低层冷弯薄壁型钢房屋抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低层冷弯薄壁型钢房屋作为一种新型住宅结构体系在我国已逐渐开始应用,但关于该房屋整体的抗震性能研究资料较少。为研究低层冷弯薄壁型钢房屋的抗震性能,进行了十片1∶1冷弯薄壁型钢墙体试件水平低周反复加载试验、三组自攻螺钉连接抗剪性能试验和一个三层冷弯薄壁型钢房屋足尺模型振动台试验,分别得到了不同构造墙体的屈服荷载、最大荷载、破坏荷载、耗能系数和延性系数等性能指标,不同板材自攻螺钉连接的抗剪承载力以及房屋结构在水平地震作用下的动力特性、地震反应、破坏机理、抗震性能等。
     在试验研究的基础上,应用ANSYS程序建立了墙体非线性有限元分析模型,进行了一定参数分析;采用SAP2000程序中多线段塑性Pivot连接单元的滞回规则,进行了墙体恢复力模型及非线性简化分析方法研究;应用SAP2000程序建立了三层房屋结构动力简化分析模型,进行了线性和非线性地震反应分析。墙体试验和非线性有限元分析结果表明:斜撑对提高单柱墙体的抗剪承载力起一定作用,但对双柱墙体的作用很小;按《低层冷弯薄壁型钢房屋建筑技术规程》规定计算开洞墙体的抗剪承载力偏于安全;双柱墙体比单柱墙体的抗剪承载力显著提高;试验时各试件立柱的应变反应普遍较大、横撑次之、斜撑最小;墙面板在接缝处相对滑移较大,工程中应尽量减少墙板接缝,避免横向通缝;有限元模型的墙体骨架曲线与试验曲线的初始刚度和曲线吻合较好;两面覆石膏板双柱墙体比单柱墙体的屈服荷载提高;两面覆石膏板墙体与覆OSB板+石膏板墙体相比,前者抗剪刚度、屈服荷载和最大荷载明显减小。
     墙体恢复力模型及非线性简化分析结果表明:墙体的骨架曲线可采用退化四线型模型模拟;双柱墙体Pivot模型参数可取α=10、β=0.1,单柱墙体可取α=10、β=0.15;非线性简化分析得到的滞回曲线的外包络线与试验基本一致,耗能能力相当;简化方法能较好地模拟墙体的强度、刚度退化和捏缩效应。
     三层房屋模型振动台试验和动力简化分析结果表明:结构在振动过程中表现为局部破坏,墙体骨架基本完好;9度抗震设防时,多遇地震下结构最大弹性层间侧移角为1/934,罕遇地震下结构最大弹塑性层间侧移角为1/52,满足抗震规范关于抗震变形验算的相关规定;房屋体系的抗侧能力主要来源于墙面板的蒙皮作用和抗拔件的抗倾覆作用;经分析和评估,房屋达到了高烈度地区的抗震设防要求;房屋结构简化计算模型的第1、2阶振型与试验观测一致,频率分别相差11%和2%;简化计算方法能较好地应用于冷弯薄壁型钢房屋的弹性和弹塑性地震反应分析。
As a new structural system, low-rise cold-formed thin-wall steel residential buildings have been used in Chinese gradually. However, the research on seismic behaviors of this structural system is seldom involved. To study the seismic behaviors of low-rise cold-formed thin-wall steel residential buildings under horizontal earthquake action, three tests including full scale model test on 10 pieces of wall panels under cyclic horizontal load, self-drilling screw connection test on three groups of specimens and shaking table test on a full scale three-story residential building model have been carried out in this paper. The following test results were obtained respectively: The shearing performance indexes of wall panels such as yield load, maximum load, failure load, energy dissipation coefficient and ductility factor; The shear resistance of self-drilling connection specimens; Dynamic properties, seismic responses, damage features and seismic behaviors etc. of three-story cold-formed thin-wall steel residential building.
     Based on experimental study, the following theory analysis were developed: The nonlinear finite analysis model was established and a detailed parameter analysis was carried out by ANSYS program; Restoring force model and nonlinear simplified analysis method of cold-formed steel wall panels were studied by using the hysteresis rules of multi-linear plastic Pivot element in SAP2000 program; The simplified dynamic analysis model of cold-formed thin-wall residential building was established, linear and nonlinear seismic response analysis was carried by SAP2000 program.
