风力发电系统运行与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是一种清洁、实用、经济和环境友好的替代能源,与其它可再生能源一道,可以为人类发展提供可持续的能源基础。在未来能源系统中,风电具有重要的战略地位。
     人类利用风能已经有数千年历史,现代风电研究与开发也有30多年的历史。许多国家投入了大量人力、物力对风力发电进行长期研究,这些研究成果使风力发电技术不断得到提高。风电开发多年来一直保持很高的增长速度,近几年中国的风电装机容量几乎以每年翻一番的速度迅猛发展。
     由于风力发电使用的一次能源——风能具有能量密度低、波动性大、不能直接储存等特点,风力发电领域仍然有许多问题需要进一步深入研究。风速的波动性和间歇性给风轮机运行、控制及风电并网等各个环节带来一系列影响,使风力发电表现出与传统发电方式截然不同的特性,是大多数风力发电运行与控制问题的根本原因所在。因此,本文紧紧围绕风速的波动性、间歇性这条线索,从风特征研究、短期风速仿真、小时风速预测、电力系统短期负荷预测,到水电-风电联合运行、飞轮辅助的风力发电系统功率与频率综合控制等方面,对风力发电运行与控制问题进行了研究。主要内容如下:
     (1)对风能利用所涉及的问题进行了广泛的文献研究,将风能利用研究领域分类为:①风电气象学、风能资源评估与风电场建设,②风力发电设备及联网方式,③风力发电系统的运行与控制,④风电场管理与风力发电安全问题,⑤风力发电新概念、实验研究与现场测试等5个分支研究领域,并对每个分支研究领域进行了综述,旨在为深入研究提供一条有参考价值的线索。
     (2)提出了用实测风速校正的短期风速仿真方法,其基本思路是:首先用基于风速Kaimal谱的仿真模型得到初步仿真风速,然后用实测风速通过谱模拟对初步仿真风速进行谱校正,校正后的仿真风速能反映特定场址的短期风速变动规律。通过本文的短期风速仿真研究,不仅加深了对短期风速波动规律的认识,而且这种仿真方法也可以用于其它风工程或信号分析领域的仿真研究。
     (3)提出了小时风速和电力系统短期负荷的向量自回归模型及预测方法,其基本思想是:首先对周期性变化的小时风速或短期负荷时间序列按时间进行向量化,将单变量时间序列转化为向量时间序列,然后建立向量自回归模型,最后将模型用于预测。单变量时间序列向量化过程完全保留了事物周期性变化的信息,所建立的向量自回归模型能更深刻地揭示事物的变化规律。单变量时间序列向量化是一种具有一定普适性的方法,可广泛用于其它领域周期性时间序列的建模与预测。
     (4)用线性规划法研究了水电与风电的联合运行,建立了水电-风电联合运行数学模型——目标函数和约束条件,通过模型求解结果,定量揭示了水电与风电互补性的本质,即:水电可以对风电提供容量支持,风电可以对水电提供电量支持。
     (5)提出了用飞轮辅助的风力发电系统功率和频率综合控制方法。通过飞轮的充/放电控制来辅助风力发电,使风力发电-飞轮系统具有传统发电机组的功率和频率控制能力。
     最后,对本文5个主要创新性研究成果进行了总结,对这些研究成果的应用和进一步深入研究进行了展望。
Wind energy is a kind of clean, practical, economic and environmentally friendly alternative energy. Together with other forms of renewable energy, wind energy can contribute to a sustainable energy foundation for the human developing. In the future energy system, wind power is of strategic importance.
     Wind energy has been utilized for many thousand years. The history of modern wind power research and development is also more than 30 years. Many governments invested a lot of money for long-term wind power research activities. In recent years, the wind power installed capacity has gained dramatically high growing rates in China, almost doubled her total installed capacity every year.
     Wind energy is characterized by its low energy density, variability, intermittence and can not be directly stored. These characteristics lead to lots and lots of problems remained unsolved in the domain of wind power research. The variation and intermission of wind has notable impact on the wind turbine operation, control and wind power integration into power grid. Obviously, the variability and intermittence of wind are the primary reasons of problems involved in wind power operation and control. Based on the above mentioned analysis, this dissertation researched on several problems related to wind power operation and control, including wind characteristics, short-term wind speed simulation, hourly wind speed forecasting, short-term power system load forecasting, combined operation of hydro power generation and wind power generation, as well as synthesized power and frequency control of wind power generation system assisted through flywheels. The main contributions of this dissertation were summarized as follows.
     (1) A large amount of literate related to wind energy utilization has been studied. The domain of wind energy research has been cataloged into 5 main subdomains:①wind power meteorology, wind energy resource assessment, and wind power project construction;②wind power equipment and power grid integration;③wind power system operation and control;④wind farm management and wind power security issues;⑤new concept of wind power generation, experimental research and field measurement. Reviewing remarks have been made on every subdomain. The purpose of this literate reviewing is directed to provide a valuable clue for deep research on wind energy development.
     (2) A short-term wind speed simulation method has been proposed. The basic idea of this method is as follows. Firstly, a primary wind speed series was obtained through a model based on Kaimal wind speed power spectral density. Then, a method called spectrum mimicry was applied to the primary simulated wind speed series to correct it. After correcting, the final resulting simulated wind speed series could be able to reflect the special site characteristic wind speed fluctuations. This simulation method should be useful in a wide area of studies, such as other wind engineering and signal analysis.
     (3) A vector autogression model has been proposed for the hourly wind speed forecasting and short-term power system load forecasting. The main ideas of the proposed modelling and forecasting method are as follows. Firstly, the periodic hourly wind speed time series or short-term power system load time series was vectorized according to the different time of a day. This processing transferred a univariate time series to a vector time series. Secondly, a vector autogression (VAR) model was set up with vectorized time series. Finally, the resulting VAR model was applied to the forecasting of hourly wind speeds or short-term power system loads. The periodic variation information was preserved in the transformation of a univariate time series to a vector time series, so the resulting VAR model could reveal more foundational characteristics hided in the time series. The proposed vectorization of a univarate time series is a generalized method, and could be suitable for modeling and forecasting of other periodic time series.
