map, so additional techniques beyond incremental SLAM methods must be adopted to deal with the loop closing problem.
     Fourthly, aiming at detecting and closing loops as soon as possible to reduce the mapping errors, the dissertation presents an on-line active loop closing method, which incorporates the exploration strategy into the loop closing process. In this method, the loop closing process is separated from the incremental SLAM process, and is modeled as a multi-stage decision problem. The robot decides its actions according to sequential decisions, and uses an adapted version of particle filters to validate loops. The method actually translate the loop data association problem into a robot global localization problem at the loop closing point, and obtains the localization estimation by particle filter, so it translate this searching problem in a high-dimensional space into a searching problem in multiple low-dimensional spaces. Since the active loop closing method is independent to the incremental SLAM process, it’s actually a general framework for the robot to autonomously implements loop closing during its exploring and mapping an unknown environment.
     Finally, in multi-robot SLAM, when the relative locations between partial maps are known, the map merging is much easier, because the multi-robot data association problem can be solved by local data association approaches. So the dissertation presents a map merging algorithm based on cluttered particle filter, which tries to properly calculate the relative locations between partial maps when their relative locations are unknown. The relative locations between partial maps are called map merging hypotheses. The algorithm gains the map merging hypothesis between two partial maps through localizing one robot’s trajectory in the other robot’s partial map. Two techniques are applied to ensure the correct merging hypothesis is achieved. The first technique is that the robot’s trajectory is divided into many segments, and the localization of every segment is estimated separately. One localization estimation of every trajectory segment is called a local map merging hypothesis. The global map merging hypothesis is obtained by the joint compatibility test of multiple local map merging hypotheses of these trajectory segments. The second technique is that the cluttered particle filter is used to generate multiple localization estimations for every trajectory segment to further avoid the risk of missing the proper local map merging hypothesis in a partial map with many similar local areas.
引文
[1] Wikipedia/Date [2008-6-18]. http://en.wikipedia.org/wiki/Mobile_robot.
    [2] Wikipedia/Date [2008-6-18]. http://en.wikipedia.org/wiki/Autonomous_robot.
    [3] Robin, R. M.人工智能机器人学导论.电子工业出版社, 2004.
    [4] Frese U. A Discussion of Simultaneous Localization and Mapping. Auton. Robots. 2006, 20(1): 25-42.
    [5] Leonard J J, Durrant H F, Cox I J. Dynamic map building for an autonomous mobile robot. Int. J. Rob. Res. 1992, 11(4): 286-298.
    [6] Stachniss C, Hahnel D, Burgard W. Exploration with active loop-closing for FastSLAM. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 28-Oct 2 2004. Sendai, Japan: IEEE Press, New York, NY 10016-5997, United States, 2004. 1505-1510.
    [7] Makarenko A A, Williams S B, Bourgault F, et al. An experiment in integrated exploration. 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep 30-Oct 4 2002. Lausanne, Switzerland: IEEE Press, 2002. 534-539.
    [8] Ray J. Distance Transform Based Path Planning for Robot Navigation. Recent Trends in Mobile Robots, Zheng Y, World Scientific, 1993, 3-31.
    [9] Roland S, Nourbakhsh I R.自主移动机器人导论.西安交通大学出版社, 2006.
    [10] Thrun S. Robotic mapping: a survey. Exploring artificial intelligence in the new millennium, Morgan Kaufmann Publishers Inc., 2003, 1-35.
    [11] Elefes A, Moravec H. High resolution maps from wide angle sonar. Proc of the IEEE Int Conf on Robotics and Automation. St . Louis MO: IEEE Press, 1985. 116-121.
    [12] Borenstein J, Everett H R, Feng L. Mobile robot positioning: sensors and techniques. Journal of Robotic Systems , Special Issue on Mobile Robots. 1997, 14(4): 231-249.
    [13]陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展.控制理论与应用. 2005, 22(3): 455-460.
    [14]罗荣华,洪炳镕.移动机器人同时定位与地图创建研究进展.机器人. 2004, 26(2): 182-186.