     Based on the test results and finite element analysis on cold-formed wall panels, the following conclusions could be suggested: The diagonal bracings are helpful to improve the shear resistance of single-column wall panels while nearly useless to double-column wall panels; The calculation method of the shear resistance of wall panels with openings suggested by Technical Specification for Low-Rise Cold-formed Thin-Wall Steel Buildings is conservative; The shear resistance of double-column wall panels are obviously higher than that of single-column ones; The strain response is largest for columns, less for the transverse bracings and least for the diagonal bracings; As the interface slip between the upper and lower wallboards is obvious, the seams between wallboards should be as little as possible and the transverse continuous seams should be avoided in practice; The initial stiffness of wall panels obtained from test results agree well with those from finite element analysis; As far as wall panels with plasterboards on both sides are concerned, the yield loads of double-column wall panels are higher than those of single-column ones; The initial stiffness, yield load and maximum load of wall panels with plasterboards on both sides are obviously lower than those with OSB board plus plasterboard on both sides.
     Restoring force model and nonlinear simplified analysis results indicate that the skeleton curves of wall panels can be modeled by the degenerated four-linearity model; the Pivot model parametersαandβcan be taken as 10 and 0.1 for double-column wall panels, while 10 and 0.15 for single-column ones, respectively; the envelope of hysteresis curves and capacity of dissipating energy of wall panels obtained from nonlinear simplified analysis are similar to those from test; the strength degeneration, stiffness degeneration and rheostriction phenomena of wall panels can be well modeled by simplified analysis method.
     Shaking table test and the simplified dynamic analysis results indicate that the residential building structure is mainly suffered local damage during test, while the cold-formed steel frame is almost undamaged; When seismic fortification intensity is degree 9, the maximum elastic story drift angle of structure under frequent earthquake and that of elastic-plasticity under rare earthquake are 1/934 and 1/52 respectively, which met the demand of Chinese Code for Seismic Design of Buildings; The skin action of wall panels and action to resist overturning moment of hold downs are very important to the lateral resisting of the building structure; Preliminary evaluation shows that the structure safety is guaranteed; The first two modal of residential building obtained from analysis is identical to those from test, and the discrepancy of the fundamental and secondary frequency are 11% and 2% respectively; The simplified dynamic analysis method can be applied to elastic and elasto-plastic seismic response analysis of cold-formed thin-wall residential building.
引文
[1-1]陶忠,何保康.发展我国新型轻钢结构建筑体系[J].中国工程科学, 2000, 2(3): 77-81.
    [1-2] Yu W. W. Cold-Formed Steel Design[M]. 3rd ed. John Wiley & sons, Inc. 2000.
    [1-3]陈雪庭,徐厚军.《冷弯薄壁型钢结构技术规范》在我国颁布实施40周年的回顾与展望[J].钢结构, 2009, 24(7): 59-61.
    [1-4]黄智光.高强冷弯薄壁型钢双面覆板墙体立柱轴压性能试验研究[D].西安:西安建筑科技大学, 2008.
    [1-5]何保康,周天华.多层薄板轻钢房屋体系可行性报告(结构部分)[R].住宅产业, 2007:39-45.
    [1-6]何保康,廖芳芳.冷弯薄壁型钢结构产品的开发与应用[J].工业建筑(增刊), 2007:1398-1404.
    [1-7]郭鹏,何保康,廖芳芳,等.低层冷弯薄壁型钢结构住宅结构体系及传力路径分析[J]. 工业建筑(增刊), 2007:1215-1219.
    [1-8]田国平.低层冷弯薄壁型钢骨架住宅结构体系分析研究[D].西安:西安建筑科技大学, 2009.
    [1-9]刘雁, Dean P, Bret B,等.北美地区冷成型轻钢结构的应用[J].钢结构, 2009, 24(3): 1-5.
    [1-10]刘飞,李元齐,沈祖炎.低层冷弯薄壁型钢龙骨式住宅结构抗震性能研究进展[J].结构工程师, 2009, 25(4): 138-144.
    [1-11]段君瑛.冷弯薄壁型钢结构房屋及其在我国的发展应用[J].山西建筑, 2009, 34(20): 84-85.
