风力发电系统用双馈感应发电机矢量控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规能源日趋匮乏,环境问题也日趋严重,风力发电在全世界正以前所未有的速度发展。由于变速恒频双馈风力发电技术能够实现风电机组和电网之间的柔性连接,提高了风电转换效率,并且作为主要控制部件的电力电子变换器容量仅为发电机转差率容量,高效经济的特点使其成为风力发电技术的重要发展方向,具有广阔的应用前景。本文对变速恒频双馈风力发电系统中双馈感应发电机的励磁矢量控制技术进行了较为深入的研究,主要内容如下:
     本文首先建立了双馈感应发电机稳态数学模型和等值电路,详细推导了双馈感应发电机转子励磁电压和电流与有功、无功功率以及转差率s之间的关系;定性分析了双馈感应发电机稳态运行特性;分析、论证了绕组折算和频率折算关系,对励磁电源变频器设计有指导意义。
     建立了双馈感应发电机并网运行、独立运行和空载运行的数学模型,以及三种运行状态下基于定子磁链定向的励磁矢量控制策略,并在Matlab\Simulink仿真平台上建立了相应的仿真模型,对变速恒频双馈风力发电系统三种状态的运行特性进行了仿真研究,验证了控制策略的正确性。
     根据整个风电系统运行要求,将并网运行双馈感应发电机的控制系统有功指令值分为定子侧有功功率、电磁转矩和转速,由此将其励磁控制策略分为电流模式控制和速度模式控制。提出并网型双馈感应发电机的速度模式控制优于电流模式控制,指出速度模式控制才能控制表征风电系统获得风能的状态变量——风力机转速。同时设计了电流内环、速度外环和功率外环控制器,建立了相应的仿真模型,验证了这一结论。
     详细分析了整个风力发电机组在电网电压不对称条件下运行产生不良后果的机理,指出双馈感应发电机建立在正序旋转坐标下的励磁矢量控制策略对转子负序电流无法进行有效控制是产生不良影响的本质原因。
     通过同时对正序和负序定子磁链进行定向,推导出正序和负序坐标系下并网型双馈感应发电机的数学模型,并得到适应于电网电压不对称条件下的励磁矢量控制策略。该控制策略包含了能对转子负序电流进行有效控制的负序控制系统。根据电网电压不对称带来的不良影响将负序控制系统的控制目标分为四类,推导出各控制目标下的转子负序电流指令值。对四种控制目标分别进行仿真,通过对仿真结果的分析得到了具有指导性意义的结论:负序控制系统是一个两输入多输出的系统,不可能解决电网电压不对称带来的所有问题;以抑制定子电流或转子电流不对称为控制目标效果相差不大,对抑制其它物理量脉动效果较好;以抑制电磁转矩为控制目标,需要以定、转子电流不对称为代价,但转速、定子无功功率以及整个风电系统向电网输出的有功功率等物理量的脉动同时得到抑制。
     构建了一套变速恒频双馈风力发电系统实验平台,研制了其中的核心部分——双PWM电压型变换器,包括转子侧变换器和电网侧变换器。在该实验平台上进行了系列实验研究:电网侧变换器空载启动、突加负载,带电池的能量双向流动,以及有功和无功功率的解耦控制,实验结果表明电网侧变换器能够为转子转差能量提供双向流动的通道,实现有功和无功功率的解耦控制,并且动、静态特性良好;双馈感应发电机采用转子侧并网方式进行并网,实验结果表明双馈风力发电系统投入平滑,没有电流冲击;并网型双馈感应发电机在超同步和亚同步运行下的运行特性实验,实验结果验证了双馈感应发电机励磁矢量控制策略的正确性。
With the situation of energy source exhaustion and environmental pollution, the wind energy generation is gaining more and more attention around the world. The variable speed constant frequency (VSCF) wind energy generation system with doubly fed induction generator (DFIG) not only realizes flexible connection of mechanical-electric system, enhances wind-electric energy conversion efficiency, but also possesses the characteristics of small cubage, light weight because the transducer as AC excitation of DFIG only deals with slip power in double direction. So the research and application of the DFIG progress at a rapid rate in wind power generating application. VSCF wind energy generation system with DFIG and its control technology is studied in this paper. The primary contents and original contributions of this dissertation are as follows:
     The steady state mathematical model and its equivalent-circuit model of DFIG are established, and the interrelations of key physical parameters such as power, rotor current and slip are discussed. For this basis,issues about operational characteristics、power floating and static operation performance are qualitative analyzed. It also discusses the influence of winding translation and frequency translation on rotor voltage, rotor current, active power and reactive power, and indicates essence of that the transducer capacity is slip ratio of generator capacity.