     (4) A linear programming model was proposed for combined operation of a hydro power station and a wind farm. The real value of the model is embedded in its objective function and constrains considered in the model. The solution obtained from the proposed revealed quatificationally the complement between hydro power and wind power. The complement advantages come from the fact that the hydro power station can provide capacity supporting to the wind farm and simultaneously the wind farm can provide energy supporting to the hydro power station.
     (5) A synthesized power and frequency control method of wind power generation system assisted through flywheels has been proposed. A scheme of wind power generation system assisted through flywheels has been studied, in order to ensure that the flywheel-wind power generation system has justice power and frequency control capability as a traditional generation unit.
     At the end of the dissertation, five main innovative results were summarized, the application of these results and a perspective on the further research opportunity were presented.
引文
[1] M. Lange, U. Focken. Physical Approach to Short-Term Wind Power Prediction[M]. Berlin: Springer, 2006, 151-163.
    [2] T. Ackermann, L. Soder. An overview of wind energy-status 2002[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1-2): 67-128.
    [3] J. A. Halliday. Wind energy-an option for the UK?[J] IEE Proceedings A, 1993, 140(1): 53-62.
    [4] Stan Calvert, Robert Thresher, Susan Hock, et al., U.S. Department of Energy Wind Energy Research Program for Low Wind Speed Technology of the Future[J]. Journal of Solar Energy Engineering, 2002, 124: 455-460.
    [5] A. D. Sahin. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science, 2004, 30(5): 501-543.
    [6]施鹏飞.风力发电的进展和趋势[J].中国电力, 2002, 35(9): 86-90.
    [7]欧洲风能协会,国际绿色和平.风力12:关于2020年风电达到世界电力总量12%的蓝图[M].北京:中国环境科学出版社, 2004, 21-25.
    [8] K. HANJALIC, R.V.D. KROL, A. LEKIC. Sustainable Energy Technologies: Options and Prospects[M]. Dordrecht: Springer, 2008, 341.
    [9] B. Moller. Changing wind-power landscapes: regional assessment of visual impact on land use and population in Northern Jutland, Denmark[J]. Applied Energy, 2006, 83(5): 477-494.
    [10] S. E. Thor, P. Weis Taylor. Long-term research and development needs for wind energy for the time frame 2000 to 2020[C], in Wind Energy. 2002, International Energy Agency Implementing Agreement for Co-operation in the Research and Development of Wind Turbine Systems, 73-75.
    [11] Thomas Ackermann. Wind Power in Power Systems[M]. Chichester: John Wiley & Sons, Ltd., 2005, 745.
    [12] K. H. Papadopoulos, C. G. Helmis, A. T. Soilemes, et al. Study of the turbulent characteristics of the near-wake field of a medium-sized wind turbine operating in high wind conditions[J]. Solar Energy, 1995, 55(1): 61-72.
    [13] M. A. Elhadidy, S. M. Shaahid. Role of hybrid (wind+diesel) power systems in meeting commercial loads[J]. Renewable Energy, 2004, 29(1): 109-118.
    [14]易颖琦,陆敬严.中国古代立轴式大风车的考证复原[J].农业考古, 1992, (3).
    [15]王星光.风能在中国古代农业中的利用[J].农业考古, 2007, (4): 132-153.
    [16]柴国生.中国古代风能利用研究[郑州大学硕士学位论文].郑州:郑州大学, 2007.
    [17] Liu, W.-Q., L. Gan, X.-L. Zhang. Cost-competitive incentives for wind energy development in China: institutional dynamics and policy changes[J]. Energy Policy, 2002, 30(9): 753-765.
    [18]施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力, 2003, 36(9): 54-62.
    [19]王晓蓉,王伟胜,戴慧珠.我国风力发电现状和展望[J].中国电力, 2004, 37(1): 81-84.
    [20]李俊峰,高虎,施鹏飞, et al.中国风电发展报告[M].北京:中国环境出版社, 2007, 61.
    [21] China Daily. China's wind power generation up 95% in 2007. http://www.chinadaily.com.cn/china/2008-02/09/content_6446626.htm. 2008-02-09
    [22] B. M. Enis, P. Lieberman, I. Rubin. Operation of hybrid wind-turbine compressed-air system for connection to electric grid networks and cogeneration[J]. Wind Engineering, 2003, 27(6): 449-459.
    [23] D. J. Lew. Alternatives to coal and candles: wind power in China[J]. Energy Policy, 2000, 28(4): 271-286.
    [24] R. W. Righter. Pioneering in wind energy: The California experience[J]. Renewable Energy, 1996, 9(1-4): 781-784.
    [25] K. Schumacher, R.D. Sands. Innovative energy technologies and climate policy in Germany[J]. Energy Policy. 2006,34(18): 3929-3941.
    [26] N. Enzensberger, W. Fichtner, O. Rentz. Financing renewable energy projects via closed-end funds--a German case study[J]. Renewable Energy, 2003, 28(13): 2023-2036.
    [27] Ger Klaassen, Asami Miketa, Katarina Larsen, et al. The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom[J]. Ecological Economics, 2005, 54(2-3): 227-240.
    [28] J. M. Rodriguez, J. L. Fernandez, D. Beato, et al. Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case[J]. IEEE Transactions on Power Systems, 2002, 17(4): 1089-1095.
    [29] R. B. Stull.边界层气象学导论[M].杨长新,译,北京:气象出版社, 1991,156.
    [30] Erik L. Petersen, Niels G. Mortensen, Lars Landberg, et al. Wind Power Meteorology[R]. Roskilde, Denmark: Ris? National Laboratory, 1997.