    [1-12]杨朋飞.薄板钢骨住宅体系特点分析[J].工程建设与设计, 2007(7): 14-15.
    [1-13]刘承宗,周志勇.我国轻钢建筑及其发展探讨[J].工业建筑, 2000, 30(5): 53-57.
    [1-14]王国周.中国钢结构五十年[J].建筑结构, 2001, 16(6): 27-29.
    [1-15] JQB016-2004,薄板钢骨建筑体系技术规程[S].北京:北新房屋有限公司, 2004
    [1-16] DBJ01-602-97,民用建筑节能设计标准(采暖居住建筑部分)[S].北京:中国建筑工业出版社, 1997.
    [1-17] AISI/COS/PM. Standard for Cold-formed Steel Framing-Prescriptive Method for one and two Family Dwellings[S]. American Iron and Steel Institute, 2001.
    [1-18] AISI/COS/PM. Commentary on the Standard for Cold-formed Steel Framing-Prescriptive Method for one and two Family Dwellings[S]. American Iron and Steel Institute, 2004.
    [1-19]董军,张雪姣,等.建筑施工—原理、材料和方法[M].北京:中国水利水电出版社,知识产权出版社, 2005.
    [1-20] Dong Jun, Wang Shiqi, Zhang Xuejiao. Finite Element Analysis for the Hysteretic Behaviorof Cold-formed Thin-wall Steel Members Under Cyclic Uniaxial Loading[C]. Proceedings of the 3rd International Conference on Earthquake Engineering. Nanjing, 2004.10:397-405.
    [1-21]童悦仲,刘美霞.澳大利亚冷弯薄壁轻钢结构体系[J].住宅产业, 2005(6):89-90.
    [1-22]张斌,高轩能.冷弯簿壁型钢密柱组合墙体研究综述[J].科技信息(学术研究), 2008(25):236-238.
    [1-23]日本铁鋼連盟.薄板軽量形鋼造建築物设计の手册引ま[S].東京:技报堂出版株式会社, 2002.
    [1-24] International Code Council. International Residential Code for One and Two-Family Dwellings[S]. 2000.
    [1-25]张东宁.北新薄板钢骨结构住宅闪亮登场[J].《中国建设报》之中国楼市, 2002.
    [1-26] GB50018-2002,冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社, 2002.
    [1-27] JGJ XX-20 XX,低层冷弯型钢房屋建筑技术规程(报批稿)[s].
    [1-28] Tarpy T S , Hauenstein S F. Effect of Construction Details on Shear Resistance of Steel-stud Wall Panels[R]. Vanderbilt University Nashville, TN, USA. A research project by American Iron and Steel Institute. 1978: 1201-412.
    [1-29] Tarpy T S, Girard J D. Shear Resistance of Steel-stud Wall Panels[J]. Six International Specialty Conference on Cold-formed Steel Structures, 1982: 449-465.
    [1-30] Tissell J R. Structural Panel Shear Walls[R]. Report No.154, APA. Tocama, WA, USA. 1993
    [1-31] Serrette R L Light Gauge Steel Shear Wall Tests[R]. Department of Civil Engineering, Santa Clara University, Santa Clara. USA. 1994.
    [1-32] Serrette R L, Ogunfunmi K. Shear Resistance of Gypsum-sheathed Light Gauge Steel Stud Walls [J]. Journal of structural engineering, 1996, 122(4): 386-389.
    [1-33] Serrette R L, Hall G., Nguyen H. Dynamic Performance of Light Gauge Steel Framed Shear Walls[C]. In proceedings of the 13th International Specialty Conference on Cold-formed Steel Structures. St. Louis, MO. USA, 1996: 487-498.
    [1-34] Serrette R L, Nguyen H, Hall G. Shear Wall Values for Light Weight Steel Framing[R]. Report No. LGSRG-3-96, Light Gauge Steel Research Group, Department of Civil Engineering, Santa Clara University, Santa Clara. USA, 1996.
    [1-35] Serrette R L, Encalada J, Juadines M. and Nguyen H. Static Racking Behavior of Plywood, OSB, Gypsum, and Fiberboard Walls with Metal Framing[J]. Journal of Structural Engineering, 1997, 123(8): 1079-1086.
    [1-36] Serrette R L, Hall G, Nguyen, H. Additional Shear Wall Values for Light Weight Steel Framing[R]. American Iron and Steel Institute, Washington, DC, 1997.