     Mathematical models in the synchronous rotary coordinate of the grid-connection, stand-alone and no load DFIG are established respectively. The excitation vector control strategies based on stator-flux orientation of grid-connection, stand-alone and no load DFIG are also put forward. The simulation models of DFIG on three states on MATLAB/Simulink environments are established. The simulation results verify the DFIG vector control strategy, which realizes good static and dynamic performance and obtains decoupling control of active power and reactive power.
     The reference value of DFIG vector control system is generally the active power, the electromagnetic torque, or the rotor speed. The former two may be termed 'current-mode control', and the last may be termed 'speed-mode control'. It presents that the system dynamic characteristics under speed-mode control are superior to the dynamic characteristics under current-mode control and brings forward the state space explanation that the speed-mode control can control the wind turbine speed which indicates the wind energy that the system achieves. It designs the gains of two typical PI controllers in the current inner loop and the speed outer loop under speed-mode control. Simulation results in MATLAB/Simulink are brought forward to verify the good static and dynamic performance of the designed closed-loop control system.
     The effect of unbalanced grid voltage on wind energy generation system is studied, and the essential reason is analyzed that DFIG traditional excitation vector control system which built in the synchronous rotary coordinate can not effectively control the negative sequence component of rotor current.
     By orienting the positive and negative components of stator flux at the same time, it deduces mathematical model of grid connection DFIG under the positive and negative rotary coordinates for the first time, and puts forward DFIG excitation vector control strategy suitable for the condition of unbalanced grid voltage. It classifies the control targets of negative control system into four kinds, and draws significative conclusions by analyze the simulation results that it can minimize oscillations in either active power, or electromagnetic torque, or stator or rotor currents with the proposed control strategy.
     At last, it designs and sets up an experimental set of small capacity. Based on the stator flux-oriented vector control, this paper puts forward the excitation vector control strategies for the grid-connected, stand-alone and no-load states of DFIG respectively. It also presents the difference between the no-load cutting-in control and direct cutting-in control. The experiment investigation was made to further verify the effect of the direct cutting-in strategy and excitation vector control strategy of grid-connected DFIG. The results offer a good review of cutting-in process and the dynamic and static performance of the grid-connected DFIG system.
     It designs and implements a laboratory platform of VSCF wind energy generation system with DFIG which main part is a set of dual PWM voltage-source converters that includes the rotor-side converter and grid-side converter. A number of experiment items are performed on this platform, which including the grid-side converter control, the DFIG output active and reactive power decoupled control at the super synchronous, synchronous and sub synchronous speed, cut in control at DFIG rotor side. The experimental results testify the validity of the theory and the control strategy proposed in this dissertation.