    [15]贺伟,梁昔明.未知环境中移动机器人SLAM问题的研究进展.微计算机信息. 2005(3): 179-180.
    [16]王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展.机器人. 2004, 26(4): 380-384.
    [17] Durrant-whyte H, Bailey T. Simultaneous localization and mapping: Part I The Essential Algorithms. IEEE Robotics and Automation Magazine. 2006, 13(2): 99-108.
    [18] Eduardo N. Simultaneous Localization and Mapping 2002 Summer School2002[March 20]. http://prism2.mem.drexel.edu/~billgreen/slam/papers /nebotSSS02.pdf.
    [19] Dissanayake, M. W, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation. 2001, 17(3): 229-241.
    [20] Stefan, B. W, Ian M. Design of an unmanned underwater vehicle for reef surveying. 2004.
    [21] Sebastian T, Wolfram B, Dieter F. Probabilistic Robotics. 2000.
    [22] Lee, Ling O, Matthew R, Jong-hyuk K, et al. Six DoF Decentralised SLAM. Proceedings of the 2003 Australasian Conference on Robotics & Automation. Brisbane, Australia: 2003. 10-16.
    [23] Thrun S, Bucken A. Integrating grid-based and topological maps for mobile robot navigation. Proc of the 13th National Conf on Artificial Intelligence. Portland, Oregon: AAAI Press, 1996. 944-950.
    [24] Oriolo G, Ulivi G, Vendittelli M. Fuzzy maps: A new tool for mobile robot perception and planning. J of Robotic System. 1997, 14(3): 179-197.
    [25] Ohya A, Nagashima Y, Yuta S. Explore unknown environment and map construction using ultrasonic sensing of normal direction of walls. Proc of the IEEE Int Conf on Robotics and Automation. San Diego CA: IEEE Press, 1994. 485-492.
    [26] Chong, K. S, Kleeman L. Mobile-robot map building from an advanced sonar array and accurate odometry. Int J of Robotics Research. 1999, 18(1): 20-36.
    [27] Thrun S, Buchen A. Integrating grid-based and topological maps for mobile robot navigation. Proc of the 13th National Conf on Artificial Intelligence. Portland, Oregon: AAAI Press, 1996. 944-950.
    [28] Kortenkamp D, Weynouth T. Topological mapping for mobile robots using a combination of sonar and vision sensing. Proc of the 12th National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 1994. 979-984.
    [29] Tomatis N, Nourbakhsh I, Siegwart R. Hybrid simultaneous localization and map building: Closing the loop with multi-hypotheses tracking. 2002 IEEE International Conference on Robotics adn Automation, May 11-15 2002. Washington, DC, United States: IEEE Press, 2002. 2749-2754.
    [30] Thrun S, Gutmann J S, Fox D, et al. Integrating topological and metric maps for mobile robot navigation: A statistical approach. Proceedings of the 1998 15th National Conference on Artificial Intelligence, AAAI, Jul 26-30 1998. Madison, WI, USA: AAAI, Menlo Park, CA, USA, 1998. 989-995.
    [31] Frese U. A discussion of simultaneous localization and mapping. Autonomous Robots. 2006, 20(1): 25-42.
    [32] Moravec H, Elfes A. High resolution maps from wide angle sonar. Proceedings of the IEEE International Conference Robotics and Automation. St.Louis, USA: IEEE Press, 1985. 116-121.
    [33] Brooks R. Visual map making for a mobile robot. Proceedings of the IEEE International Conference on Robotics and Automation. St. Louis, USA: IEEE Press, 1985. 824-829.
    [34] Chatila R, Laumond J. Position referencing and consistent world modeling for mobile robots. Proceedings of the IEEE International Conference on Robotics and Automation. St. Louis, USA: IEEE Press, 1985. 138-145.
    [35] Cheeseman R A P S. On the representation and estimation of spatial uncertainty. International Journal of Robotics. 1986, 5: 56-68.