    [31] D. A. Bechrakis, P. D. Sparis. Correlation of wind speed between neighboring measuring stations[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 400-406.
    [32] M.S. Roulston, D.T. Kaplan, J. Hardenberg, et al. Using medium-range weather forcasts to improve the value of wind energy production[J]. Renewable Energy, 2003, 28: 585-602.
    [33] E. Hau. Wind Turbines: Fundamentals, Technologies, Application, Economics, 2nd Edition[M]. New York: Springer, 2006, 792.
    [34]薛桁,朱瑞兆.我国北部草原地区近地层平均风特性分析[J].太阳能学报, 1992, 13(3): 232-238.
    [35] S. Rehman, N.M. Al-Abbadi. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia[J]. Renewable Energy, 2007, 32(5): 738-749.
    [36] K. Kocak. A method for determination of wind speed persistence and its application[J]. Energy, 2002, 27(10): 967-973.
    [37] A. B. Sigl, R.B. Corotis, D.J. Won. Run duration analysis of surface wind speeds for wind energy application[J]. Journal of Applied Meteorology, 1979, 18(2): 156-166.
    [38] W. E. Bardsley. Note on the use of the inverse Gaussian distribution for wind energy applications[J]. Journal of Applied Meteorology, 1980, 19(9): 1126–1130.
    [39]薛桁,朱瑞兆,侯振斌, et al.中国风能资源贮量估算[J].太阳能学报, 2001, 22(2): 167-170.
    [40] U. Aytun Ozturk, B.A. Norman. Heuristic methods for wind energy conversion system positioning[J]. Electric Power Systems Research, 2004, 70(3): 179-185.
    [41] B. Sahin, M. Bilgili, H. Akilli. The wind power potential of the eastern Mediterranean region of Turkey[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(2): 171-183.
    [42] D. Elliott. Assessing the world's wind resources[J]. IEEE Power Engineering Review, 2002, 22(9): 4-9.
    [43] K. Reutter, R. G. J. Flay, E. M. McIntosh. An Application of the WAsP Program in Complex, Forested Terrain as Part of a Wind Farm Feasibility Study[J]. Wind Engineering, 2005, 29: 491-502.
    [44] L. C. Rodman, R.K. Meentemeyer. A geographic analysis of wind turbineplacement in Northern California[J]. Energy Policy, 2006, 34: 2137–2149.
    [45] A. N. Celik. Energy output estimation for small-scale wind power generators using Weibull-representative wind data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(5): 693-707.
    [46] Wind turbines have 35-fold environmental benefit. Refocus, 2005, 6(3): 11-11.
    [47] J. M. Prospathopoulos, S.G. Voutsinas. Noise Propagation Issues in Wind Energy Applications[J]. Journal of Solar Energy Engineering, 2005, 127: 234.
    [48] Stealth blades for wind turbines to solve radar problem?[J] Refocus, 2003, 4(5): 12-12.
    [49] M. Wolsink. Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support[J]. Renewable Energy, 2000, 21(1): 49-64.
    [50] M. Harries. Disseminating wind pumps in rural Kenya—meeting rural water needs using locally manufactured wind pumps[J]. Energy Policy, 2002, 30: 1087-1094.
    [51] J. A. Carta, J. González, V. Subiela. Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands[J]. Solar Energy, 2003, 75(2): 153-168.
    [52] S. A. Sherif, F. Barbir, T.N. Veziroglu. Wind energy and the hydrogen economy--review of the technology[J]. Solar Energy, 2005, 78(5): 647-660.
    [53] Antonio Pantaleo, Achille Pellerano, Francesco Ruggiero, et al. Feasibility study of off-shore wind farms: an application to Puglia region[J]. Solar Energy, 2005, 79(3): 321-331.
    [54] G. Marsh. Composites help improve wind turbine breed[J]. Reinforced Plastics, 2005, 49(4): 18-22.
    [55]. G. Marsh. Wind turbines: How big can they get?[J] Refocus, 2005, 6(2): 22-28.
    [56]窦修荣,黄珊秋,宋宪耕.大型水平轴风轮转子/塔架耦合系统的气动弹性稳定性分析[J].太阳能学报, 1997, 18(3): 278-285.
    [57]曹人靖,胡骏.水平轴风力机风轮尾迹与圆柱型塔架的相互干涉[J].太阳能学报, 2006, 27(4): 326-330.
    [58] R. D. Richardson, G.M. McNerney. Wind energy systems[J]. Proceedings of the IEEE, 1993, 81(3): 378-389.
    [59] Materials: Key to Harnessing the Power of the Wind[J]. Refocus, 2003, 4(4): 48-50.
    [60] P. Caselitz, J. Giebhardt. Rotor Condition Monitoring for Improved Operational Safety of Offshore Wind Energy Converters[J]. Journal of Solar EnergyEngineering, 2005, 127: 253.
    [61] S. Muller, M. Deicke, R.W. De Doncker. Doubly fed induction generator systems for wind turbines[J]. IEEE Industry Applications Magazine, 2002, 8(3): 26-33.
    [62] B. H. Chowdhury, S. Chellapilla. Double-fed induction generator control for variable speed wind power generation[J]. Electric Power Systems Research, 2006, 76(9-10): 786-800.
    [63] N. Kumaresan. Design Optimisation and Speed Extension of Wind-Driven Self-Excited Induction Generators--A New Approach[J]. Electric Power Components and Systems, 2004, 32: 215-228.
    [64] L. Holdsworth, I. Charalambous, B. Ekanayake, et al. Power system fault ride through capabilities of induction generator based wind turbines[J]. Wind Engineering, 2004, 28(4): 399-412.
    [65] R. Cardenas, R. Pena, M. Perez, et al. Control of a switched reluctance generator for variable-speed wind energy applications[J]. Energy Conversion, IEEE Transactions on, 2005, 20(4): 781-791.