引文
[1]王承煦,张源.风力发电.北京:中国电力出版社, 2002
    [2]刘清,张军,李桂菊. 2006年全球风电市场的发展状况. www. newenergy. com. cn, 2007
    [3]何祚庥,王亦楠.风力发电——我国能源和电力可持续发展战略的最现实选择. 2005科学发展报告, 2005
    [4] 2007-2008年中国风力发电行业分析及投资咨询报告.中国投资咨询
    [5]耿华,杨耕,崔杨,梁之龙.并网型风力发电系统的现状与发展.东方电气评论, 2006, 20(2): 1-7
    [6]摆脱风电发展桎梏,国产1. 5兆瓦风电机组强势出炉.电源世界, 2006: 166
    [7]首台2兆瓦风力发电机组下线. www. newenergy. com. cn, 2007
    [8]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社, 2002
    [9]叶启明.大型风力发电机组系统的结构与特点.华中电力, 2002, 15(2): 67-68
    [10]倪受元.风力发电讲座第一讲风力机的类型与结构, 6-10
    [11]倪受元.风力发电讲座第二讲风力机的工作原理和气动力特性, 12-16
    [12]张新房,徐大平,柳亦兵.定桨距变速风力发电机组的控制策略研究华北电力大学学报, 2004, 31(5): 38-43
    [13]汪韧冬,赵斌.基于89C51单片机的定桨距失速型风电机组软并网装置研究,太阳能学报, 2004, 25(3): 359-363
    [14]倪受元.风力发电讲座第三讲风力发电用的发电机及风力发电系统, 12-17
    [15] Henk Polinder, Frank F. A. van der Pijl, Gert-Jan de Vilder, Peter J. Tavner. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy conversion, 2006, 21(3): 725-733
    [16]金玉洁,毛承雄,王丹,曾杰.直驱式风力发电系统的应用分析.能源工程, 2006(3): 29-33
    [17]胡海燕,潘再平.开关磁阻风力发电系统综述.机电工程, 2004, 21(10): 48-52
    [18]黄守道,王毅,王耀南,李新田.无刷双馈电机风力发电控制系统与仿真研究.湖南大学学报(自然科学版), 2004, 31(1): 37-40
    [19]黄守道,王耀南,王毅.无刷双馈电机的有功和无功功率控制研究.中国电机工程学报, 2005, 25(4): 87-93
    [20]王琦,陈小虎,纪延超,李枫.基于双同步坐标的无刷双馈风力发电系统的最大风能追踪控制,电网技术, 2007, 31(3): 82-87
    [21]陈坚.电力电子学—电力电子变换和控制技术.北京:高等教育出版社, 2002
    [22]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社, 1989
    [23]汤蕴谬,史乃等.电机学.北京:机械工业出版社, 2001
    [24]陈伯时.电力拖动自动控制系统.北京:机械工业出版社, 1992
    [25]陈伯时,陈敏逊.交流调速系统.北京:机械工业出版社, 2000
    [26]柴肇基,电力传动与调速系统.北京:北京航空航天大学出版社, 1992
    [27] F. J. Brady. A mathematical model for the doubly-fed wound rotor generator, IEEE Trans. Power Apparatus and Systems, 1984, 103(4): 798-802
    [28] F. J. Brady. A mathematical model for the doubly-fed wound rotor generator-part. IEEE Trans. Energy Conversion, 1986, 1(2): 180-183
    [29] Peresada S., Tilli A., Tonielli A. Robust active-reactive power control of a doubly-fed induction generator. IECON, 1998, 3: 1621-1625
    [30] Peresada S., Tilli A., Tonielli A. Dynamic output feedback linearlizing control of a doubly-fed induction motor. ISIE, 1999, 3: 1256-1260
    [31] Sergei Peresada, Andrea Tilli et al. Indirect stator flux-oriented output feedback control of a doubly fed induction machine. IEEE Trans. On Control System Technology, 2003, 11(6): 875-888
    [32] R. W. De Doncker, S. Muller, M. Deicke. Doubly fed induction generator systems for wind turbines. IEEE Ind, Appl. Mag., 2000, 8(3): 26-33
    [33]辜承林,韦忠朝,黄声华等.对转子交流励磁电流实行矢量控制的变速恒频发电机(第一部分:控制模型与数值仿真).中国电机工程学报, 1996, 16(2): 119-124
    [34] R. Pena, J. C. Clare, G. M. Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energygeneration. IEE Proc. Electr. Power Appl., 1996, 143(3): 231-241
    [35] Pena R., Cardenas R., Clare J. Control strategy of doubly fed induction generators for a wind diesel energy system. IECON 2002, 4: 3297-3302
    [36]李健,李华德.双馈感应变速恒频风力发电机控制系统研究.电气传动, 2004, 4: 16-18
    [37] B. Hopfensperger, R. A. Lakin. Stator flux oriented control of a cascaded doubly-fed induction machine. IEE Proc. Electric Power Application, 1999, 146(6): 597-605
    [38] B. Hopfensperger, R. A. Lakin. Stator flux oriented control of a doubly-fed induction machine with and without position encoder. IEE Proc. Electric Power Application, 2000, 147(4): 241-250
    [39] A. Tapia, G. Tapia, J. X. Ostolaza, et al. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans. on Energy Convers., 2003, 18(2): 194-204
    [40] J. W. Park, K. W. Lee, H. J. Lee. Control of active power in a doubly-fed induction generator taking into account the rotor side apparent power. PESC, 2004, 3: 2060-2064
