量子点敏化太阳能电池:制备及光电转换性能的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能的开发利用对解决能源危机和发展低碳经济都具有极其重要的意义。其中,新一代太阳能电池——量子点敏化太阳能电池由于具备高理论转换效率和低生产成本,引起了科学界的广泛关注。但迄今为止,量子点敏化太阳能电池的光电转换效率仍然远低于传统太阳能电池。
     本文从材料角度出发,考虑材料本身缺陷、能级匹配及制备工艺对太阳能电池性能的影响,设计了硫化镉(CdS)和氧化锌(ZnO)纳米异质结构作为光电转换材料,采用化学浴沉积和水热法合成技术,可控合成了硫化镉量子点及氧化锌纳米线阵列,并确定了最优工艺参数。
     通过研究退火处理对CdS/ZnO量子点敏化太阳能电池转换效率的影响,我们发现退火温度和CdS量子点的层数对最终太阳能电池的性能有决定性的影响。经过退火处理后的太阳能电池的光电转换效率有了显著提升,可以归因于材料对太阳光吸收能力的增强、本身缺陷的减少以及CdS/ZnO之间扩散层的形成。
     通过化学浴沉积和退火处理的结合使用,在ZnO表面获得了两种不同粒径的CdS量子点。两种CdS颗粒形成I型半导体后产生的共敏化作用使得电池性能有显著的提升。此研究证实,量子点的合理搭配可以有效提升量子点敏化太阳能电池的性能。
     通过水热反应,制备了由CdS量子点堆积而成的三维多孔薄膜。利用此多孔薄膜作电池光阳极材料可以形成自敏化太阳能电池并实现光电有效转换。采用电沉积技术,可以在CdS多孔膜上沉积CdSe量子点,并形成由CdSe/CdS组成的共自敏化结构,使太阳能电池的性能得到进一步提升。
The development of high-performance solar cell is of great significance in solving the energy crisis and development of low-carbon economy. Quantum dot-sensitized solar cell (QDSSC), a third generation solar cell with higher theoretic power conversion efficiency (PCE) and lower cost, have attracted the attention of many scientists in the solar cell area. So far, however, the PCE of QDSSC is still much lower than that of the traditional solar cells.
     In this thesis, considering that the synthetic processing, existance of defects in materials, configuration of energy levels can greatly influence the PCE of QDSSC, wedesigned a CdS/ZnO heteronanostructure as anode material, adopted chemical bath deposition and hydrothermal technique as synthetic methods, and controllaby synthesized the CdS quantum dots (QDs) and ZnO nanowires (NWs) arrays.
     We investigated the effect of annealing treatment on the PEC of the CdS QDSSC. The thickness of CdS layer and the annealing temperature were found to be very crucial for the performance of CdS/ZnO solar cells. The PCE was improved significantly after annealing treatment, which could be attributed to the enhancement of the absorption ability, decreasing the defects of anode materials and the formation of a diffusion layer between the CdS shell and ZnO core.
     Dual-sized CdS quantum dots were employed as light harvesters to achieve high PCE. Chemical bath deposition and annealing treatment were adopted to produce CdS quantum dots with different sizes. The strategy of co-sensitization by dual-sized CdS quantum dots could significantly improve the performance of solar cells by forming a type-I band structure. This work indicates that the proper configuration of quantum dots is crucial on the photovoltaic conversion of solar cells.
     We developed a self-sensitized solar cell with CdS porous structure as the anode material. The CdS porous structure, assembed by high-density CdS nanocrystals, was synthesized by hydrothermal method and could effectively realize the photovoltaic conversion. The CdSe/CdS co-sensitized structure, another self-sensitized system with CdSe nanoparticles on the CdS porous structure, was obtained via electric deposition, which further, improved the performance of the solar cell.
引文
[1] Gr?tzel M., Powering the planet [J]. Nature, 2000, 403: 363-364
    [2] Fu Y.S., Sun J., Xie Y., et al. ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells [J].Materials Science and Engineering B-Advanced Functional Solid-State Materials ,2010,166(3): 196-202
    [3] Falaras P, Gratzel M, Nazeemddin M, et al. Dye Sensitization of TiO2 Surfaces Studied by Raman Spectroscopy [J]. Journal of the Electrochemical Society. 1993, 140 (6): 92-94
    [4] Barbe C J, Arendse F, Comte P.Nanocrystalline Titanium Oxide Electrods for Photovoltaic Applications [J]. Journal of the American Ceramic Society. 1997,80 (12): 3157-3171.