    [66] J. R. Bumby, R. Martin. Axial-flux permanent-magnet air-cored generator for small-scale wind turbines[J]. Electric Power Applications, IEE Proceedings-, 2005, 152(5): 1065-1075.
    [67] S. Kiartzis, A. Kladas. Deterministic and artificial intelligence approaches in optimizing permanent magnet generators for wind power applications[J]. Journal of Materials Processing Technology, 2001, 108(2): 232-236.
    [68] Z. Chen, E. Spooner. Grid interface options for variable-speed, permanent-magnet generators[J]. IEE Proceedings - Electric Power Applications, 1998, 145(4): 273-283.
    [69] M. Chinchilla, S. Arnaltes, J.C. Burgos. Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 130-135.
    [70] A. Grauers, Efficiency of three wind energy generator systems[J]. IEEE Transactions on Energy Conversion, 1996, 11(3): 650-657.
    [71] O. Anaya-Lara, X. Wu, P. Cartwright, et al. Performance of Doubly Fed Induction Generator (DFIG) During Network Faults[J]. Wind Engineering, 2005, 29(1): 49-66.
    [72] V. Akhmatov. Variable-Speed Wind Turbines with Doubly-Fed Induction Generators, Part I:Modelling in Dynamic Simulation Tools[J]. Wind Engineering, 2002, 26(2): 85-108.
    [73] A. Mullane, G. Lightbody, R. Yacamini. Wind-turbine fault ride-through enhancement[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1929-1937.
    [74] T. Fukami, K. Nakagawa, Y. Kanamaru, et al. A technique for the steady-State analysis of a grid-connected permanent-magnet induction Generator[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 318-324.
    [75] J. Rickard. Get ready to connect[J]. IEE Power Engineer, 2004, August/September: 30-31.
    [76]汪韧冬,赵斌.基于89C51单片机的定桨距失速型风电机组软并网装置研究[J].太阳能学报, 2004, 25(3): 359-363.
    [77] E. Spooner, P. Gordon, J. R. Bumby, et al. Lightweight ironless-stator PM generators for direct-drive wind turbines[J]. IEE Proceedings - Electric Power Applications, 2005, 152(1): 17-26.
    [78] D. Hammell. Wind power electronics: Achieving lower cost, higher efficiency, and superior reliability[J]. Refocus, 2004, 5(3): 36-38.
    [79]顾为东.中国风电产业发展新战略与风电非并网理论[M].北京:化学工业出版社, 2006, 230.
    [80] M. A. Elhadidy, S.M. Shaahid. Decentralized/stand-alone hybrid Wind-Diesel power systems to meet residential loads of hot coastal regions[J]. Energy Conversion and Management, 2005, 46(15-16): 2501-2513.
    [81]许洪华.西藏4kW风/光互补发电系统优化设计[J].太阳能学报, 1998, 19(3): 225-230.
    [82]吴运东,王晓凤.大陈岛风力发电机与柴油发电机联运系统的静态模拟计算[J].太阳能学报, 1989, 10(2): 127-133.
    [83] D. Das, S. K. Aditya, D. P. Kothari. Dynamics of diesel and wind turbine generators on an isolated power system[J]. International Journal of Electrical Power & Energy Systems, 1999, 21(3): 183-189.
    [84] D. Weisser, R.S. Garcia. Instantaneous wind energy penetration in isolated electricity grids: concepts and review[J]. Renewable Energy, 2005, 30(8): 1299-1308.
    [85] C. Bueno, J. A. Carta. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands[J]. Renewable and Sustainable Energy Reviews, 2006, 10(4): 312-340.
    [86] H. G. Beyer, T. Degner, H. Gabler. Operational behaviour of wind diesel systems incorporating short-term storage: An analysis via simulation calculations[J]. Solar Energy, 1995, 54(6): 429-439.
    [87]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化, 2003, 27(8): 84-89.
    [88] J. O. G. Tande. Exploitation of wind-energy resources in proximity to weak electric grids[J]. Applied Energy, 2000, 65(1-4): 395-401.
    [89]陈树勇,申洪,张洋, et al.基于遗传算法的风电场无功补偿及控制方法的研究[J].中国电机工程学报, 2005, 25(8): 1-6.
    [90] N. G. Boulaxis, S. A. Papathanassiou, M. P. Papadopoulos. Wind turbine effect on the voltage profile of distribution networks[J]. Renewable Energy, 2002, 25(3): 401-415.
    [91] T. Thiringer, T. Petru, S. Lundberg. Flicker contribution from wind turbine installations[J]. IEEE Transactions on Energy Conversion, 2004, 19(1): 157-163.
    [92] J. Morren, S. W. H. de Haan. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 435-441.
    [93] Y. Q. Zhan, S.S. Choi, D.M. Vilathgamuwa. A voltage-sag compensation scheme based on the concept of power quality control center[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 296-304.
    [94] E. Muljadi, C. P. Butterfield, H. Romanowitz, et al. Self-Excitation and Harmonics in Wind Power Generation[J]. Journal of Solar Energy Engineering, 2005, 127: 581-587.
    [95]李欣然,贺仁睦,章健, et al.负荷特性对电力系统静态电压稳定性的影响及静态电压稳定性广义实用判据[J].中国电机工程学报, 1999, 19(4): 26-30.
    [96]李欣然,贺仁睦,周文.一种具有全电压范围适应性的综合负荷模型[J].中国电机工程学报, 1999, 19(5): 71-75.
    [97]李欣然,贺仁睦,周文, et al.综合负荷感应电动机模型的改进及其描述能力[J].电力系统自动化, 1999, 23(9): 23-27.
    [98]李欣然,陈元新,苏盛.感应电动机的参数加权平均综合建模[J].电力系统自动化, 2001, 25(16): 20-24.
    [99] M. Bouzguenda, S. Rahman. Value analysis of intermittent generation sources from the system operations perspective[J]. IEEE Transactions on Energy Conversion, 1993, 8(3): 484-490.