    [1-37] NAHB. Research Center. Monotonic Tests of Cold-formed Steel Shear Walls with Openings[R]. American Iron and Steel Institute, 1997.
    [1-38] Salenikovich A J, Dolan J D, Easterling W S. Racking Performance of Long Steel-frame Shear Walls[C]. In Proceedings of the 15th International Specialty Conference on Cold-formed Steel Structures. St. Louis, MO. USA, 2000.
    [1-39] American Iron and Steel Institute. Shear Wall Design Guide[S]. Publication RG-9804, 1998.
    [1-40] Tian Y S, Wang J, Lu T J. Racking Strength and Stiffness of Cold-formed Steel Wall Frames [J]. Journal of Constructional Steel Research, 2004 (60):1069-1093.
    [1-41] Fül?p L A, Dubina D. Performance of Wall-stud Cold-formed Shear Panels under Monotonic and Cyclic Loading Part I: Experimental Research [J]. Thin-Walled Structures, 2004 (42): 321-338.
    [1-42] Tian Y S, Wang J, Lu T J. Racking Strength and Stiffness of Cold-formed Steel Wall Frames[J]. Journal of Constructional Steel Research, 2004, 60: 1069-1093.
    [1-43] Seung-Eun L. Evaluation of the Shear Performance of Cold-formed Steel Wall Frames with Structural Sheathing under Axial Load[C]. Proceedings of the 8th Korea-China-Japan symposium on structural steel construction,Korean society of steel construction, 2005: 139-146.
    [1-44] Natividad P, Antonio R F. Hysteretic Modeling of X-braced Shear Walls[J]. Thin-Walled Structures, 2005, 43: 1567-1588.
    [1-45] Serrette R L, Lam I, Qi H. Cold-Formed Steel Frame Shear Walls Utilizing Structural Adhesives[J]. Journal of Structural Engineering, 2006, 132(4): 591-599.
    [1-46]郭丽峰,何保康.轻型密立柱墙体的抗剪和抗弯性能试验研究报告[R].西安:西安建筑科技大学钢结构研究所, 2003.
    [1-47]何保康,郭丽峰,周天华,等.轻钢密墙架柱墙体抗剪性能试验研究[[J].建筑结构(增刊), 2004: 338-341.
    [1-48]周天华,何保康.冷弯型钢立柱组合墙体及螺钉连接抗剪性能试验研究报告[R].西安:西安建筑科技大学钢结构研究所, 2004.
    [1-49]周天华,石宇,何保康等.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报, 2006, 38(1):83-88.
    [1-50]夏冰青.轻钢龙骨复合承载体系结构性能研究[D].南京:南京工业大学, 2003.
    [1-51]夏冰青,董军.轻钢龙骨复合承载墙体抗侧性能的有限元分析[J].建筑结构(增刊), 2004: 334-337.
    [1-52] Gad E F, Adrian M C, Duffield C F. Modal Analysis of Steel-framed Residential Structures for Application to Seismic Design[J]. Journal of Vibration and Control, 2001, 17(1): 91-111.
    [1-53]郭丽峰.轻钢密墙架柱墙体的抗剪性能研究[D].西安:西安建筑科技大学, 2004.
    [1-54]周绪红.低层冷弯薄壁型钢结构住宅组合墙体抗剪试验研究报告[R].西安:长安大学, 2005.
    [1-55]周天华,石宇,周绪红.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报(自然科学版), 2006, 38(1):83-88.
    [1-56]石宇.低层冷弯薄壁型钢结构住宅组合墙体抗剪承载力研究[D].西安:长安大学, 2005.
    [1-57]周绪红,石宇,周天华,等.冷弯薄壁型钢结构住宅组合墙体受剪性能研究[J].建筑结构学报, 2006, 27(3): 42-47.
    [1-58]聂少锋.冷弯型钢立柱组合墙体抗剪承载力简化计算方法研究[D].西安:长安大学, 2006.
    [1-59]郭鹏.冷弯型钢骨架墙体抗剪性能试验与理论研究[D].西安:西安建筑科技大学, 2008.
    [1-60]袁耀明.高强冷弯薄壁型钢双面覆板墙体抗剪试验及有限元分析[D].西安:西安建筑科技大学, 2008.