    [41] Abolhassani M. T., Enjeti P., Toliyat H. A. integrated doubly-fed electric alternator/active filter(IDEA), a viable power quality solution, for wind energy conversion systems. IAS, 2004, 3: 2036-2043
    [42] Mehdi T. Abolhassani, Peyman Niazi et al. A sensorless integrated doubly-fed electric alternator/active filter(IDEA)for variable speed wind energy system. IEMDC, 2003: 507-514
    [43] M. Yamamoto, O. Motoyashi. Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electronics, 1991, 6(4): 624-629
    [44] L. Refoufi, B. A. T. A. Zahawi, G. Jack. Analysis and modeling of steady state behavior of the static Kramer induction generator. IEEE Trans. Energy Conversion, 1999, 14(3): 333-339
    [45]刘其辉,贺益康,张建华.交流励磁变速恒频双馈型异步发电机的稳态功率关系.电工技术学报, 2006, 21(2): 39-44
    [46]韦忠朝,黄声华,陶醒世,辜承林.变速恒频双馈发电机运行原理及稳态性能分析.华中科技大学学报, 1996, 24(5): 34-37
    [47]邱培基,汤宁平,叶文键,卓忠疆.变速交流励磁感应发电机的稳态分析.电工技术学报, 1998, 13(5): 16-20
    [48] J. Tamura, T. Sasaki et al. Analysis of the steady state characteristics of doubly fed synchronous machines. IEEE Trans. On Energy Conversion, 1988, 4(2): 250-256
    [49]邱培基,汤宁平,蒋石林.并网变速双馈感应发电机稳态运行特性的分析.福州大学学报, 1997, 25(6): 36-42
    [50]郭可忠,黄宏亮,莫春霞.交流励磁发电机稳态运行的分析.上海交通大学学报, 2002, 36(2): 251-254
    [51]黄曦东.交流励磁电机的稳态运行特性.哈尔滨电工学院学报, 1995, 18(4): 385-390
    [52]宁玉泉,李炜,涂光瑜.双馈交流励磁变速电机的稳态特性及容量分析.大电机技术, 2005, 13(6): 24-30
    [53]尚秋峰,王仁洲.双馈异步发电机运行在次同步和超同步状态时的稳态最优特性分析.电力情报, 1994, 13(5): 83-90
    [54] M. S. Vicatos. Steady state analysis of a double-fed induction generator under synchronous operation. IEEE Transaction Energy Conve, 1989, 4(3): 495-501
    [55] J. Tamura. T. Sasaki. S. Ishikava. J. Hasegava. Analysis of the steady state characteristics of doubly fed synchronous machines. IEEE Trans. Energy Conversion, 1989, 4(2): 250-256
    [56] H. Banakar, C. Luo, B. T. Ooi. Steady-state stability analysis of double-fed induction generators under decoupled P-Q control. IEE Proc. Electr. Power Appl., 2006, 153(2): 300-306
    [57] M. G. Ioannides. State space formulation and transient stability of the doubly-output asynchronous generator. IEEE Trans. EC, 1993, 8(4): 732-738
    [58]李辉,杨顺昌,廖勇,何蓓.变速恒频双馈风力发电机励磁控制策略综述.电工技术杂志, 2002, 12: 5-8
    [59] Andreas Petersson, Lennart Harnefors, Torbjom Thiringer. Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators. 35th IEEE Power Electronics Specialists Conference, 2004: 482-486
    [60] L. Xu, C. Wei. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE Trans. Industry Application, 1995: 636-642
    [61]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究: [博士学位论文].武汉:华中科技大学图书馆, 2005
    [62]卞松江.变速恒频风力发电关键技术研究: [博士学位论文].浙江:浙江大学图书馆, 2003
    [63]刘其辉.变速恒频风力发电系统运行与控制研究: [博士学位论文].浙江:浙江大学图书馆, 2005
    [64]林成武.变速恒频双馈风力发电机励磁控制技术研究: [博士学位论文].合肥:沈阳工业大学图书馆, 2004
    [65]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究.中国电机工程学报, 2003, 23(8): 159-162
    [66]付旺保,赵栋利,潘磊,许洪华.基于自抗扰控制器的变速恒频风力发电并网控制中国电机工程学报, 2006, 26(3): 13-18
    [67] B. Rabelo, W. Hofmann. Optimal active and reactive power control with the doubly-fed induction generator in the MW-Class wind-turbines. PEDS, 2001, 1: 53-58
    [68] Yifan Tang, Longya Xu. A flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Trans. On Power Electronics, 1995, 10(4): 472-478
    [69] Panda D., Benedict E. L., Venkataramanan G. A novel control strategy for the rotor side control of a doubly-fed induction machine. IAS, 2001, 3: 1695-1702
    [70] Bogalecka E. Dynamics of the Power Control of a Double Fed Induction Generator Connected to the Soft Power Grid. ISIE, 1993: 509-513
    [71]苑国锋,柴建云,李永东.电压型交直交变流器励磁的双馈风力发电系统. 2004台达电力电子新技术研讨会论文集, 413-418