    [100]陈树勇,戴慧珠,白晓民, et al.风电场的发电可靠性模型及其应用[J].中国电机工程学报, 2000, 20(3): 26-29.
    [101]王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报, 2005, 25(10): 103-106.
    [102]吴义纯,丁明,李生虎.风电场对发输电系统可靠性影响的评估[J].电工技术学报, 2004, 19(11): 72-76.
    [103] R. Billinton, B. Guang. Generating capacity adequacy associated with wind energy[J]. IEEE Transactions on Energy Conversion, 2004. 19(3): 641-646.
    [104]雷亚洲,王伟胜,印永华, et al.一种静态安全约束下确定电力系统风电准入功率极限的优化方法[J].中国电机工程学报, 2001, 21(6): 25-28.
    [105]雷亚洲,王伟胜,印永华, et al.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报, 2002, 22(5): 32-35.
    [106] E. D. Castronuovo, J. A. P. Lopes. On the optimization of the daily operation of a wind-hydro power plant[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1599-1606.
    [107] R. Cardenas, R. Pena, G. Asher, et al. Power smoothing in wind generation systems using a sensorless vector controlled induction Machine driving a flywheel[J]. IEEE Transactions on Energy Conversion, 2004, 19(1): 206-216.
    [108]邰圣平,赵天洪,陈思宁, et al.大型风力发电机组微机监控装置的研制[J].电力系统自动化, 1998, 22(12): 53-55.
    [109]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社, 2002, 242.
    [110]徐德,诸静.风力发电机风向随动控制系统[J].太阳能学报, 2000, 21(2): 186-191.
    [111]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报, 2004, 24(3): 6-11.
    [112]付旺保,赵栋利,潘磊, et al.基于自抗扰控制器的变速恒频风力发电并网控制[J].中国电机工程学报, 2006, 26(3): 13-18.
    [113]孙同景. 200kW风力发电机控制系统研究[J].太阳能学报, 1998, 19(1): 48-53.
    [114]包能胜,叶枝全.水平轴失速型风力机主动非线性控制[J].太阳能学报, 2004, 25(4): 519-524.
    [115]包能胜,陈庆新.变转速风力机额定风速以上的非线性控制—恒功率输出控制问题[J].控制理论与应用, 1999, 16(5): 747-750.
    [116]闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制[J].电工技术学报, 2002, 17(6): 82-86.
    [117]王耀南,王辉,邱四海, et al.基于递归模糊神经网络的感应电机无速度传感器矢量控制[J].中国电机工程学报, 2004, 24(5): 84-89.
    [118]黄守道,王耀南,王毅, et al.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报, 2005, 25(4): 87-93.
    [119]黄守道,王耀南,黄科元, et al.无刷双馈电机转子磁场定向控制策略的研究[J].电工技术学报, 2002, 17(2): 34-39.
    [120] Anindya Ghoshal, Mannur J. Sundaresan, Mark J. Schulz, et al. Structural health monitoring techniques for wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 309-324.
    [121] John F. Mandell, Daniel D. Samborsky, Lei Wang, et al. New Fatigue Data for Wind Turbine Blade Materials[J]. Journal of Solar Energy Engineering, 2003, 125: 506-514.
    [122] Lasse Makkonen, Timo Laakso, Mauri Marjaniemi, et al. Modelling and prevention of ice accretion on wind turbines. Wind Engineering, 2001, 25(1): 3-21.
    [123] D. Robb. Wind energy at sea: Ensuring worker safety[J]. Refocus, 2005, 6(2): 40-42.
    [124]张维智.二元翼型大攻角实验方法研究[J].风力发电, 1991(2): 10-14.
    [125]何宗敬. Darrieus—Savonius组合风轮气动性能的研究[J].太阳能学报, 1992, 13(3): 239-244.
    [126] Marsh, G., S. Peace. Tilting at windmills: Utility-scale VAWTs: towards 10MW and beyond?[J] Refocus, 2005, 6(5): 37-42.
    [127]季田,田德.浓缩风能型风力发电机迎风自动控制系统[J].太阳能学报, 2003, 24(1): 90-93.
    [128] B. Frankovic, I. Vrsalovic. New high profitable wind turbines[J]. Renewable Energy, 2001, 24(3-4): 491-499.
    [129]潘再平.一种利用高空风能进行发电的新方法[J].太阳能学报, 1999, 20(1): 31-37.
    [130] F. F. Bryukhan, R. D. Diab. Wind Energy Resource Estimation of the Upper Atmosphere over Southern Africa[J]. Journal of Applied Meteorology, 1995, 34(11): 2565-2576.
    [131] W. J. Ockels. Laddermill, a novel concept to exploit the energy in the airspace[J]. Aircraft Design, 2001, 4(2-3): 81-97.
    [132] G. Westerholm. The wind energy frontier: Urban retail markets[J]. Refocus, 2004, 5(4): 42-45.
    [133] W. E. Alnaser. Mobile solar and wind-powered generator (MSWPG). Applied Energy, 1999, 64(1-4): 97-105.
    [134]张雏智,李方洲,张晖, et al.小型水平轴风力发电机风洞试验[J].风力发电, 2004, 20(1): 24-30.
    [135]包能胜,霍福鹏,叶枝全, et al.表面粗糙度对风力机翼型性能的影响[J].太阳能学报, 2005, 26(4): 458-462.
    [136] A. J. Bowen, N. Zakay, R.L. Ives. The field performance of a remote 10 kW wind turbine[J]. Renewable Energy, 2003, 28(1): 13-33.
    [137] J. Rohatgi, G. Barbezier. Wind turbulence and atmospheric stability -- Their effect on wind turbine output[J]. Renewable Energy, 1999, 16(1-4): 908-911.
    [138]王承煦,张源.风力发电[M].北京:中国电力出版社, 2002, 209.
    [139] Tony Burton, David Sharpe, Nick Jenkins, et al. Wind Energy Handbook[M]. Chichester: John Wiley & Sons Ltd., 2001, 609.