    [5] Ralph E L, Intersociety energy conversion engineering conference [M]. 1968, 2: 116-121.
    [6] Szlufcik J, Nijs J, Mertens R, et al. A Simple Processing Sequence For Selective Emitters [J]. 26th Photovoltaic Specialists Conference, IEEE 1997, 139-142.
    [7]章从福, Fraunhofer研究的“n型”单晶硅太阳能电池效率达到23.4%[J].光机电信息,2009, 26(10): 40-40
    [8]王文静,多晶硅薄膜太阳电池[J].太阳能光电, 2005, 98 (3) : 9-11.
    [9] Kielibaa T, Schober B, Obwald D, et al. Crystalline silicon thin-film solar cells on ZrSiO4 ceramic substrates [J]. Solar Energy Material & Solar Cells, 2002, 74: 261-266.
    [10] Bergman R B, Werner J H. The future of crystalline silicon films on foreign substrates [J]. Thin Solid Films, 2002, 403-404: 162-169.
    [11]卢志安,迟晓红,赵国华,非晶硅薄膜太阳能电池生产简述[J].玻璃,2008,12: 49-51.
    [12] Geisz, D.J. Friedman, III-N-V semiconductors for solar photovoltaic applications [J]. Semiconductor Science and Technology, 2002, 17(8): 769-777.
    [13] Sariciftci N S, Smilowitz L, Heeger A J, et a1. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene [J]. Science, l992, 258: l474-l476.
    [14] Morita S. Zakhidov A A, Yoshino K. Doping effect of buckminsterfullerene inconducting polymer: Change of absorption spectrum and quenching of luminescene [J]. Solid State Comun., 1992, 82: 249-252.
    [15] Tsubomura H., Matsumura M., Nomura Y, et al. Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell [J]. Nature, 1976, 261 : 402-403
    [16] Regan.O, Gratzel.M. A low cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [17] Hagfeldt A. and Gr?tzel M. Molecular Photovoltaics [J]. Acc. Chem. Res , 2000, 33: 269-277
    [18] Zaban A., Mi?i? O. I. and A. J. Nozik, et. al. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots [J]. Langmuir, 1998, 14: 3153-3156
    [19] Yu W. W.and Peng X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers [J]. Angew. Chem. Int. Ed. , 2002, 41: 2368-2371
    [20] Wang Y. and Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem., 1991, 95: 525-532
    [21] Nozik A. J. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels [J]. Nano Lett., Articles ASAP (As Soon As Publishable), DOI: 10.1021/nl102122x
    [22] Nozik A. J. Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion [J]. Inorg. Chem., 2005, 44: 6893-6899
    [23] Shockley W. and Queisser H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells [J]. J. Appl. Phys., 1961, 32: 510-520
    [24] Nozik A. J. Quantum dot solar cells [J]. Physica E, 2002, 14: 115-120
    [25] Alex B. F. Martinson, Jeffrey W. Elam, Joseph T. Hupp, et al. ZnO Nanotube Based Dye-Sensitized Solar Cells [J]. Nano Lett, 2007, 7(8): 2183-2187.
    [26] Oekermann T, Yoshida T, Tada H, et al. color sensitive Photoconductive of nanostructured ZnO/dye Hyhrid Films Prepared by One step Electrodeposition [J].Thin Solid Film, 2006, 511-512:354-357.
    [27] Maranchi J P, Hepp A F, Kumta P N. LiCoO2 and SnO2 thin film electrodes for lithium-ion battery applications [J]. Materials Science and Engineering B, 2005, 116: 327-340.
    [28] Wolfbauer G., Bond A. M., and MacFarlane D. R., et. al. A channel flow cellsystem specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells [J]. Solar Energy Materials & Solar Cells, 2001,70: 85-101
    [29] Kopidakis N., Benkstein K. D., Lagemaat J. and Frank A. J. Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells [J]. J. Phys. Chem. B, 2003,107: 7759-7767
    [30] Kuang D., Klein C., and Gr?tzel M. et. al. Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells [J]. Nano Lett., 2006, 6: 769-773
    [31] Haque S. A., Palomares E., and Durrant J. R. Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy [J]. J. Am. Chem. Soc., 2005, 127: 3456-3462.
    [32] Nazeeruddin M. K., Kay A., and Gr?tzel M., et. al. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc., 1993, 115: 6382-6390.
