双(三)咪唑(吡啶)配体桥联配合物的构建、拓扑及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架材料是一类新型的、设计灵活的具有广泛潜在应用价值的微孔材料。运用分子设计和晶体工程中的有关原理和方法设计和选择合适的配体来组装目标配合物以实现功能上的分子剪裁和分子组装、研究结构和性能的构效关系和开发性能更优异的复合杂化材料是目前配位功能材料的研究重点。缠绕型金属-有机骨架材料由于其自身结构的特殊性和新颖性使其具备更独特的性质,成为配位化学领域的一大研究热点。
     本论文致力于利用不同双(三)咪唑基或吡啶基配体作为主配体,即刚性双、三咪唑配体:1,4-二(1-咪唑基)苯(bib)、1,1’-二(1-咪唑基)联苯(bibp)和1,3,5-三(1-咪唑基)苯(tib),柔性三咪唑配体:1,3,5-三甲基-2,4,6-三(1-咪唑基)苯(titmb)以及柔性双吡啶配体:1,3-二(1-吡啶基)丙烷(bpp),各种有机羧酸作为辅助配体,与过渡金属离子(Co~(Ⅱ)、Zn~(Ⅱ)、Mn~(Ⅱ)、Cd~(Ⅱ))构筑具有新颖拓扑的缠绕网络金属-有机骨架配合物。所有配合物都经过元素分析、IR波谱和X-射线单晶衍射进行结构表征,研究和分析这些金属-有机骨架配合物的合成条件及规律、考察网络的拓扑类型、分析网络所属的缠绕类型,研究其热稳定性、荧光性质、磁学性质及铁电性质等相关性能,探索它们结构和性能间的构效关系。
     本论文报道的28个全新的单晶配合物可以依据含氮配体的类别及配合物结构及性质的特点而被划分为四部分:
     (1)基于刚性双咪唑配体bibp的金属-有机骨架配合物(配合物1-12)。配合物1和2是金属离子(Mn~(Ⅱ)和Co~(Ⅱ))、甲酸根、bibp构筑的1D和3D骨架结构,归因于甲酸根与金属离子的不同配位模式(第二章)。配合物3-8是金属离子(Co~(Ⅱ)、Zn~(Ⅱ)和Cd~(Ⅱ))与柔性有机羧酸、bibp构筑的2D (配合物3-5)和3D(配合物6-8)骨架结构。特别是配合物3和4是两个三重2D→3D多聚穿套(polythreading)网格;配合物6是一个全新的三重穿插的单节点4-连接(6~5.8)网格;配合物7是第二例五重穿插的单节点4-连接dmp网格;配合物8是一个新颖的三节点(4,8)-连接(3~2·4~2·5~2)(3~4·4~8·5~8·6~3·7~4·8)(3~4·4~6·5~8·6~8·7~2)网格(第二章)。值得注意的是配合物9-12是Co~(Ⅱ)、1,3,5-三(1-甲酸-4-苯基)苯与bibp在不同体积比的H2O/DMF混合溶剂体系中反应得到的一系列缠绕体系,它们呈现不同的缠绕类型:一个未见报道的同时具有2D→3D多聚索烃(polycatenation)和1D+2D→2D多聚穿套(polythreading)缠绕特征的网格(配合物9)、一个新颖的(3,4)-连接3D自穿插(self-penetrating)网格(配合物10)、一个少见的2D→3D三重多聚穿套(polythreading)网格(配合物11)和一个罕见的基于不同T-形二维结构互锁而构成的2D+2D→3D多聚索烃(polycatenation)网格(配合物12)(第三章)。其中,配合物6-8具有荧光性质。这部分工作表明刚性配体bibp由于自身的长度及其刚性的特点使其在与金属离子配位时易形成大孔洞的骨架结构,有利于自穿插及相互穿插现象的产生;当bibp配体仅一端咪唑环与金属离子配位时,它还是一个构筑多聚穿套结构的很好的分子棒;反应条件的控制特别是溶剂的选择对产物最终的结构有着重要的影响。
     (2)基于刚性三咪唑配体tib的金属-有机骨架配合物(配合物13-18,第四章)。配合物13是ZnCl_2与tib形成的2D双层平面结构呈现双节点(3,6)-连接kgd拓扑特征。配合物14-18是金属离子(Zn~(Ⅱ)和Co~(Ⅱ))与刚性或柔性有机羧酸、tib构筑的3D骨架结构。配合物14是一个由非手性刚性混合配体通过自发结晶(spontaneous resolution)获得的手性配合物,其结构由两个结晶学独立的3D网格相互穿插而构成,每一个3D光学对应体由含有螺旋特征的2D手性层和1D三股螺旋链以Zn离子为节点相连而成,并呈现独特的双节点(3,4)-连接(10~3)_2·(10~6)_3自穿插拓扑网格。配合物15是另一例同时具有自穿插和穿插拓扑特征的3D网格,呈现与配合物14不同的双节点(3,4)-连接(10~3)_2·(10~6)_3拓扑。配合物16和17都是二重穿插的3D网格。前者是两个的光学对应的手性3D网格相互穿插,每个网格呈现双节点(3,4)-连接(10~3)_4(10~6)拓扑特征;后者是两个相同的3D网格相互穿插,每个网格呈现三节点(3,4,5)-连接(4·8~2)_2(4~2·8~4)(4~3·6~2·8~5)_2(4~3·6~2·8)_2拓扑特征。配合物18呈现罕见的双节点(3,4)-连接fsx-3,4C2/c-2拓扑。其中,配合物13-16具有荧光性质。配合物14还具有铁电性质。这部分工作表明刚性三齿配体tib是一个很好的3-连接节点前驱体,当它与金属离子配位时呈现多样化的配位模式可以形成1D、2D和3D结构,同时由于C-Nσ-键的自由旋转使得咪唑环与苯环之间相互扭曲导致螺旋特征的出现,进而形成新颖的拓扑结构,特别是有助于形成缠绕体系。
     (3)基于柔性三咪唑配体titmb的金属-有机骨架配合物(配合物19-24,第五章)。根据广义的次级建筑块(secondary building unit, SBU)的概念,配合物19-24都可以被描述成其它辅助配体连接不同的M-titmb(M=Cd~(Ⅱ)和Co~(Ⅱ))次级建筑块构成的从1D到3D的配合物。柔性titmb多样化的构型导致这些M-titmb结构单元呈现0D分子笼结构、2D多层层状结构、1D梯子型链状结构和2D单层平面结构,从而导致最终配合物结构多样化。特别是配合物23是一个少见的二重穿插的双节点(3,5)-连接的hms拓扑网格。其中,配合物23具有铁电性质,配合物19具有荧光性质。这部分工作表明柔性三齿咪唑配体titmb中C-Cσ-键的自由旋转导致其构型多变从而影响产物的结构特征。引入适当长度的刚性辅助配体可以得到预期的穿插分子聚集体。而且,利用次级建筑块(SBU)概念在分析简化复杂的给定结构及设计构筑高连接的新奇结构方面是很有帮助的。