    [36] Durrant-whyte H. Uncertain geometry in robotics. IEEE Transactions on Robotics and Automation. 1988, 4(1): 23-31.
    [37] Faugeras O. Maintaining representations of the environment of a mobile robot. IEEE Transactions on Robotics and Automation. 1989, 5(6): 804-819.
    [38] Smith R, Self M, Cheeseman P. Estimating Uncertain Spatial Relationships in Robotics. New York: Springer Verlag, 1988. 167-193.
    [39] Tardos J. Representing partial and uncertain sensorial information using thetheory of symmetries. Proceedings of the IEEE International Conference on Robotics and Automation. Nice, France: IEEE Press, 1992. 1799-1804.
    [40] Castellanos J, Montiel J, Neira J, et al. The SPmap: A probabilistic framework for simultaneous localization and map building. IEEE Trans on Robotics and Automation. 1999, 15(5): 948-952.
    [41] Hebert P, Betge-brezetz S, Chatila R. Probabilistic Map Learning, Necessity and Difficulty. Proceedings of the International Workshop Reasoning with Uncertainty in Robotics. 1995. 307-320.
    [42] Newman, P. M. On the structure and solution of the simultaneous localization and map building problem:[Ph.D. Dissertation]. Sydney: University of Sydney, 1999.
    [43] Durrant-whyte H, Rye D, Nebot E. Localization of Autonomous Guided Vehicles. New York: Springer Verlag, 1995. 613-625.
    [44] Dempster, A. P, Laird, A. N, Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B. 1977, 39(1): 1-38.
    [45] Guivant, J. E, Nebot, E. M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation. 2001, 17(3): 242-257.
    [46] Guivant, J. E, Nebot E. Solving computational and memory requirements of feature-based simultaneous localization and mapping algorithms. IEEE Transactions on Robotics and Automation. 2003, 19(4): 749-755.
    [47] Duckett T, Marsland S, Shapiro J. Fast, On-line Learning of Globally Consistent Maps. Autonomous Robots. 2002, 12(3): 287-300.
    [48] Frese, U., P. Larsson A T D. A Multi-grid Algorithm for Simultaneous Localization and Mapping. IEEE Transactions on Robotics. 2004, 21(2): 1-12.
    [49] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem. 18th National Conference on Artificial Intelligence (AAAI-02), 14th Innovative Applications of Artificial Intelligence Conference (IAAI-02), Jul 28-Aug 1 2002. Edmonton, Alta., Canada: American Association for Artificial Intelligence, 2002. 593-598.
    [50] Nieto J, Guivant J, Nebot E, et al. Real time data association for FastSLAM. 2003 IEEE International Conference on Robotics and Automation, Sep 14-19 2003. Taipei, Taiwan: IEEE Press, 2003. 412-418.
    [51] Eliazar A, Parr R. DP-SLAM: Fast, Robust Simulataneous Localization and Mapping without Predetermined Landmarks. Proceedings of the 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: 2003. 1135-1142.
    [52] Hahnel D, Burgard W, Fox D, et al. An Efficient FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 27-31 2003. Las Vegas, NV, United States: IEEE Press, 2003. 206-211.
    [53] Grisetti G, Stachniss C, Burgard W. Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. 2005 IEEE International Conference on Robotics and Automation, Apr 18-22 2005. Barcelona, Spain: IEEE Press, Piscataway, NJ 08855-1331, United States, 2005. 2432-2437.
    [54] Murphy K. Bayesian Map Learning in Dynamic Environments. Advances in Neural Information Processing Systems (NIPS). Denver: 1999. 1015-1021.
    [55] Thrun S, Liu Y, Koller D, et al. Simultaneous localization and mapping withsparse extended information filters. International Journal of Robotics Research. 2004, 23(7-8): 693-716.
    [56] Frese U, Hirzinger G. Simultaneous Localization and Mapping-A Discussion. Proceedings of IJCAI Workshop: Reasoning with Uncertainty in Robotics. Seattle, WA, USA: 2001. 17-26.