    [33] Wang P., Zakeeruddin S. M., and Gr?tzel M., et. al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte [J]. Chem. Commun., 2002, 2972-2973
    [34] Kubo W., Kitamura T., and S. Yanagida, et. al. Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes [J]. J. Phys. Chem. B, 2003, 107 (18): 4374–4381
    [35] Haque S. A., Palomares E., and J. R. Durrant, et. al. Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:the Minimization of Kinetic Redundancy [J]. J. Am. Chem. Soc., 2005, 127, 3456-3462
    [36] Hagfeldt A. and Gr?tzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995, 95: 49-68
    [37] Lin S. C., Lee Y. L., and Y. M. Yang, et. al. Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Appl. Phys. Lett., 2007, 90: 143517-143520
    [38] Vogel, R., Pohl, K., Weller, H. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS [J]. Chem. Phys. Lett., 1990, 174,241-246.
    [39] Peter L. M., Riley D. J., and Wijayantha K. G. U., et. al. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots [J]. Chem. Commun., 2002: 1030-1031.
    [40] Wijayanthaa K.G. U., Petera L. M. and Otley L.C. Fabrication of CdS quantum dot sensitized solar cells via a pressing route [J]. Solar Energy Materials & Solar Cells, 2004,83: 363-369
    [41] Robel I., Subramanian V., and Kamat P. V., et. al. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films [J]. J. Am. Chem. Soc., 2006 128: 2385-2393
    [42] Liu, D., Kamat, P. V. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films [J]. J. Phys. Chem. 1993, 97, 10769-10773.
    [43] Shen Q. and Toyoda T. Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods [J]. Japanese Journal of Applied Physics, 2004, 43: 2946-2951
    [44] Zaban A., Mi?i? O. I. and A. J. Nozik, et. al. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots [J]. Langmuir, 1998, 14: 3153-3156
    [45] Blackburn J. L., Selmarten D. C., and Nozik A. J. Electron and Hole Transfer from Indium Phosphide Quantum Dots [J]. J. Phys. Chem. B, 2005, 109: 2625-2631
    [46] Plass R., Pelet S., and Gr?tzel M. Quantum Dot Sensitization of Organic?Inorganic Hybrid Solar Cells [J]. J. Phys. Chem. B, 2002, 106: 7578-7580
    [47] Hoyer P. and K?nenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots [J]. Appl. Phys. Lett., 1995, 66: 349-351
    [48] Vogel, R., Hoyer, P., and Weller, H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors [J]. J. Phys. Chem. 1994, 98, 3183-3188.
    [49] Schaller R. D. and Klimov V. I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion [J]. Phys. Rev. Lett., 2004, 92: 186601-186604
    [50] Yu, P., Zhu, K., , and Nozik A. J. et. al. Nanocrystalline TiO2 Solar CellsSensitized with InAs Quantum Dots [J]. J. Phys. Chem. B. 2006, 110: 25451-25454.
    [51] Urban J. J., Talapin D. V., Shevchenko E. V., Murray C. B. Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films [J]. J. Am.Chem. Soc. 2006, 128, 3248-3255.
    [52] Hasobe T., Imahori H., and Kamat P. V., et. al. Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles [J]. J. Am. Chem. Soc. 2005, 127: 1216-1228.
    [53] George K. and Kamat P. V. Chromophore-Functionalized Gold Nanoparticles [J]. Acc. Chem. Res., 2003, 36: 888-898
    [54] Tian Y. and Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles [J]. J. Am. Chem. Soc., 2005, 127: 7632-7637.
    [55] Vogel, R., Hoyer, P., and Weller, H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors [J]. J. Phys. Chem. 1994, 98, 3183-3188.
    [56] Lee H. J., Wang M. K., and Gr?tzel M., et. al. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process [J]. Nano Lett. 2009, 9: 4221-4227.
    [57] Mcdonald S. A., Konstantatos G., and Sargrnt E. H., et. al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nature Materials, 2005, 4: 138-142
    [58] Kongkanand A., Tvrdy K., and Kamat P. V., et. al. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe?TiO2 Architecture [J]. J. Am. Chem. Soc., 2008, 130 (12): 4007-4015
    [59] Yuh-Lang Lee, Bau-Ming Huang and Huei-Ting Chien Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications [J]. Chem. Mater., 2008, 20 (22): 6903-6905
    [60] Abd-Lefdil S., Messaoudi C., and Sayah D. et. al. Temperature growth and annealing effects on CdS thin films prepared by chemical bath deposition process [J]. Phys. Stat. Sol. (a), 1998, 168: 417-423.