     (4)基于刚性双咪唑配体bib或柔性双吡啶配体bpp的缠绕体系(配合物25-28,第六章)。配合物25和26是Co~(Ⅱ)与bib、1,3,5-(4-苯基-1-甲酸)苯在溶剂热条件下一釜得到的,二者分别呈现2D→3D多聚索烃(polycatenation)和2D→3D五重多聚穿套(polythreading)缠绕特征。配合物27是Co~(Ⅱ)、bib与柔性长链芳香二酸构建的1D→2D多聚轮烷(polyrotaxane)网格,有趣的是每个Co2(L2)2环里面插入两根Co(bib)棒。配合物28是Co~(Ⅱ)、bpp与柔性长链芳香四酸构建的二重穿插的双节点(4,6)-连接fsh拓扑结构。这部分工作表明刚性双咪唑配体bib适宜的长度及其刚性特点很适于构建新颖拓扑结构,而且柔性双吡啶基配体bbp由于其碳链的可变性更是构建缠绕体系的好配体。
     此外,还对结构已见报道的两个配合物(配合物29和30)进行深入的性质研究(第六章)。磁性研究表明配合物29显示铁磁行为,而配合物30则显示自旋倾斜(spin-canting)行为。而且两个配合物都表现出铁电性质。
Metal–organic frameworks (MOFs) are one kind of new and well-designedcoordination functional materials with widely potential applications in diverse areas.Nowadays studies in this field have been focused on three aspects: select suitableorganic ligands to construct the products to obtain the molecular tailor and assemblyby employment of related principle molecular designing and crystal engineering,investigate the structure–property relationships and explore advanced compositematerial with superior properties. Metal-organic frameworks (MOFs) exhibitingentangled architectures are of great interest because of their intriguing aestheticstructures and topological features as well as their promising applications asfunctional materials.
     In this paper, we selected five different imidazole-containing orpyridine-containing ligands as main ligands, namely, rigid ligands:1,4-bis(1-imidazolyl)benzene (bib),4,4’-bis(1-imidazolyl)biphenyl (bibp) and1,3,5-tris(1-imidazolyl)benzene (tib) as well as flexible ligands:1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (titmb) and1,3-bis(4-pyridyl)propane (bpp), and different organic carboxylic acid as co-ligandsto combine with different transitional metal ions (Co~(Ⅱ)、Zn~(Ⅱ)、Mn~(Ⅱ)、Cd~(Ⅱ)) to obtainnovel entangled systems. All compounds are characterized by elemental analysis, IRspectrum and X-ray crystallography. The crystal structures as well as topologicalanalysis of these compounds and the systematic investigation of the effect of structurecharacteristics of ligands on the ultimate frameworks will be represented anddiscussed. Furthermore, the thermogravimetric analyses, the photoluminescenceproperties, the ferroelectric properties and the magnetic properties of the complexesare discussed in detail. The structure–property relationships were also investigated.