    [140] S. Singh, T. S. Bhatti, D. P. Kothari. A Review of Wind-Resource-Assessment Technology[J]. JOURNAL OF ENERGY ENGINEERING, 2006, 132(1): 8-14.
    [141] I. Van der Hoven. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour[J]. Journal of the Atmospheric Sciences, 1957, 14(2): 160-164.
    [142]骆箭原,朱瑞兆.北京八达岭地区近地层风谱特性[J].太阳能学报, 1993, 14(4): 279-287.
    [143] E. E. Morfiadakis, G. L. Glinou, M. J. Koulouvari. The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(2-3): 237-257.
    [144] J. C. KAIMAIL, J. A. BUSINGER. Preliminary Results Obtained with a Sonic Anemometer-Thermometer[J]. JOURNAL OF APPLIED METEOROLOGY, 1963, 2: 180-186.
    [145] P. S?rensen, A. D. Hansen, P. A. C. Rosas. Wind models for simulation of power fluctuations from wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1381-1402.
    [146] J. C. KAIMAL. Horizontal Velocity Spectra in an Unstable Surface Layer[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1978, 35: 18-24.
    [147] Poul S?rensen, Anca Hansen, Lorand Janosi, et al. Simulation of Interaction between Wind Farm and Power System[R]. Roskilde, Denmark: Ris? National Laboratory, 2001.
    [148] S. C. Pryor, R. J. Barthelmie, E. Kjellstrom. Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model[J]. Climate Dynamics, 2005, 25(7 - 8): 815-835.
    [149] K. Conradsen, L. B. Nielsen, L. P. Prahm. Review of Weibull Statistics for Estimation of Wind Speed Distributions[J]. Journal of Applied Meteorology,1984, 23(8): 1173-1183.
    [150] G. N. Kariniotakis, G. S. Stavrakakis, E. F. Nogaret. Wind power forecasting using advanced neural networks models[J]. IEEE Transactions on Energy Conversion, 1996, 11(4): 762-767.
    [151] C. W. Potter, M. Negnevitsky. Very Short-Term Wind Forecasting for Tasmanian Power Generation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 965-972.
    [152] J. G. Slootweg, W. L. Kling. Modelling and Analysing Impacts of Wind Power on Transient Stability of Power Systems[J]. Wind Engineering, 2001, 25(6): 3-20.
    [153] D. Hu, O. Hua, Z. Du. A study on stall-delay for horizontal axis wind turbine[J]. Renewable Energy, 2006, 31(6): 821-836.
    [154] D. E. Neff, R. N. Meroney. Mean wind and turbulence characteristics due to induction effects near wind turbine rotors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 413-422.
    [155] Takao Maeda, Takeshi Yokota, Yukimaru Shimizu, et al. Wind Tunnel Study of the Interaction between Two Horizontal Axis Wind Turbines[J]. Wind Engineering, 2004, 28(2): 197-212.
    [156] C. G. Anderson, J. B. Richon, T. J. Campbell. An aerodynamic moment-controlled surface for gust load alleviation on wind turbine rotors[J]. IEEE Transactions on Control Systems Technology, 1998, 6(5): 577-595.
    [157] Y. X. Tao, R. Scott, P. Tu. Phenomenological models for post-stall airfoil characteristics of horizontal-axis wind turbines[J]. Renewable Energy, 1997, 10(2-3): 259-263.
    [158] Z. Chen, E. Spooner. Grid power quality with variable speed wind turbines[J]. IEEE Transactions on Energy Conversion, 2001, 16(2): 148-154.
    [159] H. De Battista, P. F. Puleston, R. J. Mantz, et al. Sliding mode control of wind energy systems with DOIG-power efficiency and torsional dynamics optimization[J]. IEEE Transactions on Power Systems, 2000, 15(2): 728-734.
    [160] J. Mann.Wind field simulation[J]. Probabilistic Engineering Mechanics, 1998, 13(4): 269-282.
    [161] L. C. Berselli, T. Iliescu, W. J. Layton. Mathematics of Large Eddy Simulation of Turbulent Flows[M]. Berlin: Springer-Verlag, 2006, 357.
    [162] T. Kitagawa, T. Nomura. A wavelet-based method to generate artificial wind fluctuation data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(7): 943-964.
    [163]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报, 2005, 25(21): 41-44.
    [164] G. C. Thomann, M. J. Barfield. The time variation of wind speeds and windfarm power output in Kansas[J]. IEEE Transactions on Energy Conversion, 1988, 3(1): 44-49.
    [165]吴湘淇.信号、系统与信号处理[M].北京:电子工业出版社, 1996, 314.
    [166] D. Elliott, M. Schwartz, G. Scott, et al. Wind Energy Resource of Armenia[R]. Golden, Colorado: National Renewable Energy Laboratory, 2003.
    [167] Joel E. Cohen, Charles M. Newman, Adam E. Cohen, et al. Spectral mimicry: A method of synthesizing matching time series with different Fourier spectra[J]. Circuits, Systems, and Signal Processing, 1999, 18(3): 431-442.
    [168] I. Sanchez. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006, 22(1): 43-56.
    [169] M. N. Schwartz, B. H. Bailey. Wind forecasting objectives for utility schedulers and energy traders[R]. Golden, Colorado: National Renewable Energy Laboratory, 1998.
    [170] M. Ahlstrom, L. Jones, R. Zavadil, et al. The future of wind forecasting and utility operations[J]. IEEE Power and Energy Magazine, 2005, 3(6): 57-64.
    [171] Richard Piwko, George Boukarim, Kara Clark, et al. The effects of integrating wind power on transmission system planning, reliability, and operations, Report on Phase 1: Preliminary Overall Reliability Assessment[R]. New York: GE Power Systems Energy Consulting, 2004.
    [172] Li Shuhui, D. C. Wunsch, E. A. O'Hair, et al. Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conversion, 2001, 16(3): 276-282.