    [1-61]凌利改.高强冷弯薄壁型钢立柱单面覆板组合墙体抗剪性能试验研究[D].西安:西安建筑科技大学, 2008.
    [1-62]陈卫海.高强冷弯薄壁型钢骨架带交叉支撑墙体抗剪性能研究[D].西安:西安建筑科技大学, 2008.
    [1-63] Gad E F, Duffield C F, Hutchinson G L. Lateral Performance of Cold-formed Steel-framed Domestic Structures [J]. Engineering Structures, 1999, 21(1): 83-95
    [1-64] Gad E F, Chandler A M, Duffield C F. Lateral Behavior of Plasterboard-clad Residential Steel Frames[J]. Journal of Structural Engineering, 1999, 125(1): 32-39.
    [1-65] Yoshimichi K. Seismic Resistance and Design of Steel-Framed House [R]. Nippon Steel Technical Report No 79, 1999: 6-16
    [1-66] Dubina D. Behavior and Performance of Cold-formed Steel-framed Houses under Seismic Action [J]. Journal of Constructional Steel Research, 2008, 64: 896-913.
    [1-67] Dan D.冷成型钢框架房屋的抗震性能[J].建筑钢结构进展, 2007, 9(1): 1-17.
    [1-68]叶红.新型轻钢龙骨体系振动试验研究及动力分析[D].武汉:武汉理工大学, 2005.
    [1-69]张雪姣.轻钢龙骨体系住宅抗震性能研究[D].南京:南京工业大学, 2005.
    [1-70]刘峰.新型轻钢龙骨体系整体结构有限元分析[D].武汉:武汉理工大学, 2005.
    [1-71]沈祖炎,李元齐.高强冷弯薄壁型钢住宅结构抗震性能研究报告[R].上海:同济大学建筑工程系, 2007.
    [1-72]石宇.水平地震作用下多层冷弯薄壁型钢结构住宅的抗震性能研究[D].西安:长安大学, 2008.
    [1-73]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报, 2002,30(12): 1429-1434.
    [2-1] GB/T228-2002,金属材料-室温拉伸试验方法[S].北京:中国标准出版社, 2002.
    [2-2] JGJ101-96,建筑抗震试验方法规程[S].北京:中国建筑工业出版社, 2002.
    [2-3] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社, 2002.
    [2-4]周天华,石宇,何保康,等.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报(自然科学版), 2002, 38(2): 83-88.
    [2-5]郭鹏.冷弯型钢骨架墙体抗剪性能试验与理论研究[D].西安:西安建筑科技大学, 2008.
    [2-6] Serrette R L. Seismic Design of Light Gauge Steel Structures: A discussion. Fourteenth int. Specialty Conference on Cold-Formed Steel Structures [C]. University of Missouri-Rolla,1998.
    [2-7] Dan D. Behavior and performance of cold-formed steel-framed houses under seismic action[J]. Journal of Constructional Steel Research, 2008, 64: 896–913.
    [2-8] JGJ XX- 20 XX,低层冷弯型钢房屋建筑技术规程(报批稿)[s].
    [2-9] GB50068-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社, 2001.
    [2-10] GB50018-2002,冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社, 2002.
    [2-11] Chen C Y, Okasha A F, Rogers C A. Analytical Predictions of Strength and Deflection of Light Gauge Steel Frame/Wood Panel Shear Walls[C]. The International Conference on Advances in Engineering Structures, Mechanics and Construction. University of Waterloo, Ontario, Canada.2006: 381-391.
    [2-12] Casafont M, Amedo A. Experimental testing of joints for seismic design of light weight structures, Part 1: Screwed joints in straps[J]. Thin-Walled Structures, 2006, 44: 197-210.
    [2-13] Casafont M, Amedo A. Experimental testing of joints for seismic design of light weight structures, Part 2: Bolted joints in straps[J]. Thin-Walled Structures, 2006, 44: 677-691.
    [2-14] Kim T S, Kuwamura H. A parametric study on ultimate strength of single shear bolted connections with curlings[J]. Thin-Walled Structures, 2008, 4: 582-590.
    [2-15] Fiorino L, Della Corte G, landolfo R, Experimental and Numerical Tests on Sheathed Steel Stick-built Constructions [C]. 4th European Conference on Steel and Composite Structures, Eurostell 2005.Vol A 1.2-101-108.