    [72] Petersson A., Harnefors L., Thiringer, T. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Trans. On Energy Conversion, 2005, 20(1): 227-235
    [73] Rajib Datta, V. T. Ranganathan. Variable-speed wind power generation using doubly fed wound rotor induction machine comparison with alternative schemes. IEEE Trans. On Energy Conversion, 2002, 17(3): 414-421
    [74] Cartwright P., Holdsworth L. et al. Co-ordinated voltage control strategy for a doubly-fed induction generator(DFIG)-based wind farm. IEE Proc. -Gener. Transmi. Distrib, 2004, 151(4): 495-502
    [75] Abbey C., Joos G.. Integration of Energy Storage with a Doubly-fed Induction Machine for Wind Power Applications. PESC 2004, 3: 1964-1968
    [76] Zhang Xin-fang, Xu Da-ping, Liu Yi-bing. Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines. WCICA, 2004, 4: 3315-3319
    [77] Khatounian F., Monmasson E., Berthereau F. Control of a Doubly Fed Induction Generator for Aircraft Application. IECON, 2003, 3: 2711-2716
    [78] T. Yifan, X. Longya. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation. IEEE Trans. Energy Convers., 1995, 10(4): 661-668
    [79] H. Akagi, H. Sato. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans. Power Electronics, 2002, 17(1): 109-116
    [80] Akagi H., Sato H. Control and performance of a flywheel energy storage system based on a doubly-fed induction generator-motor for power conditioning. PESC, 1999, 1: 32-39
    [81] Slavomir Seman, Jouko Niiranen, Sami Kanerva, Antero Arkkio, Julius Saitz. Performance study of a doubly fed wind-power induction generator under network disturbances. IEEE Trans. Energy conversion, 2006, 21(4): 883-890
    [82] Santiago A. G, Jose L. R. A. Grid synchronization of doubly fed induction generators using direct torque control. IEEE 28th Annual Conference of Industrial Electronics Society, 2002: 3338-3343
    [83] Arnalte S., Burgos J. C., Rodriguez A. J. L. Direct torque control of a doubly fed induction generator for variable speed wind turbines. Electric Power Components and Systems, 2002, 30(2): 199-217
    [84]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术.沈阳工业大学学报, 2006, 28(2): 206-209
    [85]邢作霞,郑琼林,刘光德,姚兴佳.双馈变速恒频风电机组直接转矩控制.辽宁工程技术大学学报, 2006, 25(4): 556-559
    [86]宋文华.变速恒频双馈发电机直接转矩控制的研究: [硕士学位论文].合肥:沈阳工业大学图书馆, 2005
    [87]魏学森.双馈电机直接转矩控制的研究: [硕士学位论文].河北:河北工业大学图书馆, 2005
    [88]廖勇,杨顺昌.交流励磁发电机励磁控制.中国电机工程学报, 1998, 18(2)
    [89]杨顺昌,廖勇,漆小龙.动态同步轴系及其应用.电工技术学报, 1999, 14(2)
    [90] Eduard Muljadi, C. P. Butterfield, Brian Parsons, Abraham Ellis. Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans. Energy Conversion, 2007, 22(1): 29-36
    [91] A. Mullane, M. O'Malley. The inertial response of induction-machine-based wind turbines. IEEE Trans. Power Syst., 2005, 20(3): 1496-1503
    [92] Andreas Petersson, Torbjorn Thiringer, Lennart Harnefors, Tomas Petri. Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. Energy Conversion, 2005, 20(4): 878-886
    [93] G. Ramtharan, J. B. Ekanayake, N. Jenkins. Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener., 2007, 1(1): 3-9
    [94] Stavros A. Papathanassion, Fritz Santjer. Power-quality measurements in an autonomous island grid high wind penetration. IEEE Trans. Power Delivery, 2006: 1-7
    [95] G. Lalor, A. Mullane, M. O’Malley. Frequency control and wind turbine technologies. IEEE Trans. Power Systems, 2005, 20(4): 1905-1913
    [96] J. B. Ekanayake, N. Jenkins. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans. Energy Conversion, 2004, 19(4): 800-802
