单目视觉移动机器人的定位与建图研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学、传感器技术、人工智能等学科的发展和制造水平的不断提高,移动机器人日益向着自主化的方向发展。移动机器人要实现自主化,其中的两个基本问题是自主定位和环境地图构建,这是移动机器人自主导航和环境探索的基础。定位与建图的精度是自主机器人能否在实际环境中成功应用的关键。本文围绕着单目视觉微小移动机器人在未知环境中的定位与建图进行了研究。重点是基于单目视觉的定位算法和粒子滤波SLAM(Simultaneous Localization andMap-building)算法及其在机器人上的实现。本文的成果和创新点包括以下几个方面:
     1)提出了一种新的单目视觉信息获取方法——视觉量角计。视觉量角计以环境标志点之间的视角作为所获取的信息。视角对机器人姿态具有不变性的特点,其大小只与机器人的位置有关,因而有利于实现机器人的位置跟踪。视觉量角计的提出使单目视觉在机器人定位中有了一种新的利用方式。
     2)提出了基于视觉量角计的卡尔曼滤波航迹修正算法。由于在微小机器人中受空间和载重能力的限制,当只有码盘和单目摄像机可用于定位时,本文提出了一种将两者的信息通过卡尔曼滤波相融合的定位算法。由码盘得到机器人初步位姿估计,同时单目摄像机以视觉量角计的方式获取环境信息,利用扩展卡尔曼滤波实现对码盘定位的修正。此算法避免了对环境标志点的三维计算,能较好的满足机器人定位的实时性要求,实验表明算法提高了定位精度。
     3)提出了基于视觉量角计的三角定位算法。针对微小机器人能独立获取航向信息的情况,提出了通过计算环境标志点坐标实现的三角定位算法。算法以获取的环境标志点坐标为基准,由稳定的视觉量角计信息实现对机器人位姿的最优估计。文中对算法误差进行了详细的理论分析,得出了定位误差上限的一个表达式,理论上保证了算法的可靠。同时算法得到了机器人导航实验的验证。
     4)针对未知环境中微小机器人的同时定位与建图问题,提出了利用单目视觉的改进粒子滤波SLAM方法。单目视觉图象结合码盘信息得到初步的环境标志点坐标。在一般的粒子滤波算法的基础上,调整了状态向量,使算法由一次高维滤波计算变为多次低维滤波计算。将多次获得的位姿取均值作为机器人的位姿估计。改进的算法大幅度减小了计算量,仿真实验表明此算法提高了定位精度的同时获得了更为准确的环境地图。
     5)将SLAM算法在自主研发的月球车原理演示样车上进行了性能测试,实现了月球车在非结构化环境中的定位与建图。针对月球车行走机构的运动特点,改进了状态转移方程,调整了粒子滤波中因月球车平面运动假设而导致扩大的误差采样范围。最后在月球车上对算法进行了验证,实验表明算法获得了使用特征点表示的环境地图,同时将定位误差减小了约三分之二,通过对比表明此环境地图整体与实际情况相吻合。
With the development of computer science, sensor technology, artificial intelligence and the improvement of manufacture level, the robotics increasingly tends toward automation. Two of the essential problems to realize the automation of mobile robots are self-localization and map building. This is the foundation of autonomous navigation and environment exploring for mobile robots. The precision of localization and map is the key problem of whether mobile robots can be successfully applied in real environments or not. The intention of this dissertation is to describe the research on the localization and map building for monocular mobile robot in unknown environments. It principally introduced the algorithm of localization, the algorithm of SLAM based on particle filter, and the application of the algorithms to a mobile robot. The main contributions and innovation of this dissertation are as following:
     1) A new method of obtaining information from monocular camera called visual protractor is proposed in this dissertation. The information got from the visual protractor is the visual angle between two environment features. The visual angle has such a characteristic as invariability which does not relate to the pose of a robot, but merely to the robot's location. This characteristic is very helpful for robot's position tracking. The visual protractor provides a new method to use monocular camera for mobile robots localization.
     2) A algorithm based on EKF to correct the track of a robot has been presented. When there are only monocular camera and encoders in the robot for localization, the localization algorithm by fusing the information from above two sensors is described in this dissertation. The rough estimation of robot's position is obtained with the encoders. The monocular camera is used as visual protractor to get environment's information with which the algorithm corrects the primary position by EKF. The algorithm avoids calculating the coordinates of environment's features, so it can well satisfy the real-time performance of the robot localization. The experiment showed the localization precision was improved by the algorithm.