    [2-16]董军,夏冰青,马宏. NAFCLCFC板及其与轻钢龙骨自攻螺栓连接性能[J].南京工业大学学报,2002,24(5): 12-15.
    [2-17]周天华,何保康.冷弯型钢立柱组合墙体及螺钉连接抗剪性能试验研究报告[R].长安大学建筑工程学院和西安建筑科技大学钢结构研究所,2004.
    [2-18]秦雅菲.冷弯薄壁型钢低层住宅墙柱体系轴压性能理论与试验研究[D].上海:同济大学, 2008.
    [2-19] AISI TS-4-02, Standard Test Methods for Determining the Tensile and Shear Strength of Screws[S].
    [2-20] Raffaele L, Gaetano D C, Luigi F, Shear Behavior of Connections between Cold-formed Steel Profiles and Wood or Gypsum-based Panels: an Experimental Investigation[C]. Proceedings of the Structures Congress and Exposition, 2006, Structures Congress 2006: 48.
    [2-21]石宇.水平地震作用下多层冷弯薄壁型钢结构住宅的抗震性能研究[D].西安:长安大学, 2008.
    [3-1]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:北京机械工业出版社, 2003.10.
    [3-2]李皓月,周田鹏,等. ANSYS工程计算应用教程[M].北京:中国铁道出版社, 2003.
    [3-3]龚曙光. ANSYS工程应用实例解析[M].北京:机械工业出版社, 2003.
    [3-4]赖永标,胡仁嘉,黄书珍.土木工程有限元分析典型范例[M].北京:电子工业出版社, 2007.
    [3-5]郭鹏.冷弯型钢骨架墙体抗剪性能试验与理论研究[D].西安:西安建筑科技大学, 2008.
    [3-6]黄智光.高强冷弯薄壁型钢双面覆板墙体立柱轴压性能试验研究[D].西安:西安建筑科技大学, 2008.
    [3-7]马荣奎.高强冷弯薄壁型钢单面覆板墙体立柱轴压性能试验研究[D].西安:西安建筑科技大学, 2008.
    [3-8]孙健.冷弯薄壁型钢组合墙体抗剪试验及有限元分析[D].西安:西安建筑科技大学, 2010.
    [4-1]北京金木软件技术有限公司,中国建筑标准设计研究院. SAP2000中文版使用指南[M]. 北京:人民交通出版社, 2006.
    [4-2]郭鹏.冷弯型钢骨架墙体抗剪性能试验与理论研究[D].西安:西安建筑科技大学, 2008.
    [4-3]袁耀明.高强冷弯薄壁型钢双面覆板墙体抗剪试验及有限元分析[D].西安:西安建筑科技大学, 2008.
    [4-4]郭丽峰.轻钢密墙架柱墙体的抗剪承载力研究[D].西安:西安建筑科技大学, 2004.
    [4-5]聂少锋.冷弯型钢立柱组合墙体抗剪承载力简化计算方法研究[D].西安:长安大学, 2006.
    [4-6] Gaetano D C, Luigi F, Raffaele L. Seismic Behavior of Sheathed Cold-formed Structures: Numerical Study [J]. Journal of Structural Engineering, 2006, 132(4): 558-569.
    [4-7] Dan D. Behavior and Performance of Cold-formed Steel-framed Houses under Seismic Action [J]. Journal of Constructional Steel Research, 2008, 64: 896–913.
    [4-8]石宇.水平地震作用下多层冷弯薄壁型钢结构住宅的抗震性能研究[D].西安:长安大学, 2008.
    [4-9]董军,周伟,韩晓健,等.轻钢龙骨房屋抗震性能研究(Ⅰ)—滞回曲线模拟[J].四川建筑科学研究, 2009, 35(5): 131-133.
    [4-10]李杰,李国强.地震工程学导论[M].北京:地震出版社, 1992.
    [4-11]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社, 2004.
    [4-12] Takeda T, Sozen M, Nielsen N N. Reinforced Concrete Response to Simulated Earthquakes[J]. Journal of Structural Division, 1970, 96(12):2257-2573.
    [4-13] Robert K D, Friedler S, Edward L W. Pivot Hysteresis Model for Reinforced Concrete Members[J]. ACI Structural Journal, 1998, 95 (5):607-617.
