优化双级矩阵变换器输入输出性能的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双级矩阵变换器(Two-stage Matrix Converter:TSMC)不仅具有常规矩阵变换器(ConventionalMatrix Converter:CMC)所有优良的性能,而且由于其开关器件少,换流方法可靠,开关控制方案简单,控制策略灵活等独特的优点,近年来成为了电力变换器研究的热点,许多国内外专家就双级矩阵变换器的输出输入性能和控制策略在理论上做了大量的研究与分析。然而,由于TSMC的拓扑结构,中间缺少可以储能的直流元件,这样输入与输出的相互耦合的影响十分严重,输入侧的电网、滤波参数的变化都会直接影响到TSMC的输出,同样,功率开关本身的性能,检测器件的误差,以及环境等其他因素的影响,都会直接导致TSMC输出的不稳定,因此,要得到可靠且稳定的输出电压电流,同时保持输入级的电流电压质量良好,具有十分重大的意义。本文对TSMC的输入与输出级性能进行了分析研究,同时对输入与输出的控制策略进行了优化设计。
     由于TSMC是通过控制功率开关的关断与导通来实现变频变压,而功率开关元件是一个非线性,参数时变的模型,因此TSMC的系统是一个非线性,模型不确定的系统,常规的PID控制已经不能胜任如此复杂的系统,所以有必要引入智能控制方式来对TSMC的输出输入电压电流进行控制。本文提出了一种基于专家自适应PID控制下的TSMC输出电压闭环控制方案,利用专家控制的自我调节能力,能够有效地抑制电源输入端及系统中的各种扰动,保证输出波形质量的良好。而对于输入侧的控制,本文采用功率平衡控制,运用瞬时功率原理,分析了TSMC的无功功率传递原理,将输出的实际功率与输入的有功功率进行比较,得到功率误差,并设计功率补偿器,对损耗的功率进行补偿,进而控制无功功率,使整个TSMC系统获得较高的功率因数,同时可以实现输入整流级与输出逆变级的协调控制,不会因某一级的扰动而干扰整个TSMC系统。
     论文运用MATLAB/SIMULINK进行了建模和仿真分析,仿真结果验证了所述控制方案的可行性和正确性。设计了基于DSP2812芯片下的TSMC的电路系统,完成了整个系统电路的规划与设计,为进一步验证其控制策略及性能奠定了基础。
TSMC(Two-stage Matrix Converter) not only has all the excellent performance as CMC(Conventional Matrix Converter), but also because of less switches, switching control scheme being simple, flexible control strategy becomes a hot research point in recent years. Many domestic and foreign experts have done a great deal to do in theory, research and analysis focusing on the two-stage matrix converter input-output characteristics. However, because of TSMC topology, the lack of the DC energy storage components, so that input and output of the coupling impact is very serious by the grid input, filters parameters. And similarly, the power switch performance, the error detection device, as well as environmental and other factors, would have a direct influence of stability in TSMC. Therefore, to obtain reliable and stable output voltage and current, while maintaining the current and voltage input stage good quality is vital for TSMC. In this paper, the input and output performance and control strategies of TSMC have been studied at the same time.
     By controlling the power switch to achieve variable frequency and voltage, but the switches are non-linear components and difficult to set up a mathematical model, so the TSMC system is a non-linear, uncertain model system which conventional PID control lack of the competence to deal with the complexity of the control system. Therefore, it is necessary to introduce the intelligent way to control the TSMC system. In this paper, a self-adaptive PID based on expert control with the control of output voltage closed-loop control is studied. Using of expert control of self-adjustment ability to be able to effectively control the power of the system input and a variety of disturbances, to ensure good quality of output waveform. As for the input side of control, this paper applies the power balance control. And with the use of instantaneous power theory, analyzing the reactive power transfer principle of TSMC, comparing the output power and input actual active power, and then using the power error, to compensate for power loss and control reactive power. In this way, TSMC achieves input rectifier and output inverter stage collaborative control with high power factor, and will not be disturbed by each stage to a certain extent.