     3) A triangulation localization algorithm with visual protractor also proposed in this dissertation. Under the situation that the robot can get its orientation independently, a new localization algorithm based on triangulation with visual protractor is presented. On the basis of calculated coordinates of environments' land-marks, the optimal estimation of robot's position can be obtained from the algorithm with the stable information from visual protractor. The algorithm is analyzed in detail and an upper limit expression is deduced, so the reliability of the algorithm is guarantied theoretically. This algorithm was testified by the experiment of robot navigation.
     4) To the SLAM problem for a miniature robot in unknown environment, an improved SLAM method on particle filter is provided. The coordinates of land-marks are estimated imprecisely with the data from camera and encoders. On the basis of general particle filter, the state vector is adjusted to make the high dimension calculation become a few times of low dimension calculation. So the precise estimation of robot's position is acquired by averaging the position estimations from particle filter. The improved algorithm reduced the cost of computation. The result of simulation experiment showed that the algorithm not only improved the precision of localization but also built a more accurate map.
     5) The SLAM algorithm has been testified on the lunar rover for principle demonstration and it made the robot realize localization and map building in an unstructured environment. According to the characteristic of the lunar rover's movement structure, both the state equation and the extent of error enlarged by the hypothesis that the robot moved on a plane were adjusted. The algorithm was validated with navigation of the lunar rover. The experiment showed that the environment map expressed with feature points was obtained from the algorithm and the error of localization reduced to one third. The environment map accorded with the real environment by Compare between them.
引文
[1]T.Bailey.Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[D],University of Sydney,Sydney,Australia,2002.
    [2]J.Uhlmann,M.Lanzagorta,and S.Julier.The NASA mars rover:A testbed for evaluating applications of covariance intersection[C].Proceedings of the SPIE 13th Annual Symposium in Aerospace/Defence Sensing,Simulation and Controls,Orlando Florida,1999.140-149.
    [3]S.Thrun.A system for volumetric robotic mapping of abandoned mines[C].Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),Taipei,Taiwan,2003:4270-4275
    [4]S.Scheding,E.M.Nebot,M.Stevens,and H.F.Durrant-Whyte.Experiments in autonomous underground guidance[C].IEEE International Conference on Robotics and Automation,Albuquerque NM,1997.1898-1903.
    [5]S.Williams,G.Dissanayake,and H.F.Durrant-Whyte.Towards terrain-aided navigation for underwater robotics[J].Advanced Robotics,2001,15(5):533-549
    [6]郑向阳等.移动机器人导航与定位技术[J],机电工程,2003,20(5):35-37.
    [7]贾一,美国的火星探测器机器人[J],机器人技术与应用,2001,(3):25-28.
    [8]李圣怡,戴一帆,刘阳.月球火星探测与月球探测车研制初探[C].第二届月球探测技术研讨会论文集,北京,2001.
    [9]A.H.Mishkin,J.C.Morrison,T.T.Nguyen,H.W.Stone,B.K.Cooper,B.H.Wilcox.Experiences with Operations and Autonomy of the Mars Pathfinder Microrover[C].Proceedings of the IEEE Aerosoace Conference,Snowmass,CO,1998,(2):1-28.
    [10]周雨凝.美国军用机器人走向战场[J],国外坦克2005,(8):32-34.
    [11]尚兵.全副武装的机器人士兵登场[J],国外科技动态,2005,(3):37-41.
    [12]欧阳自远.月球探测的进展与中国的月球探测[J],地质科技情报,2004,(12):1-5.
    [13]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题,控制与决策.2002,17(4):385-39.
    [14]卢韶芳,刘大维,自主式移动机器人导航研究现状及其相关技术,农业机械学报.2002,33(2):112-116.
    [15]段清娟,王润孝,冯华山,吴旭华.多自主移动机器人系统研究与发展[J],制造业自动化.2004,11(26):26-31.
    [16]史美萍.基于人机协同的月球车路径规划技术研究[D],长沙:国防科大,2006
    [17]P.Tompkins,A.Stentz.Global Path Planning for Mars Rover Exploration[C].Proceedings of the IEEE Aerospace Conference,2004.