    [57] Frese U. An O(log n) Algorithm for Simulateneous Localization and Mapping of Mobile Robots in Indoor Environments:[Ph.D. Dissertation]. University of Erlangen-Nurnberg, 2004.
    [58] Dellaert F, Kaess M. Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. International Journal of Robotics Research. 2006, 25(12): 1181-1203.
    [59] Kaess M, Ranganathan A, Dellaert F. Fast Incremental Square Root Information Smoothing. Intl. Joint Conf. on Artificial Intelligence. Hyderabad, India: 2007. 2129-2134.
    [60] Sebastian T, Michael M. The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structions. The International Journal of Robotics Research. 2006, 25(5-6): 403-429.
    [61] Kevin, P. M. An introduction to graphical models. Department of Computer Science, University of British Columbia, 2001.
    [62] Paskin, Mark A. Thin Junction Tree Filters for Simultaneous Localization and Mapping. Berkeley, California, USA: Coumuter Science Division (EECS), University of California, 2002.
    [63] Burgard W, Fox D, Moors M, et al. Collaborative multi-robot exploration. Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, CA, USA: IEEE Press, 2000.
    [64] Choset H. Sensor Based Motion Planning: The Hierarchical Generalized Voronoi Graph:[Ph.D. Dissertation]. California Institute of Technology, 1996.
    [65] Gonzalez-banos H H, Latombe J C. Navigation strategies for exploring indoor environments. International Journal of Robotics Research. 2002, 21(10-11): 829-848.
    [66] Hahnel D, Thrun S, Wegbreit B, et al. Towards Lazy Data Association in SLAM. Robotics Research. 2005: 421-431.
    [67]王永清.同时定位与地图创建中的数据关联技术研究:[硕士学位论文].中国海洋大学, 2007.
    [68]韩崇昭,朱洪艳,段战胜, et al.多源信息融合.北京:清华大学出版社, 2006.
    [69] NeiraJosé, TardósJuanDomingo. Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation. 2001, 17(6): 890-897.
    [70] Bailey T, Mario, Eduardo, et al. Data Association for Mobile Robot Navigation: A Graph Theoretic Approach. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, CA, USA: IEEE, 2000. 2512-2517.
    [71] Besl, P. J, Mckay, N. D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239-256.
    [72] Lu F, Milios E. Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems. 1997, 18: 249–275.
    [73] Thomas R. Using Histogram Correlation to Create Consistent Laser Scan Maps. Proceedings of the IEEE International Conference on Robotics Systems. EPFL, Lausanne, Seitzerland: IEEE, 2002. 625-630.
    [74] Biber P, Straer W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE, 2003. 2743-2748.
    [75] Andrea C, Gian, Diego T. Lazy localization using a frozen-time filter/Date [2007-5-24]. http://purl.org/censi/research/2008-icra-fts.pdf.
    [76] Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots. 1997, 4: 333-349.
    [77] Singer, R. A, Sea, R. G. A new filter for optimal trackingin dense multitarget environments. Proceedingss of theninth Allerton Conference Circuit and SystemTheory. Urbana-Champaign, USA: 1971. 201-211.
    [78] Samuel, B. C. On Using Nearest Neighbours with the the Probabillstic Data Association. Proceedings of International Radar Conferenc. Washdington, USA: 2000. 53-58.
    [79] Fitzgerald, R. J. Development of practical PDA logic for multitarget tracking by microprocessor. Proceedings of the American Control Conference. Seattle, Washington, USA: 1986. 889-897.
    [80] Mallick M, Marrs A. Comparison of the KF and particle filter based out-of-Squence measurement filtering algorithms. Proc. of the 6th International Conference on Information Fusion. Cairns, Australia: IEEE, 2003. 422-429.
    [81] Reid D. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control. 1979, 24(6): 843-854.
    [82] Morefield, Charles L. Application of 0–1 integer programming to multitarget tracking problems. IEEE Transactions on Automatic Control. 1977, AC-22(3): 302-312.