    [61] Agostiano A., Catalano M., and Vasanelli L. Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components 'water-in-oil' microemulsion [J]. Micron 2000, 31: 253-258.
    [62] Zhang J., Sun L., and Yan C., et. al. Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method [J]. Solid State Communications, 2002, 124: 45-48.
    [63] Shen Y. J., Lee Y. L. and Yang Y. M., Monolayer Behavior and Langmuir?Blodgett Manipulation of CdS Quantum Dots [J]. J. Phys. Chem. B, 2006, 110: 9556-9564.
    [64] Peter L. M., Riley D. J., and Wijayantha K. G. U., et. al. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots [J]. Chem. Commun., 2002: 1030-1031.
    [65] Robel I., Subramanian V., and Kamat P. V., et. al. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films [J]. J. Am. Chem. Soc., 2006 128: 2385-2393
    [66] Kopidakis N., Benkstein K. D., and Frank A. J., et. al. Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells [J]. J. Phys. Chem. B, 2003, 107: 11307-11315.
    [67] Baxter J. B. , Walker A.M., and Aydil E. S., et. al. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells [J]. Nanotechnology, 2006, 17, S304.
    [68] Yu H. D., Zhang Z. P., and Zhu F. R. et. al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays [J]. J. Am. Chem. Soc., 2005, 127 (8): 2378–2379.
    [69] Cheng H. M., Chiu W. H., and Hsieh W. F. et. al. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications [J]. J. Phys. Chem. C, 2008, 112 (42): 16359-16364.
    [70] Tachibana Y., Haque S. A., and Durrant J. R., et.al. Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2 Films by Externally Applied Bias [J]. J. Phys. Chem. B, 2001,105: 7424-7431.
    [71] Niitsoo O., Sarkar S. K., and Hodes G., et. al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. J. Photochem. Photobiol. A: Chemistry, 2006, 181: 306 -313
    [72] Nattestad A., Mozer A. J., and Bach U., et. al. Highly efficient photocathodes for dye-sensitized tandem solar cells [J]. Nat. Mater., 2010, 9: 31-35.
    [73] Lee Y. L. and Lo Y. S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe [J]. Adv. Funct. Mater. 2009, 19,604-609.
    [74] Lee Y. L., Chi C. F. and Liau S. Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell [J]. Chem. Mater., 2010, 22 (3): 922-927.
    [75] Beermann N., Vayssieres L., Lindquist S. E. and Hagfeldt A. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO [J]. J. Phys. Chem. B, 2001, 105, 3350- 3352.
    [76] Huang M.H., Wu Y. and Yang P. et. al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J]. Adv. Mater. 2001, 13: 113-116.
    [77] Zheng M. J., Zhang L. D., Li G. H. and Shen W. Z. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique [J]. Chem. Phys. Lett., 2002, 363: 123-128.
    [78] Wu J.J. and Liu S. C. Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition [J]. Adv. Mater. 2002, 14: 215-218.
    [79] Yamambi S. and Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions [J]. J. Mater. Chem. 2002, 12: 3773-3778,.
    [80] Kim H. M., Cho Y. H. and Chung K. S. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays [J]. Nano Lett., 2003, 14: 1059-1062
    [81] Law M., Greene L. E. and Yang P. D. et. al. Nanowire dye-sensitized solar cells [J]. Nat. Mater. , 2005, 4 (6): 455-459.
    [82] Nozik A. J. Quantum dot solar cells [J]. Physica E 2002, 14: 115-120.
    [83] Kamat P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters [J]. J. Phys. Chem. C, 2008, 112: 18737-18753.
    [84] Nozik A. J. Multiple exciton generation in semiconductor quantum dots [J]. Chem. Phys. Lett., 2008, 457:3-11.
    [85] Gregg B. A. and Hanna M.C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation [J]. J. Appl. Phys., 2003, 93: 3605-3615.
    [86] Zhang J., Xu Q. and Li C., et. al. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2 [J]. Angew. Chem. Int. Ed., 2008, 47:1766-1769.
    [87] Hotchandani S. and Kamat P. V. Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of thecolloidal cadmium sulfide-zinc oxide system [J]. J. Phys. Chem., 1992, 96: 6834-6839.
    [88] Kawahara T. Ozawa T. and Ito S., et. al. Photocatalytic activity of rutile–anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method [J]. J. Colloid Interface Sci., 2003, 267: 377-381.
    [89] Kawahara T., Konishi Y. and Ito S. et. al. A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer- Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity [J]. Angew. Chem., 2002, 114: 2935-2937.