     Therefore,28novel complexes reported here can be divided into four partsaccording to their N-donor ligands and their characteristics of structures andproperties.
     (1) A series of metal–organic frameworks (MOFs) based on the rigid bibp ligand (compounds1-12). Compounds1and2are constructed by metal formate (M=Mn~(Ⅱ)and Co~(Ⅱ)) and bibp ligands showing1D and3D networks, respectively, due to thedifferent coordination models of formates (chapter2). Compounds3-8areconstructed by different metal ions (Co~(Ⅱ)、Zn~(Ⅱ)and Cd~(Ⅱ)), flexible organic carboxylatesand bibp ligands showing2D (compounds3-5) and3D (compounds6-8) networks,respectively. In particular, compounds3and4are two threefold2D→3Dpolythreading networks; compound6is a threefold interpenetrating network withunprecedented4-connected (6~5.8) topology; compound7features rare4-connecteddmp network with fivefold interpenetration; compound8displays a new trinodal(4,8)-connected (3~2·4~2·5~2)(3~4·4~8·5~8·6~3·7~4·8)(3~4·4~6·5~8·6~8·7~2) topological net (chapter2).Remarkably, compounds9-12are four Co coordination compounds with unusual typeof entanglements which are assembled by the same initial materials by simplychanging the volume ratio of water/DMF medium. Compound9is an unprecedentedentangled structure having both2D→3D polycatenation and1D+2D→2Dpolythreading features; compound10is a new trinodal (3,4)-connectedself-penetrating3D network; compound11is a rare threefold2D→3D polythreadingstructure based on double-layered sheets; compound12displays a2D→3Dpolycatenated framework formed by five-fold interpenetrated trinodal (3,4)-connectedT-shaped bilayers (chapter3). In addition, compounds6-8show photoluminescenceproperties. The results of this work indicate that rigid bibp ligand tends to formframework with large voids when coordinating to metal ions because of its length andrigidity, which favors to generate the penetrated networks; it is also a good molecularrod to construct polythreading network when coordinating to metal ions by only oneN atom; solvent preference plays a significant role on the final structure.
     (2) A series of metal–organic frameworks (MOFs) based on the rigid tib ligand(compounds13-18, chapter4). Compound13exhibits a2D double-layered sheet with(3,6)-connected kgd topology. Compounds14-18are all3D frameworks. Compound14is obtained by using achiral rigid ligands via spontaneous resolution; the structureis comprised of two crystallographically independent motifs both showing(3,4)-connected self-penetrating nets with the unique (103)2(106)3topology, each ofwhich contains interlaced triple-stranded right-and left-handed Zn–BDC–Zn helical chains, respectively, and two such nets interpenetrate. Compound15is anotherexample showing both self-penetration and interpenetration features with binodal(3,4)-connected (103)2(10~6)_3topology that is different from compound14.Compounds16and17are both twofold interpenetrating network. Two enantiomericchiral3D (3,4)-connected (10~3)_4(10~6) nets interpenetrate in the former, while twoidentical3D (3,4,5)-connected (4·8~2)_2(4~2·8~4)(4~3·6~2·8~5)_2(4~3·6~2·8)_2nets interpenetrate inthe latter. Compound18is a binodal (3,4)-connected3D network with the rare(4·6·8)(4·6~2·8·10~2) fsx-3,4C2/c-2topology. In addition, compounds13-16showphotoluminescence properties. Compound14also displays ferroelectric behavior. Theresults of this work indicate that rigid tib ligand is a good candidate to be a3-connected nodal and adopts diverse coordination models to afford1D,2D and3Dnetworks when bonding to metal ions. Especially, the twist of imidazole rings andbenzene ring in tib ligand tends to form structures with helical features, which favorsto generate the entangled networks.
     (3) A series of metal–organic frameworks (MOFs) based on the flexible titmbligand (compounds19-24, chapter5). Compounds19-24all can be described in termsof M-titmb SBUs pillared by “rod” according to the concept of secondary buildingunit (SBU), in which M-titmb SBUs exhibit0D molecular cage,2D multi-layeredsheet,1D ladder-like chain and2D sheet due to various coordination models of titmbligand. In particular, compound23features a rare binodal (3,5)-connected (63)(698)hms net with2-fold interpenetration and it displays ferroelectric behavior. In addition,compounds19shows photoluminescence property. The results of this work indicatethat the flexibile titmb ligand possesses various conformations which has significanteffect on the final products and the designed compounds would be obtained byintroduction suitable rigid co-ligands. In addition, the concept of SBU is helpful tounderstand the given crystal structure and to design high-connected networks.
     (4) A series of entangled metal–organic frameworks (MOFs) based on the rigid bibor flexible bpp ligands (compounds25-28, chapter6). Compounds25and26wereobtained by the hydrothermal reaction in one pot. Compound25is a2D→3Dpolycatenation network and compound26is a fivefold2D→3D polythreadingnetwork. Compound27is a1D→2D polyrotaxane network with each Co2(L2)2ring threaded by two Co(bib) rods. Compound28is a twofold interpenetrating binodal(4,6)-connected fsh network based on bpp ligand. The results of this work indicatethat the rigid bib ligand is a good candidate for the organization of beautiful MOFsdue to its appropriate length and rigidity. Moreover, flexible bpp ligand is also a goodcandidate for the organization of entangled MOFs.