    [97] J. B. Ekanayake, L. Holdsworth, X. G. Wu, N. Jenkins. Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans. on Power Systems, 2003, 18(2): 803-809
    [98]申洪.变速恒频风电机组并网运行模型研究及其应用: [博士学位论文].北京:中国电力科学研究院图书馆, 2003
    [99]潘文霞.大型风电场电压稳定性分析与控制研究: [博士学位论文].北京:河海大学图书馆, 2004
    [100] F. Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins, Goran Strbac. Control of DFIG-Based wind generation for power network support. IEEE Trans. Power Systems, 2005, 20(4): 1958-1966
    [101]李建林,赵栋利,李亚西,许洪华.适合于变速恒频双馈感应发电机的Crowbar对比分析.可再生能源, 2006, 129: 57-60
    [102] Manoj R Rathi, Ned Mohan. A novel robust low voltage and fault ride through for wind turbine application operating in weak grids, 2005
    [103] Alan Mullane, Gordon Lightbody, R. Yacamini. Wind-turbine fault ride-through enhancement. IEEE Trans. Power Systems, 2005, 20(4): 1929-1937
    [104] Bing Xie, Brendan Fox, Damian Flynn. Study of fault ride-through for DFIG based wind turbines HongKong, DRPT, 2004
    [105] Torbjorn Thiringer, Andreas Petersson, Tomas Petru. Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator, 2003: 1542-1547
    [106]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略.中国电机工程学报, 2006, 26(3): 164-170
    [107] Dawei Xiang, Li Ran, Peter J. Tavner, Shunchang Yang. Control of a doubly fedinduction generator in a wind turbine during grid fault ride-through. IEEE Trans. Energy Conversion, 2006, 21(3): 652-662
    [108]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报, 2006, 26(10): 130-135
    [109] J. Morren, S. W. H. de Haan. Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans. Energy Convers., 2005, 20(2): 435-441
    [110]李建林,许鸿雁,梁亮,赵斌,许洪华. VSCF-DFIG在电压瞬间跌落情况下的应对策略.电力系统自动化, 2006, 30(19): 65-68
    [111]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化, 2006, 30(8): 21-26
    [112]赵仁德.变速恒频风力发电机交流励磁电源研究: [博士学位论文].浙江:浙江大学图书馆, 2005
    [113] T. Sun, Z. Chen, F. Blaabjerg. Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault. 35th Annual IEEE Power Electronics Specialists Conference, 2004: 1991-1997
    [114] C. Abbey, G. Joos. Effect of low voltage ride through(LVRT) characteristic on voltage stability, 2005: 1-7
    [115] G. Saccomando, J. Svensson, A. Sannino. Improving voltage disturbance rejection for variable-speed wind turbines, IEEE Trans. Energy Conversion, 2002, 17(3): 422-428
    [116] M. R. Rathi, P. P. Jose, N. Mohan. A novel H∞based controller for wind turbine applications operating under unbalanced voltage conditions. 13th Int. Conf. Intelligent Systems Application Power, 2005: 355-360
    [117] E. Tremblay, A. Chandra, P. J. Lagace. et. al. Study of grid-side converter control for grid-connected DFIG wind turbines under unbalanced load condition. IEEE ISIE, 2006: 1619-1624
    [118] T. Brekken, N. Mohan. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation underunbalanced grid voltage conditions. IEEE 34th Annual Power Electronics Specialist Conference, 2003: 760-764
    [119] T. K. A. Brekken, N. Mohan. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Trans. Energy Conversion, 2007, 22(1): 129-135
    [120] L. Xu, Y. Wang. Dynamic modeling and control of DFIG-Based wind turbines under unbalanced network conditions. IEEE Trans. Power System, 2007, 22(1): 314-323
    [121] J. I. Jang, Y. S. Kim, D. C. Lee. Active and reactive power control of DFIG for wind energy conversion under unbalanced grid voltage. IEEE. 5th International Power Electronics and Motion Control Conference, 2006, 3: 1-5
    [122] E. Muljadi, T. Batan, D. Yildirim, C. P. Butterfield. Understanding the unbalanced-voltage problem in wind turbine generation. Proc. Ind. Appl. Conf., 1999(2): 1359-1365