    [90] Lee J., Sung Y., Kim T. and Choi H. TiO2–CdSe nanowire arrays showing visible-range light absorption [J]. Appl. Phys. Lett., 2007, 91: 113104-113106.
    [91] Tak Y., Hong S. J. and Yong K. et. al. Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array [J]. Crystal Growth & Design, 2009, 9: 2627-2632.
    [92] Zhang Y., Xie T. F. and Wang D. J. et. al. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices [J]. Nanotechnology, 2009, 20: 155707-155712.
    [93] Krishna P. A., Nishshanka N. and Mikhail Z. et. al. Synthesis of PbS/TiO2 Colloidal Heterostructures for Photovoltaic Applications [J]. J. Phys. Chem. C, 2010, 114 (29): 12496–12504.
    [94] Zhao N., Osedach T. P. and Bulovic V. et. al. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor [J]. ACS Nano, 2010, 4 (7): 3743–3752.
    [95] Monticone S, Tufeu R, Kanaev A V, Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles, Journal of Physical Chemistry B, 1998, 102: 2854-2862.
    [96] Kayanuma Y, Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Physical Review B, 1988, 38(14) : 9797-9805.
    [97] Kaschke M., Ernsting NP. and Weller H., et.al. Ultrafast electron ejection and trapping in semiconductor colloids after multiple photon absorption [J]. Chem. Phys. Lett. 1990, 168: 543-550.
    [98] Ouyang J. Y., Ripmeester J. A. and Chen W. J. et. al. Upconversion Luminescence of Colloidal CdS and ZnCdS Semiconductor Quantum Dots [J]. Phys. Chem. C 2007, 111: 16261-16266.
    [99] Gao T., Li Q. H. and Wang T. H. Sonochemical Synthesis, Optical Properties, and Electrical Properties of Core/Shell-Type ZnO Nanorod/CdS Nanoparticle Composites [J]. Chem. Mater., 2005, 17: 887-892.
    [100] Sun W. T., Yu Y., Pan H. Y. and Peng L. M., et. al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J. Am. Chem. Soc. 2008, 130, 1124-1125.
    [101] Hodes G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells [J]. J. Phys. Chem. C 2008, 112, 17778-17787.
    [102] Kostoglou M., Andritsos N. and Karabelas A. J. Progress towards modelling the CdS chemical bath deposition process [J]. Thin Solid Films, 2001, 387, 115-117.
    [103] Bouroushian M., Kosanovic T. and Loizos Z., et. al. On a thermodynamic description of Se(IV) electroreduction and CdSe electrolytic formation on Ni, Ti and Pt cathodes in acidic aqueous solution [J]. Electrochem. Commun., 2000, 2: 281-285
    [104] Bouroushian M., Charoud-Got J. and Loizos Z., et. al. Structure and properties of CdSe and CdSexTe1–x electrolytic deposits on Ni and Ti cathodes: influence of the acidic bath pH [J]. Thin Solid Films, 2001, 381:39-47.
    [105] Chubenko E. B., Klyshko A. A. and Petrovich V. A., et. al. Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions [J]. Thin Solid Films, 2009, 517: 5981-5987.
    [106] Natarajan C., Sharon M. and Neumann-Spallart M. et. al. Electrodeposition of zinc selenide [J]. Thin Solid Films, 1994, 237: 118-123.
    [107] Bouroushian M., Charoud-Got J. and Spyrellis N. et. al. Phase modification of CdSe electrodeposits induced by substrate roughness [J]. J. Mater. Sci. Lett., 2000, 19: 2201-2203.
    [108] Tena-Zaera R., Ryan M. A., and Lévy-Clément C., et. al. Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell [J]. C. R. Chimie 2006, 9: 717–729
    [109] M. Bouroushian et al. On a thermodynamic description of Se(IV) electroreduction and CdSe electrolytic formation on Ni, Ti and Pt cathodes in acidic aqueous solution [J]. Electrochemistry Communications, 2000, 2: 281–285.
    [110] Tena-Zaera R., Katty A. and Lévy-Clément C. et. al. Annealing Effects on the Physical Properties of Electrodeposited ZnO/CdSe Core?Shell Nanowire Arrays [J]. Chem. Mater., 2007, 19: 1626-1632.
    [111] Tisdale W. A., Williams K. J. and Zhu X. Y., et. al. Hot-Electron Transfer from Semiconductor Nanocrystals [J]. Science, 2010, 328: 1543-1547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700