     Based on the theoretical research, MATLAB / SIMULINK simulation modeling and analysis, simulation results show the feasibility and validity of the method.At the same time, the experimental system of the TSMC system is designed in the paper, TMS320LF2812 is chosen as main chip to construct the hardware system. And the system founds a platform for further research on TSMC.
引文
[1] L. Wei, and T.A. Lipo, A novel matrix converter topology with simple commutation [C]. in proceedings of IAS 2001 conference, vol.3, pp. 1749~1754.
    [2] L. Wei,T A. Lipo. Matrix converter with reduced number of switches[C]. Conf. Record of the 20th EMPEC anniversary meeting, Madison, WI, USA, Oct. 24-25th, 2001.
    [3] P.Nielsen,F..Blaabjerg,J.K.Pedersen. Space vector modulated matrix converter with minimized number of switches and feedforward compensatinon of input voltage unbalance [C]. Procceeding of PEDES,1996:833~839.
    [4] S.Kim, S-K.Sul and T.A.Lipo. AC/AC power conversion based on matrix converter topology with unidirectional switches[J].IEEE Trans on Industry Applications,2000, 36(1):139~145.
    [5] L.Zhang,C.Wathanasarn.A Matrix Converter Exctied Double-fed Induction Machine as a Wind Power Generator [C].Seventh Internationla Conference on Power Electronics and Variable Speed Drives,Chicago,IL,USA,1998:532~537.
    [6] Qoi B T, Kazerani M. Voltage-Source Matrix Converter as a Controller in Flexible AC Transmission Systems [J].IEEE Trans on Power Delivery, 1998,13(1):247~253.
    [7] Klumpner,c.,Blaabjerg,F. A Direct Power Electronic Conversion Topology for Multi-Drive Applications[J]. IEEE Trans on Industrial Electronics,2003, 45(5):139~145.
    [8] Klumpner,c.,Blaabjerg,F. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology [J]. IEEE Trans on Industrial Electronics. 2003, 3:86~92.
    [9] C.clumpner,F.Blaabjerg.Two-stage matrix converter-an alternative to the matrix converter [C]. IEEE Professional Networks on Power Conversion and Applications . United Kingdom, London, 2003: 61~69.
    [10] J.W. Kolar, M. Baumann, F. Schafmeister, and H. Ertl, Novel three-phase AC-DC-AC sparse matrix onverter [C]. In proceedings of APEC 2002 conference, vol. 2, pp. 777~791.
    [11] L. Wei, and T.A. Lipo, "Matrix converter Topologies with Reduced Number of Switches"[C]. in proceedings of PESC 2002conference, pp. 57~63
    [12] M.Jussila, M. Salo, and H. Tuusa, Realization of a three-phase indirect matrix converter with an indirect vector modulation method [C]. In proceedings of PESC 2003 conference, vol 2, pp.689~694.
    [13] M. Hamouda, F. Fnaiech, and K. AL-Haddad,“Space vector modulation scheme for Dual-Bridge Matrix Converters using safecommutationstrategy”[C]. in proceedings of IECON 2005 conference, 6-10 Nov, pp1060~1065.
    [14] C.clumpner, F.Blaabjerg. Two-stage matrix converter-an alternative to the matrix converter[C]. IEEE Professional Networks on Power Conversion and Applications . United Kingdom, London, 2003: 61~69.
    [15]邓文浪.双级矩阵变换器及其控制策略研究[D] .湖南:中南大学,2007.
    [16]朱豆.双级矩阵变换器-直接转矩组合控制系统的研究[D].湖南:中南大学2008.
    [17] Lixiang Wei, Yoichi Matushita ,Thomas A.Lipo. Investigation of dual-bridge matrixconverters unbalanced source voltages[C].2003 IEEE 34th Annual Power Electronics Specialists Conference. Conference Proceedings, 2003,3:1293~1298.
    [18] Lixiang Wei, Yoichi Matushita, Thomas A Lipo. A compensation method for dual-bridge matrix converters operating under distorted source voltages[C]. Proceedings Industrial Electronics Conference, 2003,3:2078~2084.