    [123] F. Jiang, Z. Q. Bo, Li Roumei. Performance of induction generator in parallel with an unbalanced three phase system. Proc. POWERCON, 1998(2): 1193-1197
    [124] C. Hochgraf and R. H. Lasseter. STATCOM controls for operation with unbalanced voltage. IEEE Trans. Power Delivery, 1998, 13(2): 538-544
    [125] Slavomir Seman, Jouko Niiranen, Antero Arkkio. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance. IEEE Trans. Power systems, 2006, 21(4): 1782-1789
    [126]李晶,方勇,宋家骅,王伟胜.变速恒频双馈风电机组分段分层控制策略的研究.电网技术, 2005, 29(9): 15-21
    [127]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化, 2003, 27(20): 62-67
    [128]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略.电力系统自动化, 2005, 29(24): 32-38
    [129]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法.太阳能学报, 2004, 25(3): 364-370
    [130] R. Datta, V. T. Ranganathan. A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Trans. Energy Convers., 2003, 18(1): 163-168
    [131] R. S. Pena, G. M. Asher, J. C. Clare, R. Cardenas. A constant frequency constant voltage variable speed stand alone wound rotor induction generator. IEE International Electric Power Generation, International Conference, 1996: 111-114
    [132] R. S. Pena, J. C. Clare, G. M. Asher. A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine. IEE Proc. Electr. Power Appl., 1996, 143(5): 380-387
    [133] R. S. Pena, R. J. Cardenas, G. M. Asher, J. C. Clare. Vector controlled induction machine for stand-alone wind energy applications. IEEE Proc. Industry Application Annu. Meeting, 2000: 1409-1415
    [134] R. Pena, R. Cardenas, G. M. Asher, J. C. Clare, J. Rodriguez, P. Cortes. Vector control of a diesel-drive doubly-fed induction machine for a stand-alone variable speed energy system. 35th Annual IEEE Power Electronics Specialists Conference, 2002: 985-990
    [135] R. Cardenas, R. Pena, J. Proboste, G. Asher, J. Clare. Sensorless control of a doubly-fed induction generator for stand alone operation. 35th Annual IEEE Power Electronics Specialists Conference, 2004: 3378 - 3383
    [136] R. Cardenas, R. Pena, J. Proboste, G. Asher, J. Clare. MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans. Energy Conversion, 2005: 1-9
    [137] R. Galindo-del-Valle, M. Cotorogea-Pfeifer, D. Biel-Sole. Sliding mode control of a doubly fed induction generator supplying an isolated RL load. IEEE 10th International Power Electronics Congress, 2006: 1-6
    [138] R. Galindo, M. Cotorogea, D. Biel. Two families of sliding mode controllers for a doubly-fed induction generator in an isolated generation system. IEEE Electronics Robotics and Automotive Mechanics Conference, 2006(1): 191-196
    [139] Qiao Jiageng, Lu Zongxiang, Min Yong. Research on isolated diesel-wind power system equipped with doubly fed induction generator. 8th IEE International Conference AC and DC Power Transmission, 2006: 246-250
    [140] Daniel Forchetti, Guillermo Garcia, Maria Ines Valla. Vector control strategy for a doubly-fed stand-alone induction generator. 35th Annual IEEE Power Electronics Specialists Conference, 2002: 991-995
    [141]邹旭东,赵阳,柳彬,康勇,陈坚.独立运行双馈发电机矢量控制技术研究.中国电机工程学报, 2007, 27(12): 71 -75
    [142]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制.中国电机工程学报, 2004, 24(3): 6-11
    [143]赵栋利,许洪华,赵斌,郭金东.变速恒频风力双馈发电机并网电压控制研究.太阳能学报, 2004, 25(5): 587-591
    [144]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究.中国电机工程学报, 2006, 26(23): 109-114
    [145]彭力.基于状态空间理论的PWM逆变电源控制技术研究: [博士学位论文].武汉:华中科技大学图书馆, 2004
    [146]李勋.统一电能质量调节器UPQC的分析与控制: [博士学位论文].武汉:华中科技大学图书馆, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700