    [83]党宏社,韩崇昭,段战胜.一种基于模糊量相似度测量的模糊数据关联方法III.武汉理工大学学报. 2003: 12-14.
    [84]韩红,韩崇昭,朱洪艳, et al.基于模糊推理多传感信息融合的多目标跟踪. 2004, 19(3): 273-276.
    [85] Zhang Z, Faugeras O. A 3D world model builder with a mobile robot. Int. J. Rob. Res. 1992, 11(4): 269-285.
    [86] Feder H, Leonard J, Smith C. Adaptive Mobile Robot Navigation and Mapping. The International Journal of Robotics Research. 1999, 18(7): 650-668.
    [87] Ioseba, Tena R, Petillot Y, Lane, D. M, et al. Feature Extraction and Data Association for AUV Concurrent Mapping and Localisation. Proceedings of the 2001 IEEE Conference on Robotics and Automation. Seoul, Korea: 2001. 2785-2790.
    [88] Zhang S, Xie, Lihua, et al. An Efficient Data Association Approach to Simultaneous Localization and Map Building. Proceedings of the 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA: IEEE, 2004. 854-859.
    [89] Wijesoma W S, Perera L D L, Adams M D. Toward multidimensional assignment data association in robot localization and mapping. IEEE Transactions on Robotics and Automation. 2006, 22(2).
    [90] Thrun S, Montemerlo M, Koller D, et al. FastSLAM: An efficient solution to the simultaneous localization and mapping problem with unknown data associatio. Journal of Machine Learning Research. 2004.
    [91] Gutmann J, Konolige K. Incremental mapping of large cyclic environments. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Monterey, CA, USA: 1999. 318-325.
    [92] Kin, Leong H, Paul N. Detecting Loop Closure with Scene Sequences. International Journal of Computer Vision. 2007, 74(3): 261-286.
    [93] Lars K, Kai L, AndreasNüchter, et al. Salient Visual Features to Help Close the Loop in 6D SLAM. The 5th International Conference on Computer Vision Systems. Bielefeld, Germany: 2007.
    [94] Haris B, Panos T. Closing Multiple Loops while Mapping Features in Cyclic Environments. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. Las Vegas, Nevada: IEEE Press, 2003. 717-722.
    [95] Baltzakis H, Trahanias P. Using multi-hypothesis mapping to close loops in complex cyclic environments. 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, May 15-19 2006. Orlando, FL, United States: IEEE Press, Piscataway, NJ 08855-1331, United States, 2006. 824-829.
    [96] Baltzakis H, Trahanias P. Hybrid mobile robot localization using switching state-space models. 2002 IEEE International Conference on Robotics and Automation, May 11-15 2002. Washington, DC, United States: IEEE Press, 2002. 366-373.
    [97] Stefano C, Andreas B, Viktoras J. On map merging. Robotics and Autonomous Systems. 2005, 53: 1–14.
    [98] Williams, Stefan B, Dissanayake G, Durrant-whyte H. Towards multi-vehicle simultaneous localisation and mapping. 2002 IEEE International Conference on Robotics adn Automation, May 11-15 2002. Washington, DC, United States: IEEE Press, 2002. 2743-2748.
    [99] Rolf L, Longin, Jan L, Diedrich W. Incremental Multi-Robot Mapping. IEEE Int. Conf. on Int. Robots and Systems. 2005.
    [100] Thrun S, Liu Y. Multi-robot SLAM with sparse extended information filters. Robotics Research, Springer, 2005, 254-266.
    [101] Fox D. Distributed Multi-Robot Exploration and Mapping. Proceedings of the 2nd Canadian conference on Computer and Robot Vision. IEEE Computer Society, 2005. 15-25.
    [102]刘保龙.移动机器人SLAM仿真平台及声纳数据关联:[硕士学位论文].中国海洋大学, 2007.
    [103]王婷婷.移动机器人SLAM中的数据关联算法研究:[硕士学位论文].南开大学, 2007.