    [4-14]袁泉.密肋壁板轻框结构非线性地震反应分析[D].西安:西安建筑科技大学, 2003.
    [4-15]黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安:西安建筑科技大学, 2004.
    [4-16]日本铁鋼聨盟编.薄板軽量形鋼造建築物设计の手册引ま[M].日本:技报堂出版, 2002.
    [4-17]郭彦林,霍轶力,盛和太. CCTV新台址主楼SRC柱抗震计算模型的建立[J].建筑结构学报, 2008, 3(29): 54-62.
    [4-18] Computers and Structures, Inc. CSI分析参考手册[M ]. California, USA, 2004.
    [5-1] Tian Y S, Wang J, Lu T J. Racking Strength and Stiffness of Cold-formed Steel Wall Frames[J]. Journal of Constructional Steel Research, 2004, 60:1069-1093.
    [5-2] Serrette R L, Ogunfunm K. Shear Resistance of Gypsum-sheathed Light Gauge Steel Stud Walls[J]. Journal of Structural Engineering, 1996, 122(4):386-389.
    [5-3] Serrette R L, Encalada J, Juadines M. Static Racking Behavior of Plywood, OSB, Gypsum, and Fiberboard Walls with Metal Framing [J]. Journal of Structural Engineering, 1997, 123(8): 1079-1086.
    [5-4] Serrette R L, Lam I, Qi H. Cold-Formed Steel Frame Shear Walls Utilizing Structural Adhesives[J]. Journal of Structural Engineering, 2006, 132(4): 591-599.
    [5-5]郭丽峰.轻钢密墙架柱墙体的抗剪承载力研究[D].西安:西安建筑科技大学, 2004.
    [5-6]周天华,石宇,何保康,等.冷弯型钢组合墙体抗剪承载力试验研究[J].西安建筑科技大学学报(自然科学版), 2002, 38(2): 83-88.
    [5-7]沈祖炎,李元齐,王彦敏,等.高强冷弯薄壁型钢住宅结构抗震性能研究[R].上海:同济大学, 2007.
    [5-8]沈祖炎,李元齐,等. Q 345冷弯薄壁型钢住宅结构抗震性能研究[R].上海:同济大学, 2009.
    [5-9]李书进,王小平,蔡江勇,等.两层新型轻钢结构足尺房屋振动台试验研究[J].武汉理工大学学报, 2010, 32 (2): 47-51.
    [5-10]李书进,毛羚.新型轻钢结构足尺房屋模型振动台试验及有限元分析[J].钢结构, 2010, 25 (2): 19-22.
    [5-11] GB/T12754-2006.彩色涂层钢板及钢带[S].北京:中国标准出版社, 2006.
    [5-12] GB/T 228-2002.金属材料-室温拉伸试验方法[S].北京:中国标准出版社, 2002.
    [5-13] GB50009-2001.建筑结构荷载规范[S].北京:中国建筑工业出版社, 2002.
    [5-14] GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2002.
    [5-15] JGJ XX-20 XX,低层冷弯型钢房屋建筑技术规程(报批稿)[s].
    [6-1]胡聿贤.地震工程学(第二版)[M].北京:地震出版社, 2006.
    [6-2]齐岩.三层冷弯薄壁型钢房屋振动台试验研究[D].西安:西安建筑科技大学, 2010.
    [6-3]姚谦峰,苏三庆.地震工程[M].西安:陕西科学技术出版社, 2001.
    [6-4]丰定国,王清敏,等.工程结构抗震[M].北京:地震出版社, 1995.
    [6-5]吕西林等.房屋结构抗震[M].上海:同济大学出版社, 1995.
    [6-6]北京金土木软件技术有限公司,中国建筑标准设计研究院. SAP2000中文版使用指南[M].北京:人民交通出版社, 2006.
    [6-7] Edward L. Wilson.结构静力与动力分析.北京金土木软件技术有限公司,译[M].北京:中国建筑工业出版社, 2006.
    [6-8] Ray Clough, Joseph Penzien. Dynamics of Structures. 2nd Ed.(Revised)[M]. Computer & Structures Inc., 2003.
    [6-9] GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2002.
    [6-10]丰定国,王社良.抗震结构设计[M].武汉:武汉工业大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700