    [19]邓文浪,扬欣荣,朱建林.基于dq坐标双级矩阵变换器的闭环控制研究[J].电气传动,2007,37(2):20~24.
    [20]邓文浪等.不平衡负载情况下基于双序dq坐标系双级矩阵变换器的闭环控制研究[J].中国电机工程学报,2006,26(19):70~75.
    [21]陈源,邓文浪,朱建林.基于模糊逻辑控制器的双级矩阵变换器闭环控制研究[J].电气传动,2007,37(10):34~37.
    [22]邓文浪,杨欣荣,廖力清.基于复合控制器的双级矩阵变换器闭环控制[J].中南大学学报,2007,38(6):1179~1185.
    [23]邓文浪,令狐文娟,朱建林等.应用自抗扰控制器的双级矩阵变换器闭环控制[J].中国电机工程学报.2008,28(12):13~19
    [24]陈杰,邓文浪,朱建林.双级矩阵变换器的神经元PID闭环控制研究[J].系统仿真学报,2008,20[8]:2115~2118
    [25] L.Huber, D.Borojevic. Space Vecter Modulated three-phase to three-phase Matrix Converter with Input Power factor Correction [C ]. Proc. Of PECC 1992 ,:518~523.
    [26]王汝田,王建赜等.双级矩阵变换器的SPWM控制策略及无功功率控制[J].电网技术, 2006, 30(21): 66~70.
    [27] Schafmesiter, F.Kolar, J.W.Novel modulation schemes for conventional and sparse matrix converters facilitating reactive power transfer independent of active power flow[C]. IEEE 35th Annual Power Electronics Specilalists Conference, 2004, 4:2917~2923.
    [28] Schafmesiter, F.Kolar, J.W. Novel hybrid modulation schemes extending the reactive power control range of conventional and sparse matix converters operating at maximum output voltage[C].EPE-PEMC 2004 11th International Power Electronics and Motion Control Conference, 2004, 7(7):9~17.
    [29] M. Hamouda, F. Fnaiech, and K. AL-Haddad. Input filter design for SVM Dual-Bridge Matrix Converters[C]. ISIE 2006, 9-13 July, 2006, Montréal, Canada, accepted for presentation
    [30] M. Hamouda, F. Fnaiech, and K. AL-Haddad,Control of the line current provided by dual-Bridge Matrix Converters using a discrete-time sliding mode control approach [C]. IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on,2006,1727~1732
    [31] S. Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, On the stability of discrete-time sliding mode control systems[J]. IEEE Trans.Automat. Contr., vol. 32, 1987, pp 930~932.
    [32] W. Gao, Y. Wang, and A. Homaifa. Discrete-Time Variable Structure Control Systems[J]. IEEE Trans. Industrial Electronics, vol. 42, April 1995, pp 117~122.
    [33] A. Bartoszewicz, Discrete-time quasi-sliding-mode control strategies[J]. IEEE Trans. Industrial Electronics, vol. 45, August 1998, pp 633~637.
    [34] J.C. Liao, S.N. Yeh, A novel instantaneous power control strategy and analytic model for integrated rectifier/inverter system[J]. IEEE Trans. Power Electron. 15 (6) (2000) 996~1006.
    [35]郭忠林,基于双模糊控制的异步电机直接转矩控制系统[D]四川:西华大学,2008
    [36]罗文广,孔峰.基于模糊控制的直流无刷电机调速系统[J].电子产品世界,2001(1)34~36
    [37]李勇,罗隆福,许加柱,李季.基于模糊控制的直流电机PWM调速系统[J].大电机技术,2006(1),66~69.
    [38]龚春英,沈忠亭,李春燕,严仰光神经网络在逆变器控制中的应用[J].电工技术学报,2004(2) 98~102
    [39]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨工业大学出版社,1996.
    [40]姜惠兰,李桂鑫,崔虎宝,孟庆强PWM整流器的径向基函数神经网络控制新方法[J].信息与控制, 2006,35(3) 406~410
    [41] S. L. Jung, and Y.Y. Tzou, Sliding mode control of a closedloop regulated PWM inverter under large load variations [C]. In proceedings of PESC 93 conference, pp.616~622.