    [104]黄庆成,洪炳熔,厉茂海, et al.基于主动环形闭合约束的移动机器人分层同时定位和地图创建.计算机研究与发展. 2007, 44(4): 636-642.
    [105] Bar-shalom Y. Tracking and data association. San Diego, CA, USA: Academic Press Professional, Inc., 1987.
    [106] Montemerlo M, Thrun, Sebastian. Simultaneous localization and mapping with unknown data association using FastSLAM. Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei, Taiwan: IEEE Press, 2003. 1985-1991.
    [107] Wijesoma W S, Perera L D L, Adams M D. On multidimensional assignment data association for simultaneous robot localization and mapping. IEEE Transactions on Robotics and Automation. 2004, 22(1): 350-365.
    [108] Dissanayake M W M G, Paul N, Clark S, et al. A Solution to the Simultaneous Localization and Map Building (SLAM) Problem. IEEE Transactions on Robotics and Automation. 2001, 17(3): 229-241.
    [109] Grimson W, Lozano-p T. Localizing overlapping parts by searching theinterpretation tree. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9(4): 469-482.
    [110] Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments:[Ph.D. Dissertation]. Sydney: The University of Sydney, 2002.
    [111] Guivant J, Nebot E. Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation. IEEE Transactions on Robotics and Automation. 2001, 17(3): 242-257.
    [112] Poore A B, Robertson A J. New multidimensional data association algorithm for multisensor-multitarget tracking. Signal and Data Processing of Small Targets 1995, Jul 11-13 1995. San Diego, CA, USA: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 1995. 448-459.
    [113] Deb S, Yeddanapudi M, Pattipati K, et al. Generalized S-D assignment algorithm for multisensor-multitarget state estimation. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(2): 523-538.
    [114] William, Eric, Leifur G. Object recognition by computer: the role of geometric constraints. Cambridge, MA, USA: MIT Press, 1990.
    [115]林尧瑞,马少平.人工智能导论.北京:清华大学出版社, 1989.
    [116] Bolles R C, Cain R A. Recognizing and locating partially visible objects: The local-feature-focus method. International Journal of Robotics Research. 1982, 1(3): 57-82.
    [117] Bailey T, Nebot E. Localisation in large-scale environments. Robotics and Autonomous Systems. 2001, 37(4): 261-281.
    [118]徐俊明.图论及其应用.中国科学技术大学出版社, 2000.
    [119] Bron C, Kerbosch J. Algorithm 457 - Finding all Cliques of an Undirected Graph. Communications of the ACM. 1973, 16: 575-577.
    [120] Fishman, George S. Monte Carlo: Concepts, Algorithms, and Applications. Springer Verlag, 1996.
    [121] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. Proceedings of the AAAI National Conference on Artifficial Intelligence. Edmonton: 2002. 593-598.
    [122] Montemerlo M, Thrun S. FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. Proc. of the Int. Conf. on Artificial Intelligence. Acapulco, Mexico: 2003. 1151-1156.
    [123] Russell S, Norvig P. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice Hall, 1995.
    [124] Nils, J. N.人工智能.北京:机械工业出版社, 2000.
    [125] Cox I. A Review of Statistical Data Association Techniques for Motion Correspondence. International Journal of Computer Vision. 1993: 53-65.
    [126] Kaess M, Ranganathan A, Dellaert F. iSAM: Fast incremental smoothing and mapping with efficient data association. 2007 IEEE International Conference on Robotics and Automation, ICRA'07, Apr 10-14 2007. Rome, Italy: IEEE Press, Piscataway, NJ 08855-1331, United States, 2007. 1670-1677.
    [127] Paskin, Mark A. Thin Junction Tree Filters for Simultaneous Localization and Mapping. San Francisco, CA: Morgan Kaufmann Publishers, 2003. 1157-1164.
    [128]程云鹏,张凯院,徐仲.矩阵论(第二版).西安:西北工业大学出版社, 2002.
    [129]陈景良,陈向晖.特殊矩阵.北京:清华大学出版社, 2000.