    [173] E. Denny, M. O'Malley. Wind generation, power system operation, and emissions reduction[J]. IEEE Transactions on Power Systems, 2006, 21(1): 341-347.
    [174] A. Sfetsos. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy, 2000, 21(1): 23-35.
    [175] G. Giebel. The State-Of-The-Art in Short-Term Prediction of Wind Power - A Literature Overview[R]. Roskilde, Denmark: Ris? National Laboratory, 2003.
    [176] J. L. WALMSLEY, R. J. BARTHELMIE, W. R. BURROWS. The statistical prediction of offshore winds from land-based data for wind-energy applications[J]. Boundary-Layer Meteorology, 2001, 101: 409-433.
    [177] Alberto Fabbri, Tomás Gómez San Román, Juan Rivier Abbad, et al. Assessmentof the Cost Associated With Wind Generation Prediction Errors in a Liberalized Electricity Market[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1440-1446.
    [178] Julio Usaola, Oswaldo Ravelo, Gerardo González, et al. Benefits for Wind Energy in Electricity Markets from Using Short Term Wind Power Prediction Tools; a Simulation Study[J]. Wind Engineering, 2004, 28: 119-127.
    [179] H. Holttinen. Hourly wind power variations in the Nordic countries[J]. Wind Energy, 2005, 8(2): 173-195.
    [180] Y.-h. Wan, J. Demy Bucaneg. Short-Term Power Fluctuations of Large Wind Power Plants[J]. Journal of Solar Energy Engineering, 2002, 124: 427-431.
    [181] M. Lange. On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors[J]. Journal of Solar Energy Engineering, 2005, 127: 177-184.
    [182] G. Giebel, L. Landberg, G. Kariniotakis, et al. State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production[C]. in Proc. of the 2003 European Wind Energy Association Conference, 2003, 18-23.
    [183]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报, 2005, 25(11): 1-5.
    [184] B. G. Brown, R. W. Katz, A. H. Murphy. Time Series Models to Simulate and Forecast Wind Speed and Wind Power[J]. Journal of Applied Meteorology, 1984, 23(8): 1184-1195.
    [185] P. H. Franses, R. Paap. Model Selection in Periodic Autoregressions[J]. Oxford Bulletin of Economics and Statistics, 1994, 56(4): 421-439.
    [186] C. Xu, I. C. Goulter. Reliability-Based Optimal Design of Water Distribution Networks[J]. Journal of Water Resources Planning and Management, 1999, 125(6): 352-362.
    [187] H. Lütkepohl. New Introduction to Multiple Time Series Analysis[M]. Berlin: Springer, 2005, 766.
    [188] P. G. Allen, B. J. Morzuch. Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?[J] International Journal of Forecasting, 2006, 22(3): 475-492.
    [189] W. H. Greene. ECONOMETRIC ANALYSIS, 5th Editiond[M]. Upper Saddle River, New Jersey: Pearson Education, Inc., 2003, 1210.
    [190] Bradley T. Ewing, Jamie Brown Kruse, John L. Schroeder, et al. Time series analysis of wind speed using VAR and the generalized impulse responsetechnique[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95: 209-219.
    [191] D. Elliott, M. Schwartz, G. Scott, et al. Wind Energy Resource Atlas of Southeast China[R], Golden, Colorado: National Renewable Energy Laboratory, 2002.
    [192] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, et al. Analysis of the value for unit commitment of improved loadforecasts[J]. IEEE Transactions on Power Systems, 1999, 14(4): 1342-1348.
    [193]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化, 2004, 28(17): 1-11.
    [194]雷绍兰,孙才新,周湶, et al.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报, 2006, 26(2): 25-29.
    [195] H. K. Alfares, M. Nazeeruddin. Electric load forecasting: literature survey and classification of methods[J]. International Journal of Systems Science, 2002, 33(1): 23-34.
    [196] I. Moghram, S. Rahman. Analysis and evaluation of five short-term load forecasting techniques[J]. IEEE Transactions on Power Systems, 1989, 4(4): 1484-1491.
    [197] H. Shyh-Jier, S. Kuang-Rong. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations[J]. IEEE Transactions on Power Systems, 2003, 18(2): 673-679.
    [198] J. D. Hamilton. Time Series Analysis[M]. Princeton, New Jersey: Princeton University Press, 1994, 813.
    [199] M. R. Patel. Wind and Solar Power Systems[M]. New York, U. S. A: CRC Press, 1999, 351.
    [200] J. F. Manwell, J. G. McGowan, A. L. Rogers. Wind Energy Explained: Theory, Design and Application[M]. Chichester: John Wiley & Sons, 2002, 590.
    [201] C. Vilar, H. Amaris, J. Usaola. Assessment of flicker limits compliance for wind energy conversion system in the frequency domain[J]. Renewable Energy, 2006, 31(8): 1089-1106.
    [202] R. Piwko, D. Osborn, R. Gramlich, et al. Wind energy delivery issues: transmission planning and competitive electricity market operation[J]. IEEE Power and Energy Magazine, 2005, 3(6): 47-56.
    [203] A. Pantaleo, A. Pellerano, M. Trovato. Technical issues for wind energy integration in power systems: Projections in Italy[J]. Wind Engineering, 2003, 27(6): 473-493.
    [204] R. M. G. Castro, L. A. F. M. Ferreira. A comparison between chronological and probabilistic methods to estimate wind power capacity credit[J]. IEEE Transactions on Power Systems, 2001, 16(4): 904-909.
    [205] S. C. Tripathy. Dynamic simulation of hybrid wind-diesel power generation system with superconducting magnetic energy storage[J]. Energy Conversion and Management, 1997, 38(9): 919-930.
    [206] A. N. Celik. A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage[J]. Renewable Energy, 2003, 28(4): 561-572.