    [18]D.Ferguson,A.Stentz.Planning with Map Uncertainty[R].Carnegie Mellon Robotics Institute Technical Report CMU-RI-TR-04-09.February 2004.
    [19]S.Koenig and M.Likhachev.Fast Replanning for Navigation in Unknown Terrain[J].IEEE Transactions on Robotics.2005,21(3):354-363.
    [20]A.Stentz.Optimal and Efficient Path Planning for Partially-Known Environments[C].Proceedings of the IEEE International Conference on Robotics and Automation,San Diego,1994.(4):3310-3317.
    [21]李桂芝.自主移动机器人导航定位技术研究[D].北京:北京科技大学,2005.
    [22]孟伟.基于多传感器融合的机器人自主导航研究[D].哈尔滨:哈尔滨工业大学学位论文,2005.
    [23]R.H.Nezhad,B.Moshiri,M.R.Asharif.Sensor fusion for ultrasonic and laser arrays in mobile robotics:a comparative study of fuzzy,Dempster and Bayesian approaches[C].Proceedings of the IEEE international conference on Sensors,Orlando,2002.(2):1682-1689.
    [24]C.Cou,T.Fraichard,P.Bessiere and E.Mazer.Multi-sensor data fusion using Bayesian programming:an automotive application[C].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System,Lausanne,2002.(1):141-146.
    [25]K.Arras,N.Tomatis,T.Bjom.Multi-Sensor on-the-fly Localization:Precision and Reliability for application[J].Robotics and Autonomous Systems.2001,(34):131-143.
    [26]J.Z.Sasiadek,P.Hartana.Sensor data fusion using Kalman filter[C].Proceedings of the Third International Conference on Information Fusion,Paris,2000.(2):10-13
    [27]H.M.Barbera,A.G.Skarmeta,M.Z.Izquierdo,J.B.Blaya.Neural networks for sonar and infrared sensors fusion[C].Proceedings of the Third International Conference on Information Fusion.2000,(2):18-25
    [28]S.Su,S.Li.Neural Network Based Fusion of Global and Local Information in Predicting Time Series[C].Proceedings of the International Conference On Systems,Man and Cybernetics,Washington D.C,2003.(5):4445-4450.
    [29]K.C.Tan,K.K.Tan,T.H.Lee,S.Zhao and Y.J.Chen.Autonomous robot navigation based on fuzzy sensor fusion and reinforcement learning[C].Proceedings of the IEEE International Symposium on Intelligent Control,Vancouver,Canada,2002.182-187.
    [30]O.Cohen,Y.Edan.Adaptive fuzzy logic algorithm for grid map based sensor fusion[C].Proceedings of the IEEE International conference on Intelligent Vehicles Symposium,Parma,Italy,2004.625-630.
    [31]C.K.Lin.A reinforcement learning adaptive fuzzy controller for robots[J].Fuzzy Sets and Systems.2003,137(3):339-352.
    [32]王学宁,策略梯度增强学习的理论、算法及应用研究[D],长沙:国防科大.2006.
    [33]R.Simmons and S.Koenig.Probabilistic robot navigation in partially observable environments[C].Proceedings of the International Joint Conference an Artificial Intelligence,Montreal,Canada,1995.1080-1087.
    [34]S.Thrun,D.Fox,W.Burgard,and F.Dellaert.Robust montecarlo localization for mobile robots[J].Artificial Intelligence,2000,128(2):99-141.
    [35]F.M.Antoniali,G.Oriole.Robot localization in nonsmooth environments:Experiments With a new filtering technique[C],Proceedings of the IEEE International Conference on Robotics and Automation,Seoul,Korea,2001. 2:1591-1596.
    [36] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelligence Research, 2000, (11):391-427
    [37] W. Burgard, D. Fox . D. Henning, and T. Schmidt. Estimating the absolute position of a mobile robot using position probability grids[C]. Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996. 896-901.
    [38] Xu Zezhong, Liang Ronghua and Liu Jilin, Global localization based on corner point[C]. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, 2003. (2):843-847.
    [39] I. J. Cox, Blanche-an experiment in guidance and navigation of an autonomous robot vehicle[C]. Proceedings of the IEEE International Conference on Transactions on Robotics and Automation, 1991, 7(2): 193-204.