    [42] L. K. Wong, F. H. F. Leung, and P.K. S. Tan, Control of PWM inverter using a Discrete-time sliding mode controller[C]. In proceedings of PEDS 99 conference, pp.947~950.
    [43] S. L. Jung, and Y.Y. Tzou, Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve[C]. IEEE Trans. Power Electronics, vol. 11, July 1996, pp 567~577.
    [44] J.W.Kolar,M.Baumann,and et.al., Novel three-phase AC-DC-AC sparse matrix converter[C]. In Proceedings of 17th IEEE Applied Power Electronics Conference and Exposition,APEC 2002,Vol.2,pp.777~791.
    [45]王勇.矩阵变换器的空间矢量调制、系统集成及应用研究[D].浙江:浙江大学, 2004
    [46] Huber. L, Borojevic. D, Burany. N, Voltage Space Vector Based PWM Control of Forced Commutated Cycloconverters[C]. Industrial Electronics Society, 1999, IECON '89, 1 Sth Annual Conference of IEEE 6-10 Nov, 1999:106~111
    [47]汤宁平,方旭阳,邱培基;电流跟踪控制的矩阵变换器的控制策略与试验研究[J].电工技术学报. 1999, 14(4),48~52
    [48]张志学,马皓.矩阵变换器的电流控制策略[J].中国电机工程学报,2004, 24(8) 61~66
    [49]邓文浪,杨欣荣,朱建林.18开关双级矩阵变换器的空间矢量调制策略及其仿真研究[J].中国电机工程学报,2005,25(15):84-90
    [50]陶永华等新型PID控制及其应用(第二版)[M].机械工业出版社2003
    [51]刘金锟先进PID控制MATLAB仿真(第二版)[M].电子工业出版社2003
    [52]刘邦银.电压源型逆变器的智能控制技术研究[D].武汉:华中科技大学,2004
    [53] Simon. O, Mahlein. J, Muenzer. M.N, Bruckmarm. M, Modern Solutions for Industrial Matrix-Converter[C]. Applications Industrial Electronics, IEEE Transactions on P.E, Vo1.49, Issue:2, April 2002 pp:401~406
    [54]邓文浪,朱建林,易灵芝.基于改进型重复控制器的双级矩阵变换器闭环控制研究[J].湘潭大学自然科学学报,2007, 38(6) 117~112
    [55]郑诗程,丁明,苏建徽,茆美琴.基于重复控制和电压前馈控制的光伏并网发电系统研究与设计[J].电源技术应用,2005,8(2) 10~13
    [56]李鑫,姚勇涛,张逸成,韦莉.采用电容电流内环的逆变器双闭环控制研究[J].电气传动, 2008,38(2),23~26
    [57]邓醉杰,王辉,徐锋,韦泽垠.三相电压型PWM逆变器双闭环控制策略研究[J].防爆电机,2007,42(1) 11~14
    [58]赵立新,丁筱玲.转速、转子电流双闭环控制变频调速器[J].农业机械学报,2002. 33(2) :135-138
    [59]余浩,熊健,张凯,王映波.逆变器无差拍性能控制方案的分析与设计[J].通信电源技术2007.24(2): 9~12
    [60]赵立民,胡庆,张欣.滑模变结构控制在三相逆变器中的应用[J].沈阳工业大学学报. 2003.25(4):306~310
    [61]沈忠亭,严仰光.基于DSP的逆变器神经网络控制[J].电力电子技术,2002.36(5):50-53
    [62]李勋,朱鹏程,杨荫福,陈坚.基于双环控制的三相SVPWM逆变器的研究[J],电力电子技术, 2003. 37(5):30-32
    [63]陈良亮,肖岚,严仰光.双闭环控制电压源逆变器外特性研究[J].电力电子技术, 2004.38(3):6~8
    [64]张卫宁.TMS320C28X系列DSP的CPU与外设[M].北京:清华大学出版社.2004
    [65] TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors data manual. Texas Tnstruments. 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700