     In addition, magnetic studies reveal that compound29demonstrates dominantferromagnetic behavior and compound30displays spin-canting behavior. Bothcompounds29and30exhibit ferroelectric features.
引文
(1) Hoskins B F, Robson R.. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments. J Am Chem Soc,1989,111:5962~5964.
    (2) O’keeffe M. Crystal Structure,1996.
    (3) Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknottingincoordination network chemistry. Coordination Chemistry Reviews,2003,246:247~289.
    (4) F rey, G. Hybrid porous solids: past, present, future. Chem Soc Rev,2008,37:191~214.
    (5) Ingleson, M. J., Barrio, J. P., Bacsa, J. et al. Generation of a solid Bronsted acid site in a chiralframework. Chem Commun,2008:1287~1289.
    (6) Oh, M., Mirkin, C. A. Ion exchange as a way of controlling the chemical compositions ofnano-and microparticles made from infinite coordination polymers. Angew Chem Int Ed,2006,45:5492–5494.
    (7) Tanabe, K. K., Wang, Z., Cohen, S. M. Systematic functionalization of a metal-organicframework via a postsynthetic modification approach. J Am Chem Soc,2008,130:8508~8517.
    (8) Schmidt G M.J Pure Appl Chem,1971,27:647~678.
    (9) Desiraju G R, Gavezzotti A. Crystal structures of polynuclear aromatic hydrocarbons.Classification, rationalization and prediction from molecular structure. Acta Cryst B,45:473~482.
    (10) Etter M C. Encoding and decoding hydrogen-bond patterns of organic compounds. AccChem Res,1990,23:120~126.
    (11)周公度.超分子结构化学,大学化学,2002,vol.17(5):1~12.
    (12) Jesse L, Rowsell C, Eckert J, et.al. Gas adsorption sites in a large-pore metal-organicframework. Science,2005,309:1350~1354.
    (13) Dinca M, Long J R.. Strong H2binding and selective gas adsorption within the microporouscoordination solid Mg3(O2C-C10H6-CO2)a. J Am Chem Soc,2005,127:9376~9377.
    (14) F reyw G, Mellot-Draznieks C, Serre C. A Chromium terephthalate–based solid withunusually large pore volumes and surface area. Science,2005,309:2040~2042.
    (15) Lee J Y, Farha O K, Roberts J, et.al. Metal–organic framework materials as catalysts. ChemSoc Rev,2009,38:1450~1459
    (16) Zhang J, Bu X H. Chiralization of diamond nets: stretchable helices and chiral and achiralnets with nearly identical unit cells. Angew Chem Int Ed,2007,46:6115~6118.
    (17)(a) Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement, AngewChem Int Ed,1998,37:1460~1494.(b) Batten S R. Topology of interpenetration. Cryst EngComm,2001,3:67~73;
    (18)(a) Fan J, Sun W Y, Okamura T-A, et.al. An unusual2D→3D parallel interpenetration:synthesis and X-ray structure of compound [Ag2(titmb)2][Hsal]2.3H2O(titmb=1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and H2sal=salicylic acid). InorgChim Acta,2004,357:2385~2389.(b) Liu H K, Sun W Y, Tan g W X, et.al. Assembly ofsupermolecular complexes with tripodal ligand titmb and tib: a2D rhombic grid networkassembled from2-connected tib. J Chem Soc, Dalton Trans,2002:3886~3891.(c) Fan J, Sui B,Okamura T-A, et.al. Synthesis, structures and properties of two-dimensional honeycomb andstepwise networks from self-assembly of tripodal ligand1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene with metal salts. J Chem Soc, DaltonTrans,2002:3868~3873.(d) Liu H K, Sun W Y, Zhu H L, et.al. A two-dimensional networkconstructed via72-membered heart-shaped macrocycles, a copper(II) complex with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and diethylenetriamine ligands. InorgChim Acta,1999,295:129~135.
    (19)(a) Wang H L, Feng Y F, Liang N, et.al. A (3,4)-connected two-dimensional coppercoordination polymer with a2D→3D polycatenation network. J Mol Struct,2010,964:5~8.(b)Willans C E, French S, Barbour L J, Gertenbach J-A, et.al. A catenated imidazole-basedcoordination polymer exhibiting significant CO2sorption at low pressure. Dalton Trans,2009:6480~6482.(c) Zhou H, Lin J D, Du S W. Synthesis, structures and fluorescent properties ofcadmium/zinc coordination polymers with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzeneand1,3,5-benzenetricarboxylic acid. J Mol Struct,2009,930:49~54.