    [207] R. Gazey, S. K. Salman, D. D. Aklil-D'Halluin. A field application experience of integrating hydrogen technology with wind power in a remote island location[J]. Journal of Power Sources, 2006, 157(2): 841-847.
    [208] G. O. Cimuca, C. Saudemont, B. Robyn, et al. Control and Performance Evaluation of a Flywheel Energy-Storage System Associated to a Variable-Speed Wind Generator[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1074-1085.
    [209] J. A. Carta, J. Gonzalez, C. Gomez. Operating results of a wind-diesel system which supplies the full energy needs of an isolated village community in the Canary Islands[J]. Solar Energy, 2003, 74(1): 53-63.
    [210] J. M. Angarita, J. G. Usaola. Combining hydro-generation and wind energy: Biddings and operation on electricity spot markets[J]. Electric Power Systems Research, 2007, 77(5-6): 393-400.
    [211]金双彦,徐建华,田中岳, et al.黄河三门峡站天然年径流量枯水段分析[J].人民黄河, 2006, 28(7): 12-13.
    [212]徐元顺.近75年丹江口水库入库流量时间变化特征与气候成因[J].湖北气象, 2005(4): 21-23.
    [213]李杰友.降水或径流量长期预报系统的开发和应用[J].水文, 2001, 21(3): 27-29.
    [214] H. A. Al-Ismaily, S. Douglas Probert. Prospects for harnessing wind-power economically in the sultanate of Oman[J]. Applied Energy, 1996, 55(2): 85-130.
    [215] J. K. Kaldellis. Optimum autonomous wind power system sizing for remote consumers, using long-term wind speed data[J]. Applied Energy, 2002, 71(3): 215-233.
    [216]于午铭,左倜.构建水电——风电互补系统实现阿勒泰地区全年的均衡供电[J].风力发电, 1999(3): 23-33.
    [217] C. Bueno, J. A. Carta. Technical-economic analysis of wind-powered pumped hydrostorage systems. Part I: model development[J]. Solar Energy, 2005, 78(3): 382-395.
    [218] C. Bueno, J. A. Carta. Technical-economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro[J]. Solar Energy, 2005, 78(3): 396-405.
    [219] J. K. Kaldellis, K. A. Kavadias. Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment[J]. Applied Energy, 2001, 70(4): 333-354.
    [220] G. C. Bakos. Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production[J]. Applied Energy, 2002, 72(3-4): 599-608.
    [221] D. Brooks, T. Key, L. Felton. Increasing the value of wind generation through integration with hydroelectric generation[C]. in Power Engineering Society General Meeting, IEEE. 2005.
    [222] G. N. Bathurst, G. Strbac. Value of combining energy storage and wind in short-term energy and balancing markets[J]. Electric Power Systems Research, 2003, 67(1): 1-8.
    [223] C. Belanger, L. Gagnon. Adding wind energy to hydropower[J]. Energy Policy, 2002, 30(14): 1279-1284.
    [224] Daniel F. Ancona, Stéphane Krau, Gaétan Lafrance, et al. Operational Constraints and Economic Benefits of Wind-Hydro Hybrid Systems Analysis of Systems in the US/Canada and Russia[C]. in European Wind Energy Conference, Madrid, Spain, 2003.
    [225] T. G. Barbounis, J. B. Theocharis. Locally recurrent neural networks for long-term wind speed and power prediction[J]. Neurocomputing, 2006, 69(4-6): 466-496.
    [226]邱林,陈守煜.水电站水库实时优化调度模型及其应用[J].水利学报, 1997, 28(3): 74-77.
    [227]严导淦.物理学[M].北京:高等教育出版社, 1981, 287.
    [228] Koki Kishinami, Hiroshi Taniguchi, Jun Suzuki, et al. Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine[J]. Energy, 2005, 30(11-12): 2089-2100.
    [229]徐华舫.空气动力学基础(上册)[M].北京:北京航空学院出版社, 1987, 22.
    [230] L. J. Vermeer, J. N. Sorensen, A. Crespo. Wind turbine wake aerodynamics[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 467-510.
    [231] F. Bruzelius. Linear Parameter-Varying Systems: an approach to gainscheduling[D]. Goteborg, Sweden: Chalmers University of Technology, 2004, 167.
    [232] F. D. Bianchi, H. D. Battista, R. J.Mantz. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design[M]. Berlin: Springer, 2007, 217.
    [233] A. Rosen, Y. Sheinman. The power fluctuations of a wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(1): 51-68.
    [234] G. Lalor, A. Mullane, M. O'Malley. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1905-1913.
    [235] J. Ekanayake, N. Jenkins. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 800-802.
    [236] W. E. Leithead. Dependence of performance of variable speed wind turbines on the turbulence, dynamics and control[J]. IEE Proceedings C - Generation, Transmission and Distribution, 1990. 137(6): 403-413.
    [237] A. D. Wright, M. J. Balas. Design of Controls to Attenuate Loads in the Controls Advanced Research Turbine[J]. Journal of Solar Energy Engineering, 2004, 126: 1083-1091.
    [238]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报, 2006, 26(5): 43-50.
    [239] K.R.H.-h. Choi. Application of neural network controller for maximum power extraction of a grid-connected wind turbine system[J]. Electrical Engineering, 2005, 88: 45-53.
    [240] N. Kodama, T. Matsuzaka. Power Variation Control of a Wind Turbine Generator using Probabilistic Optimal Control, including Feed-Forward Control from Wind Speed[J]. Wind Engineering, 2000, 24(1): 13-23.
    [241] W. E. Leithead, S. de la Salle, D. Reardon. Role and objectives of control for wind turbines[J]. IEE Proceedings C - Generation, Transmission and Distribution, 1991, 138(2): 135-148.
    [242] R. Cardenas, R. Pena, G. Asher, et al. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 625-635.
    [243] Florin Iov, Anca Daniela Hansen, Poul S?rensen, et al. Wind Turbine Blockset in Matlab/Simulink[R]. Aalborg University, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700