    [40] F. Lu and E. Milios. Robot pose estimation in Unknown environments by matching 2D range scans[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Seattle, Wa, 1994. 935-938.
    [41] S. C. Crow and F.L. Manning. Differential GPS control of starcar2. Navigation[J]. Journal of the Institute of Navigation, 1992,39(4):383-405.
    [42] H. Evers and G. Kasties. Differential GPS in a real-time land vehicle environment-satellite based van carrier location system[J]. IEEE Aerospace and Electrical Systems Magazine, 1994, (8):26-32.
    [43] E. Ollivier, M. Parent, Odometric Navigation with Matching of Landscape Features[C]. Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision (ICARCV02), Singapore. 2002. 757-762
    [44] T. Bailey, E. Nebot, J. Rosenblatt, and H. Durrant-Whyte. Robust Distinctive Place Recognition for Topological Maps[C]. Proceedings of International Conference on Field and Service Robotics. Pittsburgh, USA, 1999. 347-352.
    [45] B.Kuipers and Y. Byun. A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations [J]. IEEE Journal of Robotics and Autonomous Systems, 1991, (8):47-63.
    [46] A. Elfes. Occupancy Grids: A Stochastic Spatial Representation for Active Robot Perception[C]. Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, MA, 1990. 60-70.
    [47] H. Moravec. Sensor Fusion in Certainty Grids for Mobile Robots[J]. AI magzine, 1988: 9(2):61-74.
    [48] M. Ribo and A. Pinz. A Comparison of Three Uncertainty Calculi for Building Sonar-based Occupancy Grids [J]. IEEE Journal of Robotics and Autonomous Systems, 2001, (35):201-209.
    [49] A.C. Schultz and W. Adams. Continuous Localization Using Evidence Grids[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998. 2833-2839.
    [50] A. Elfes, H. Moravec. High Resolution Maps from Wide Angle Sonar[C], Proceedings of the IEEE International Conference on Robotics and Automation. St. Louis, Missouri, 1985. 116-121.
    [51] R. Gartshore, A. Aguado, C. G.alambos. Incremental Map Building Using an Occupancy Grid for Autonomous Monocular Robot[C]. Proceedings of International Conference on Control, Automation, Robotics and Vision, Singapore, 2002, (2):613-618.
    [52] E. Ivanjko, I. Petrovic. Extended Kalman filter based mobile robot pose tracking using occupancy grid maps[C]. Proceedings of The 12th IEEE Mediterranean Electro-technical Conference, Dubrovnik, Hrvatska, 2004. (1):311-314.
    [53] S. Thrun, D. Fox, W. Burgard. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots[J]. Machine Learning. 1998, (31):1-25
    [54] A. Amir, A. Efrat, P.Indyk, and H. Samet. Efficient Regular Data Structures and Algorithms for Location and Proximity Problems[C]. IEEE Symposium on Foundations of Computer Science, New York, 1999.160-170.
    [55] R. Kue, M. W. Siegel. Physically Based Simulation Model for Acoustic Sensor Robot Navigation[J]. Patern Analysis Machine Intelligence.1987, 9 (6):766-778.
    [56] K.S.Chong, L.Meeman. Mobile Robot Map Building from an Advanced Sonar Array and Accurate Odometry[J]. Robotics Research.1999,18(1):20-36.
    [57] A. Ohya, Y. Nagashima and S. Yuta. Explore Unknown Environment and Map Construction Using Ultrasonic Sensing of Normal Direction of Walls[C]. Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, 1994. 485-492.
    [58] D. Kortenkamp, T. Weynouth. Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing[C]. Proceedings of the twelfth national conference on Artificial intelligence,Seattle, Washington, 1994.979-984.
    [59] H. Choset, K. Nagatani. Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization Without Explicit Localization[J]. IEEE Transactionson Robotics and Automation, 2001,17(2):125-137.
    [60] S. Simhon, G. Dudek. A Global Topological Map Formed by Local Metric Maps[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, Victoria, Canada, 1998.1708-1714.
    [61] S. Thrun. Learning Metric-Topological Maps for Indoor Mobile Robot Navigation[J]. Artificial Intelligence, 1998, 99(1):21-71.