    (20)(a) Goodgame D M L, Menzer S, Williams D J, Formation of an infinite interpenetratingthree-dimensional network by tris(N,N’-butylenebismidazole)manganese(II) tetrafluoroborate.Chem Commun,1996,2127~2128;(b) Wu L P, Yamagiwa Y, Kuroda-Sowa T, et.al. Synthesisand structure of a three-dimensional copper(II) coordination polymer with1,2-bis(imidazol-1′-yl)ethane. Inorg Chim Acta,1997,256:155~159;(c) Ballester L, Baxter I,Duncan P C M, et.al. Anion-dependence of the polymeric structures of manganese(II) complexesof N,N’-butylenebis(imidazole). Polyhedron,1998,17:3613~3623;(d) Ma J F, Liu J F, Xing Y,et.al. Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with1,1’-(1,4-butanediyl)bis(imidazole). J Chem Soc Dalton Trans,2000,2403~2407;(e) Ma J F,Yang J, Zheng G L, et.at. A Porous Supramolecular Architecture from a Copper(II) CoordinationPolymer with a3D Four-Connected86Net. Inorg Chem,2003,42:7531~7534;(f) Ma J F, YangJ, Zheng G L, et.al. Four new coordination polymers of Cu(II) with1,1′-(1,4-butanediyl)bis(imidazole). Polyhedron,2004,23:553~559;(g) Li F F, Ma J F, Song S Y,et.al. Syntheses, Structures, and Characterizations of Four New Silver(I) Sulfonate CoordinationPolymers with Neutral Ligands. Cryst Growth Des,2006,6:209~215;(h) Yang J, Ma J F, Liu YY, et.al. Two New CuII Coordination Polymers: Studies of Topological Networks and WaterClusters. Eur J Inorg Chem,2006,1208~1215.
    (21)(a) Hoskins B F, Robson R, Slizys D A, An Infinite2D Polyrotaxane Network inAg2(bix)3(NO3)2(bix)1,4-Bis(imidazol-1-ylmethyl)benzene). J Am Chem Soc,1997,119:2952~2953;(b) Hoskins B F, Robson R, Slizys D A, The Structure of [Zn(bix)2(NO3)2]·4.5H2O(bix=1,4-Bis(imidazol-1-ylmethyl)benzene): A New Type of Two-Dimensional Polyrotaxane.Angew Chem Int Ed Engl,1997,36:2336~2338;(c) Carlucci L, Ciani G, Proserpio D M, A newtype of entanglement involving one-dimensional ribbons of rings catenated to a three-dimensionalnetwork in the nanoporous structure of [Co(bix)2(H2O)2](SO4)·7H2O [bix=1,4-bis(imidazol-1-ylmethyl)benzene]. Chem Commun,2004,380~381;(d) Carlucci L, Ciani G,Proserpio D M, et.al. Supramolecular isomers in the same crystal: a new case involving twodifferent types of layers polycatenated in the3D architecture of [Cu(bix)2(SO4)]7.5H2O[bix=1,4-bis(imidazol-1-ylmethyl)benzene]. CrystEngComm,2004,6:96~101;(e) Chawla, S. K.;Arora, M.; N ttinen, K.; Rissanen, K.; Yakhmi, J. V. Syntheses and crystal structures of threenovel Cu(II) coordination polymers of different dimensionality constructed from Cu(II)carboxylates (carboxylate=malonate (mal),2acetate (ac), fumarate (fum)) and conformationallyflexible1,4-bis(imidazole-1-yl-methylene)benzene (IX). Polyhedron,2004,23:3007~3019;(f)Carlucci L, Ciani G, Proserpio D M, Parallel and Inclined (1D-2D) Interlacing Modes in NewPolyrotaxane Frameworks [M2(bix)3(SO4)2][M=Zn(II), Cd(II);(Bix)1,4-Bis(imidazol-1-ylmethyl)benzene]. Cryst Growth Des,2005,5:37~39;(g) Zhu H F, Fan J,Okamura T-aki, et.al. Syntheses and Structures of Zinc(II), Silver(I), Copper(II), and Cobalt(II)Complexes with Imidazole-Containing Ligand:1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene.Cryst Growth Des,2005,5:289~294;(i) Wen L L, Li Y Z, Lu Z D, et.al. Versatilesupramolecular self-assembly. Part II. Network formation and magnetic behaviour of copper(II)malonate anions in ammonium derivatives. CrystEngComm,2006,8:530~544.
    (22) So Y H. Novel Thermoset Polyimidazole Amides. Macromolecules,1992,25:516-520.
    (23) Blake A J, Champness N R, Khlobystov A, et.al. Polycatenated copper(I) molecular ladders:a new structural motif in inorganic coordination polymers. Chem. Commun,1997:2027~2028.
    (24) Banfi S, Carlucci L, Caruso E, et.al. An Unusual Three-Dimensional Coordination NetworkFormed by Parallel Polycatenation of Two-Fold Interpenetrated (6,3) Layers Based on a NovelThree-Connecting Ligand. Cryst Growth Des,2004,4:29~32.