    [130]徐树方.矩阵计算的理论与方法.北京:北京大学出版社, 1995.
    [131] Davis T A, Gilbert J R, Larimore S I, et al. A column approximate minimumdegree ordering algorithm. ACM Trans. Math. Softw. 2004, 30(3): 353-376.
    [132] Steven G, Bart, De M. Information, Covariance and Square-Root Filtering in the Presence of Unknown Inputs. Leuven, Belgium: K.U.Leuven, Dept. of Electrical Engineering (ESAT), Research group SCD, 2006.
    [133] Hui Z, Huimin L, Xiucai J, et al. NuBot Team Description Paper 2007. RoboCup 2007. Atalanta, America: Springer, 2007.
    [134]卢惠民.机器人全向视觉系统自定位方法研究:[硕士学位论文].长沙:国防科技大学, 2005.
    [135] Thrun S, Koller D, Ghahramani Z, et al. Simultaneous Mapping and Localization With Sparse Extended Information Filters: Theory and Initial Results. Proceedings of the Fifth International Workshop on Algorithmic Foundations of Robotics. Nice, France: 2002.
    [136] Jazwinsky A M. Stochastic Processes and Filtering Theory. New York: Academic, 1970.
    [137] Kalman, R. E. A new approach to linear filtering and prediction problems. Transaction of the ASME Journal of Basic Engineering. 1960: 35-45.
    [138] Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of IEEE, 1989, 77(2):257-285.
    [139] Kaelbling L P, Littman M L, Cassandra A R. Planning and acting in partially observable stochastic domains. Artificial Intelligence. 1998, 101(1-2): 99-134.
    [140] Lovejoy, W. S. A survey of algorithmic methods for partially observable markov decision processes. .Annals of Operaitons Research. 1991, 28(1): 47-65.
    [141] Monahan G E. A survey of partially observable markov decision processes: Theory, models, and algorithms. Management Science. 1982, 28(1): 1-16.
    [142] Bechenbah, E. F, Bellman R. Inequalities. Berlin: Springer-Verlag, 1983.
    [143]郑锡陆.实正定和反对称矩阵的若干不等式.杭州师范学院学报(自然科学版). 2006, 5(1): 29-31.
    [144]张恒,樊晓平.移动机器人同步定位与地图构建过程中的轨迹规划研究.机器人. 2006, 28(3): 285-290.
    [145]季秀才,郑志强,张辉. SLAM问题中机器人定位误差分析与控制.自动化学报. 2008, 34(3): 323-330.
    [146] Martinelli A, Tomatis N, Siegwart R. Some Results on SLAM and the Closing the Loop Problem. IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: 2005. 2917-2922.
    [147] Bailey T. ekfSLAM_v1.0. 2008.
    [148] Yamauchi B. Frontier-based exploration using multiple robots. Proceedings of the 2nd International Conference on Autonomous Agents, May 9-13 1998. Minneapolis, MN, USA: ACM, New York, NY, USA, 1998. 47-53.
    [149] Gutmann J S, Burgard W, Fox D, et al. Experimental comparison of localization methods. Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Part 2 (of 3), Oct 13-17 1998. Victoria, Can: IEEE Press, Piscataway, NJ, USA, 1998. 736-743.
    [150] Rekleitis, Ioannis M. A Particle Filter Tutorial for Mobile Robot Localization. 3480 University St., Montreal, CANADA H3A 2A7: Centre for Intelligent Machines, McGill University, 2004.
    [151] Neira J, Tardos J D, Castellanos J A. Linear time vehicle relocation in SLAM. 2003 IEEE International Conference on Robotics and Automation, Sep 14-19 2003.Taipei, Taiwan: IEEE Press, 2003. 427-433.
    [152] Patrick B. ut_austin_aces3. 2004. /Date [2007-6-18] http://cres.usc.edu/radishrepository/outgoing /ut_austin_aces3/aces3_publicb.rtl
    [153]王大川. Rescue机器人设计及建图算法初探:[硕士学位论文].长沙:国防科技大学, 2007.