    [62] H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and S. Scheding. A Bayesian algorithm for simultaneous localization and map building[C]. Proceedings of the 10th International Symposium of Robotics Research (ISRR'01), Lome, Australia, 2001. 3118-3123.
    [63] R. Smith, M. Self, P. Chesseman. Estimating uncertain spatial relationships in robotics [C] . Proceedings of Conference on Uncertainty in Artificial Intelligence. Amsterdam, North Holland, 1988. 435-461.
    [64] R. C. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty[R]. Technical Report TR 4760 &7239, SRI, 1985.
    [65] G. Dissanayake, P. Newman, S.Clark, H. F. Durrant-whyte. A solution to the simultaneous localization and map building(SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3):229-241.
    [66] M.Csorba. Simultaneous Localization and Map Building[D]. Oxford: University of Oxford, 1997.
    
    [67] 罗荣华,洪炳鎔.移动机器人同时定位与地图创建研究进展[J], 机器人. 2004, 26(2):182-186.
    [68] S. Thrun. Robotic Mapping: A Survey[R]. Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann 2002.
    [69] J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tard'os. The SPmap: A probabilistic framework for simultaneous localization and map building[J]. IEEE Transactions on Robotics and Automation.l999,15(5):948-953.
    [70] A. Doucet, S. Godsill and C. Anderieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, (10):197-208.
    [71] J. Meltzer R. Gupta, Y. Ming-Hsuan and S. Soatto Simultaneous Localization and Mapping using Multiple View Feature Descriptors[C]. Proceedings of 2004 IEEE/RJS International Conference on Intelligence Robots and Systems. Sendai, Japan. 2004. 1550-1555.
    [72] A. T. Cemgil, B. Kappen. Monte Carlo Methods for Tempo Tracking and Rhythm Quantization[J]. Journal of Artificial Intelligence Research. 2003, (18):45-81.
    [73] D.Hahnel, D.Fox, W.Burgard, and S.Thrun. An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements [C]. proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, 2003. 206-211.
    [74] J. A. Castellanos and J. D. Tard'os. Mobile Robot Localization and Map Building: A Multisensor Fusion Approach[M]. Boston: Kluwer Academic Publishers, 2000.
    [75] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4):89-96.
    [76] A. P. Dempster, A. N. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, Series B, 1977, 39(1):1-38.
    [77] P. K. Allen and I. Stamos. Integration of range and image sensing for photorealistic 3D modeling[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, 2000.1435-1440.
    [78] R. Bajcsy, G. Kamberova, and L. Nocera. 3D reconstruction of environments for virtual reconstruction[J]. Proceedings of the 4th IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998.160-167.
    [79] 迟健男,徐心和,移动机器人即时定位与地图创建问题研究[J],机器人,2004,26(1):92-96.
    
    [80] A.J. Davison, K. Nobuyuki. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[C] . Proceedings of the IEEE International Conference on Computer Vision and Recognization, Hawaii, 2001.384-391.
    [81] M. Montemerlo, S. Thrun. FastSLAM: a factored solution to the simultaneous localization and mapping problem[C]. Proceedings of the Eighteenth National Conference on Artificial Intelligence, Alberta, Canada, 2002. 593-598.
    [ 82 ] S. Hu, D.D. Hu, O.Gu. Landmark based navigation of mobile robots in manufacturing[C]. Proceedings of the IEEE International Conference on Emerging Technologies&Factory Automatin, Spain, 1999. 18-21.
    [83] J. A. Castellanos, J. Neira, J. D. Tardos. Multisensor fusion for simultaneous localization and map building[J].IEEE Transaction on Robotics and Automation,2001,17(6):908-914.
    [84]P.Newman.On the structure and solution of the simultaneous localisation and map building problem[D].Australia:the University of Sydney.1999.
    [85]F.Lu,E.Milois.Globally consistent range scan alignment for environment mapping[J].Autonomous Robots,1997,4(4):333-349.
    [86]J.Hollerbach,D.Koditschek.A computationally efficient method for large scale concurrent mapping and localization[C].Proceedings of the 9th International Symposium on Robotics Research,London,2001.169-176.
    [87]M.Montemerlo,S.Thrun.Simultaneous localization and mapping with unknown data association using FastSLAM[C].Proceedings of the IEEE International Conference on Robotics&Automation.Taipei,2003.1985-1991.