    (25) Benyei A C, Coupar P I, Ferguson G,et.al. Tenfold Interpenetration of Giant HexagonalR1212(126) Nets in the Hydrogen-Bonded Structure of1,1,1-Tris(4-hydroxyphenyl)ethane-4,4'-Bipyridyl (2/3). Acta Crystallogr Sect C54,1998:1515~1519.
    (26) Fu Y,. Wu X T,. Dai J C, et.al. Interpenetration in[Cd(isonicotinate)2(1,2-bis(4-pyridyl)ethane)0.5(H2O)]n, a novel octahedral polymer containing anunusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks.Chem Commun,2001:1856-1857.
    (27) Carlucci L, Ciani G, Proserpio D M, et.al. Chiral packing of chiral quintuple layerspolycatenated to give a three-dimensional network in the coordination polymer[Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe=1,2-bis(4-pyridyl)ethane]. Chem Commun,2000:1319~1320.
    (28) Fu Z Y, Wu X T, Dai J C, et.al. A novel mixed-ligand molecular bilayer generated byself-assembly of “T-shaped” moieties, displaying an unusual entanglement. New J Chem,2002,26:978~980.
    (29) Carlucci L, Ciani G, Proserpio D M, et.al. New examples of self-catenation in twothree-dimensional polymeric co-ordination networks. J Chem Soc Dalton Trans,2000:3821~3828.
    (30) Carlucci L, Ciani G, Macchi P, et.al. Complex Interwoven Polymeric Frames from theSelf-Assembly of Silver(I) Cations and Sebaconitrile. Chem Eur J,1999,5:237~243.
    (31) Sailaja S, Rajasekharan M V. One-Dimensional Coordination Polymers of Silver(I) withAminomethylpyridines. Example of a Triple Helical Infinite Chain. Inorg Chem,2000,39:4586~4590.
    (32) Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices. JAm Chem Soc,2003,125:6014~6015.
    (33) Furukawa H, Miller M A, Yaghi O M. Independent verification of the saturation hydrogenuptake in MOF-177and establishment of a benchmark for hydrogen adsorption in metal–organicframeworks. J Mater Chem,2007,17:3197~3204.
    (34) Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with abimodal porous functionality. Nat Mater,2007,6:142~148.
    (35) Ferey G. Physical chemistry: trapped gas. Nature,2005,436:187~188.
    (36) Zhao X, Xiao B, Fletcher A J, et.al. Hysteretic Adsorption and Desorption of Hydrogen byNanoporous Metal-Organic Frameworks. Science,2004,306:1012~1015.
    (37) Zaworotko M J. Materials science: Designer pores made easy. Nature,2008,451:410~411.
    (38) S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki,Y. Kinoshita and S.Kitagawa, J. Am. Chem. Soc.,2007,129,2607~2614.
    (39) M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem.Soc.,1994,116,1151~1152.
    (40) C. D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc.,2005,127,8940~8941.
    (41) Y. Lu, M. Tonigold, B. Bredenko¨ tter, D. Volkmer, J. Hitzbleckand G. Langstein, Z. Anorg.Allg. Chem.,2008,634,2411~2417.
    (42) Y. K. Hwang, D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo,J. Kim, A. Vimont, M. Daturi,C. Serre and G. Fe′rey, Angew.Chem., Int. Ed.,2008,47,4144~4148.
    (43) N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov,A. N. Shmakov, Y. A. Chesalov, D. N.Dybtsev, V. P. Fedinand O. A. Kholdeeva, J. Catal.,2008,257,315~323.
    (44) F. X. Llabre′s i Xamena, O. Casanova, R. Galiasso Tailleur,H. Garcia and A. Corma, J.Catal.,2008,255,220~227.
    (45) D. Jiang, T. Mallat, F. Krumeich and A. Baiker, J. Catal.,2008,257,390~395.
    (46) M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park and M. J. Rosseinsky, Chem.Commun.,2008,1287~1289.
    (47) A. Pramanik, S. Abbina and G. Das, Polyhedron,2007,26,5225~5234.
    (48) B. Xiao, H. Hou and Y. Fan, J. Organomet. Chem.,2007,692,2014~2020.
    (49) L. Alaerts, E. Se′guin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs and D. E. D. Vos,Chem.–Eur. J.,2006,12,7353~7363.
    (50) S. De Rosa, G. Giordano, T. Granato, A. Katovic, A. Siciliano and F. Tripicchio, J. Agric.Food Chem.,2005,53,8306~8309.
    (51) K. Schlichte, T. Kratzke and S. Kaskel, Microporous MesoporousMater.,2004,73,81~88.
    (52) F. Ga′ndara, B. Gomez-Lor, E. Gutie′rrez-Puebla, M. Iglesias,M. A. Monge, D. M.Proserpio and N. Snejko, Chem. Mater.,2008,20,72~76.
    (53) B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M. A. Monge,C. Ruiz-Valero and N. Snejko,Inorg. Chem.,2002,41,2429–2432.
    (54) M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank and M. Eddaoudi, J. Am. Chem. Soc.,2008,130,12639~12641.