    [154] Fox D, Burgard W, Dellaert F, et al. Monte Carlo Localization: Efficient position estimation for mobile robots. Proc. of the National Conference on Articial Intelligence (AAAI). Orlando, Florida: 1999. 343-349.
    [155] Weiss C, Masselli A, Tamimi H, et al. Fast Outdoor Robot Localization Using Integral Invariants. Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007). Bielefeld, Germany: 2007.
    [156] Kronfeld M, Weiss C, Zell A. Swarm-supported Outdoor Localization with Sparse Visual Data. Proceedings of the 3rd European Conference on Mobile Robots (ECMR 2007). Freiburg, Germany: 2007. 259-264.
    [157] Andreasson, H., Treptow, A. And Duckett T. Localization for mobile robots using panoramic vision, local features and particle filter. IEEE International Conference on Robotics and Automation. Barcelona, Spain: 2005. 3359-3364.
    [158] Wulf O, Lecking D, Wagner B. Robust Self-Localization in Industrial Environments Based on 3D Ceiling Structures. IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE Press, 2006. 8-12.
    [159] Sebastian T. A probabilistic on-line mapping algorithm for teams of mobile robots. International Journal of Robotics Research. 2001, 20(5): 335-363.
    [160] Fenwick, John W, Newman, Paul M, Leonard, John J. Cooperative concurrent mapping and localization. 2002 IEEE International Conference on Robotics and Automation, May 11-15 2002. Washington, DC, United States: IEEE Press, 2002. 1810-1817.
    [161] Konolige K, Fox D, Ortiz C, et al. Centibots: Very large scale distributed robotic teams. Proc. of the International Symposium on Experimental Robotics. Singapore: Springer Berlin / Heidelberg, 2004. 131-140.
    [162] Roy N, Dudek G. Collaborative exploration and rendezvous: Algorithms, performance bounds and observations. Autonomous Robots. 2001, 11(2): 117-136.
    [163] Howard A. Multi-robot simultaneous localization and mapping using particle filters. International Journal of Robotics Research. 2006, 25(12): 1243-1256.
    [164] Howard A, Parker, L. E, Sukhatme, G. S. The SDR experience: Experiments with a large-scale heterogenous mobile robot team. Proc. of the International Symposium on Experimental Robotics (ISER). Singapore: 2004.
    [165] Zhou, X. S, Roumeliotis, S. I. Multi-robot SLAM with Unknown Initial Correspondence-The Robot Rendezvous Case. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE Press, 2006. 1785-1792.
    [166] Howard A. Multi-robot mapping using manifold representations. IEEE International Conference on Robotics and Automation. New. Orleans, Louisiana: IEEE Press, 2004. 4198-4203.
    [167] Dedeoglu G, Sukhatme, G. S. Landmark-based matching algorithm for cooperative mapping by autonomous robots. Proc. of the 5th International Symposium on Distributed Autonomous Robotic Systems. Knoxville, Tennessee, USA: Springer, 2000. 251-260.
    [168] Kurt K, Dieter F, Benson L, et al. Map Merging for Distributed Robot Navigation.Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. Las Vegas, Nevada, USA: IEEE Press, 2003. 212-217.
    [169] Jensfelt P, Wijk O, Austin D, et al. Feature based condensation for mobile robot localization. Proc. of the IEEE International Conference on Robotics & Automation (ICRA). San Francisco, CA, USA: IEEE Press, 2000. 2531-2537.
    [170] Adam M, Javier N S, Evan, Tang W. Robust Global Localization Using Clustered Particle Filtering. 8th national conference on artificial intelligence. Edmonton, Alberta, Canada: American Association for Artificial Intelligence, 2002. 581-586.
    [171]边肇祺,张学工,等.模式识别(第二版).北京:清华大学出版社, 1999.
    [172] Fox D. KLD-sampling: Adaptive particle filters. Interntional Journal of Robotics Research. 2003, 22(12): 985-1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700