    [88]陈卫东,张飞,移动机器人的同步自定位与地图创建研究进展[J],控制理论与应用,2005,22(3):456-460.
    [89]R.Willdor,L.Wenzel.Giving a Compass to a Robot-Probabilistic Techniques for Simultaneous Localization and Map Building(SIAM) in Mobile Robotics[R].Berkeley University of California,2002.
    [90]王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J],机器人,2004,26(4):380-384.
    [91]L.Armestot,G.Ippolitit,S.Longhit,J.Tornerot.FastSLAM 2.0:Least-Squares Approach[C].Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2006.5013-5018.
    [92]T.Bailey,J.Nieto and E.Nebot.Consistency of the FastSLAM Algorithm[C],Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,Florida,2006.424-429.
    [93]J.Nieto,J.Guivant,E.Nebot and S.Thrun.Real time data association for FastSLAM[C].Proceedings of the 2003 IEEE International Conference on Robotics and Automation,Taipei,Taiwan.2003.412-418.
    [94]S Thrun,D Koller.Simultaneous Mapping and Localization With Sparse Extended Information Filters:Theory and Initial Results[R].USA:Carnegie Mellon University,2002.
    [95]M.Di Marco,S.Garulli,S.Lacroix.A Set Theoretic Approach to the Simultaneous Localization and Map Building Problem[C].Proceedings of the 39th IEEE Conference on Decision and Control.Sidney,2000.833-838.
    [96]Gehrig S K,Stein F J.Dead reckoning and cartography using stereovision for an autonomous car[C].Proceedings of t he IEEE/RSJ International Conference on Intelligent Robot s and systems.South Korea,1999.1507-1512.
    [97]A.J.Davison,D.W.Murray.Simultaneous Localization and Map-Building Using Active Vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):865-880.
    [98]C.Jennings,D.Murray.Stereo Vision Based Mapping and Navigation for Mobile Robots[C].Proceedings of the IEEE International Conference on Robotics and Automation,Albuquerque,NM,1997.1694-1699.
    [99]Y.Yagi,Y.Nishizawa,M.Yachida.Map-based navigation for a mobile robot with an omnidirectional image sensor COPIS[J].IEEE Transactions on Robotics and Automation,1995,11(5):634-648.
    [100]Z.Zhong,J.Yi,D.Zhao,Y.Hong.Novel approach for mobile robot localization using monocular vision[C].Proceedings of the SPIE International Society for Optical Engineering,Beijing,2003,5286(1):159-162.
    [101]O.A.Aider,P.Hoppenot,E.Colle.A model-based method for indoor mobile robot localization using monocular vision and straight-line correspondences[J],Robotics and Autonomous Systems 2005,(52) 229-246.
    [102]于秀芬,段海滨,龚华军,移动机器人视觉定位方法的研究与实现[J],数据采集与处理2004,9(4):432-437.
    [103]J.Borentein,H.R.Everett,L.Feng,D.Wehe.Mobile robot positioning sensors and techniques[J].Journal of Robotic Systems,1997,14(4):231-249.
    [104]于长官.现代控制理论与应用[M],哈尔滨:哈尔滨工业大学出版社,2005.
    [105]史忠科.最优估计计算方法[M],北京:科学出版社,2001.
    [106]张金槐.自适应衰减记忆滤波[M],长:国防科技大学出版社,1993.
    [107]David A.forsyth,Jean Ponce著.林学訚,王宏 译,计算机视觉——一种现代方法[M],北京:电子工业出版社,2004.
    [108]R.Y.Tsai.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses[J].IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [109]Z.Zhang.A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [110]刘琼,倪国强,周生兵.图像配准中几种特征点提取方法的分析与实验[J],光学技术,2007,33(1):62-67.
    [111]S.M.Smith,J.M.Brady.SUSAN-A new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78.
    [112]张坤华,王敬儒,张启衡.多特征复合的角点提取方法[J],中国图象图形学报,2002,7(4):319-324
    [113]杜歆,用于导航的立体视觉系统[D],杭州:浙江大学,2003.
    [114]P.Anandan.A computational framework and an algorithm for the measurement of visual motion[J].Journal of Computer Vision,1989,2(3):283-310.