    (55) F. Ga′ndara, A. Garc′a-Corte′s, C. Cascales, B. Go′mez-Lor, E. Gutie′rrez-Puebla, M.Iglesias, A. Monge and N. Snejko, Inorg.Chem.,2007,46,3475~3484.
    (56) K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry and S. R.Wilson, Acc. Chem. Res.,2005,38,283~291.
    (57) Zhang, X. M., Hao, Z. M., Zhang, W. X. et al. Dehydration-induced conversion from asingle-chain magnet into a metamagnet in a homometallic nanoporous metal–organic framework,Angew. Chem. Int. Ed.2007,46,3456-3459.
    [58] Kurmoo M. Magnetic Metal-Oganic Frameworks[J]. Chemical Society Reviews,2009V38:1353~1379.
    [59](a) W. Zhang, L.Z. Chen, R.G. Xiong, T. Nakamura, S.P.D. Huang, J. Am. Chem. Soc.131(2009)12544;(b) H.Y. Ye, D.W. Fu, Y. Zhang,W. Zhang, R.G. Xiong, S.P.D. Huang, J. Am. Chem.Soc.131(2009)42.(c) H.Y. Ye, L.Z. Chen, R.G. Xiong, Acta Crystllogr. Sec. B-Struc. Sci.2010,66:387.(d) W. Zhang, H.Y. Ye, H.L. Cai, J.Z. Ge, R.G. Xiong, S.P.D. Huang, J. Am. Chem. Soc.,2010,132:7300.
    (60) Wu L P, Yamagiwa Y, Kuroda-Sowa T, et.al., Synthesis and structure of a three-dimensionalcopper(II) coordination polymer with1,2-bis(imidazol-1-yl)ethane, Inorg chim acta1997,256:155~159.
    (61) Ballester L, Baxter I, Duncan P C M, et.al., Anion-dependence of the polymeric structures ofmanganese(II) complexes of N,N’butylenebis(imidazole), Polyhedron1998,17:3613~3623.
    (62) Li X J, Cao R, Bi W H, et.al., A New Family of Cadmium(II) Coordination Polymers fromColigands: Effect of the Coexistent Groups (R=H,-NO2,-OH) on Crystal Structures andProperties, Cryst Growth Des2005,5:1651~1656.
    (63)(a) Li F F, Ma J F, Song S Y, et. al., Syntheses, Structures, and Characterizations of Four NewSilver(I) Sulfonate Coordination Polymers with Neutral Ligands, Cryst Growth Des2006,6:209~215;(b) Yang J, Ma J F, Liu Y Y, Four Novel3D Copper(II) Coordination Polymers withDifferent Topologies, Eur. J. Inorg. Chem2005,2174~2180;(c) Ma J F, Yang J, Zheng G L,et.al., A Porous Supramolecular Architecture from a Copper(II) Coordination Polymer with a3DFour-Connected86Net, Inorg Chem2003,42:7351~7354;(d) Liu Y Y, Ma J F, Yang J, et.al.,Syntheses and Characterization of Six Coordination Polymers of Zinc(II) and Cabolt(II) with1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands, Inorg Chem2007,46:3027~3037;(e) Yang J, Ma J F, Liu Y Y, et.al. Two New CuII Coordination Polymers: Studies ofTopological Networks and Water Clusters. Eur J Inorg Chem,2006,1208~1215.
    (64) Hoskins B F, Robson R, Slizys D A. An Infinite2D Polyrotaxane Network inAg2(bix)3(NO3)2(bix==1,4-Bis(imidazol-1-ylmethyl)benzene), J Am Chem Soc1997,119:2952~2953;(b) Hoskins B F, Robson R, Slizys D A. Angew Chem Int Ed1997,36:2336~2338;(c) Abrahams B F, Hoskins B F, Robson R, et,al., CrystEngComm,2002,4:478~482.
    (65)(a) Yan Qi, Feng Luo, Yunxia Che, and Jimin Zheng, Hydrothermal Synthesis ofMetal-Organic Frameworks Based on Aromatic Polycarboxylate and Flexible Bis(imidazole)Ligands, Crystal Growth&Design,2008,8,606~611.(b)(2) Yan Qi, Yunxia Che, Feng Luo,Stuart R. Batten, Yang Liu, and Jimin Zheng, A Variety of1D to3D Metal-Organic CoordinationArchitectures Assembled with1,1'-(2,2'-oxybis(ethane-2,1-diyl))Bis(1H-imidazole), CrystalGrowth&Design,2008,8:1654–1662.(c) Yan Qi, Feng Luo, Stuart R. Batten, Yun-Xia Che andJi-Min Zheng, Syntheses and Crystal Structures of a Series of Novel Helical CoordinationPolymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts, Crystal Growth&Design,2008,8:2806–2813(d) Yan Qi, Yun-Xia Che and Ji-Min Zheng, The first zinc(II)coordination polymer constructed from mixed-ligand1,2-bis(2-(1H-imidazol-1-yl)ethoxy)ethaneand1,4-benzenedicarboxylic acid. CrystEngComm,2008,10:1137~1139.