    [115]T.Kanade,M.Okutomi.A Stereo Matching Algorithm with an Adaptive Window:Theory and Experiment[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1994,16(9):920-932.
    [116]O.Faugeras,B.Hotz,H.Mathieu,T.Vieville,Z.Zhang,P.Fua,E.Theron,L.Moll,G.Berry,J.Vuillemin,P.Bertin,and C.Proy.Real-time correlation-based stereo:algorithm,implementations and applications[R].INRIA Technical Report#2013,august,1993.
    [117]M.Garcia,A.Solanas.Solanas A.3D simultaneous localization and modeling from stereo vision[C].Proceedings of the 2004 IEEE International Conference on Robotics & Automation.New Orleans,LA,2004.847-853.
    [118]宋志勇.非线性随机离散系统推广卡尔曼滤波方法收敛性分析[J],控制理论与应用,2000,17(2):264-269.
    [119]J.Miura,Y.Shirai.Vision and motion planning for a mobile robot under uncertainty[J].International Journal of Robotics Research,1997,16(6):806-825.
    [120]H.Yang,K.Park,J.Lee.A rotating sonar and a diferential encoder data fusion for map-based dynamic positioning[J].Journal of Intelligent and Robotic Systems:Theory and Applications,2000,29(3):211-232.
    [121]Borenstein J,Feng L.UMBmark-a Method for Measuring,Comparing,and Correcting Dead-reckoning Errors in Mobile Robots[M].USA:University of Michigan,1994
    [122]B.J.Choi,S.V.Sreenivasan.Gross motion characteristics of articulated mobile robots with pure rolling capability on smooth uneven surfaces[J].IEEE Transactions on Robotics and Automation,1999,15(2):340-343.
    [123]王为华,熊有伦,孙容磊.一种移动机器人轮子打滑的实验校核方法[J],机器人,2005,27(3):197-202.
    [124]J.Leonard and H.Durrant-White,Mobile robot localization by tracking geometric beacons[J],IEEE Trans.Robot.Automat,1991,7:89-97.
    [125]A.J.Munioz and J.Gonzalez,Two-dimensional landmark-based position estimation from a single image[C],Proceedings of IEEE Intenational Conference on Robotics and Automation,1998,3709-3714.
    [126]韩崇昭,朱洪艳,段战胜.多源信息融合[M],北京:清华大学出版社,2006.
    [127]康健,司锡才,芮国胜.基于贝叶斯原理的粒子滤波技术概述[J],现代雷达,2004,26(1):34-36.
    [128]B.P.Carlin,N.G.Poison,D.S.Stoffer.A Monte Carlo Approach to Nonnormal and Nonlinear State-space Modeling[J].JASA.1992,87(418):493-500.
    [129]M.S.Arulampalam,S.Maskell,N.Gordon,T.Clapp.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [130]N.J.Gordon,D.J.Salmond,A.E M.Smith.Novel approach to nonlinear non-Gaussian Bayesian state estimation[J],Radar and Signal Processing,1993,140(2):107-113.
    [131]尚建忠,罗自荣,张新访,范大鹏.双曲柄滑块联动月球车设计及样机研制[J],中国机械工程,2007,18(3):348-351.
    [132]R.Volpe,J.Balaram,T.Ohm.The Rocky 7 Mars Rover Prototype[C].Proceedings of IEEE RSJ International Conference on Intelligent Robots and Systems.Osaka.Japan,1996.1558-1564.
    [133]E.Rollins,J.Luntz,A.Foessel.Nomad:a demonstration of the transforming chassis[C].Proceedings of IEEE International Conference on Robotics and Automation.Leuven,Belgium,1998.611-617.
    [134]T.Kubota,K.Yoji,Y.Kunii,I.Nakatani.Small Light-weight Rover "Micro5" for Lunar Exploration[J].Acta Astronautica,2003,52(1):447-453.
    [135]W.D.Carrier.Soviet rover systems[C].AA Space Programs and Technologies Conference.Huntsville,AL,1992.24-27.
    [136]尚建忠,罗自荣,张新访.两种轮式月球车悬架方案及其虚拟样机仿真[J].中国机械工程,2006,17(1):49-52.
    [137]P.F.Muir,C.P.Neuman.Kinematic modeling of wheeled mobile robots[J].Journal of Robotic System.1987,4(2):281-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700