    (66)(a) Liu H K, Sun W Y, Zhu H L, et. al., A two-dimensional network constructed via72-membered heart-shaped macrocycles, a copper(II) complex with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and diethylenetriamine ligands, InorgChem Acta1999,295:129~135;(b) Liu H K, Sun W Y, Ma D J, et. al., Chem Commun2000,591~;(c) Fan J, Sun W Y, Okamura T, et. al., Novel Metal-Organic Frameworks with SpecificTopology Formed through Noncovalent Br…Br Interactions in the Solid State, Cryst Growth Des2004,4:579~584;(d) Liu H K, Sun W Y, Tang W X, et. al., Assembly of supermolecularcomplexes with tripodal ligand titmb and tib: a2D rhombic grid network assembled from2-connected tib, J Chem Soc Dalton Trans2002,3886~3891;(e) Fan J, Sui B, Okamura T, et.al.,Synthesis, structures and properties of two-dimensional honeycomb and stepwise networks fromself-assembly of tripodal ligand1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene withmetal salts, J Chem Soc Dalton Trans2002,3868~3873.
    (67)(a) Sui B, Fan J, Okamura T, et.al., Anion exchange properties of a two-dimensionalcoordination framework of cadmium(II) with1,3-bis(imidazol-1-ylmethyl)-5-methylbenzene,New J Chem2001,25:1379~1381;(b) Sun W Y, Xie J, Okamura T, et. al., Novel tripodalchelating ligand for appending and encapsulating metal ions. Crystal structure of a parachute-likehydrogen bonded complex, Chem Commun2000,1429~1430;(c) Wan S Y, Fan J, Okamura T,et.al.,2D4.82Network with threefold parallel interpenetration from nanometer-sized tripodalligand and lead(II) nitrate, Chem Commun2002,2520~2521;(d) Sun W Y, Fan J, Okamura T,et.al., Self-Assembly of Frameworks with Specific Topologies: Construction and Anion ExchangeProperties of M3L2Architectures by Tripodal Ligands and Silver(i) Salts, Chem Eur J2001,7:2557~2562;(e) Wan S Y, Li Y Z, Okamura T, et. al., Syntheses, Structures, and Properties ofTwo-Dimensional Honeycomb Networks from the Assembly of the Tripodal Ligand2,4,6-Tris[4-(imidazol-1-ylmethyl)phenyl]-1,3,5-triazine with Metal Salts, Eur J Inorg Chem2003,3783~3789.
    (68)(a) Fan J, Sun W Y, Okamura T, et.al., Novel Metal-Organic Frameworks with SpecificTopology from New Tripodal Ligands:1,3,5-Tris(1-imidazolyl)benzene and1,3-Bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene, Inorg Chem2003,42:3168~3175;(b)Fan J, Gan L, Kawaguchi H, et. al., Reversible Anion Exchanges between the Layered Organic-Inorganic Hybridized Architectures: Syntheses and Structures of Manganese(II) and Copper(II)Complexes Containing Novel Tripodal Ligands, Chem Eur J2003,9:3965~3973;
    (69) Fan J, Yee G T, Wang G B, et.al., Syntheses, Structures, and Magnetic Properties ofInorganic-Organic Hybrid Cobalt(II) Phosphites Containing Bifunctional Ligands, Inorg Chem.2006,45:599~608;(b) Fan J, Hanson B E. Novel Zinc Phosphate Topologies Defined byOrganic Ligands, Inorg Chem.2005,44:6998~7008.
    (70)(a) Janiak C. Engineering coordination polymers towards applications. Dalton Trans,2003,2781~2804.(b) James S L. Metal-organic frameworks. Chem Soc Rev,2003,276~288.(c) RosiN L, Eckert J, Eddaoudi M, et.al. Hydrogen Storage in Microporous Metal-Organic Frameworks.Science,2003,300:1127~1129.
    (71) Jin C M, Lu H, Wu L Y, et.al. A new infinite inorganic [n]catenane from silver andbis(2-methylimidazolyl)methane ligand. Chem Commun,2006,5039~5041.(b) Li X J, Wang XY, Gao S, et.al. Two Three-Dimensional Metal-Organic Frameworks ContainingOne-Dimensional Hydroxyl/Carboxylate Mixed Bridged Metal Chains: Syntheses, CrystalStructures, and Magnetic Properties. Inorg Chem,2006,45:1508~1516.(c) Li X J, Cao R, GuoZ G, et. al. Inorg Chem Commun,2006,9:551~554.(d) Cui G H, Li J R, Tian J L, et.al. CrystGrowth Des,2005,5:1775~1780.(e) Wang X Y, Li B L, Zhu X, et.al. Extended Networks ofCo2+and Mn2+Bridged by NCS-/N3-Anions and Flexible Long Spacers: Syntheses, Structures,and Magnetic Properties. Eur J Inorg Chem,2005,3277~3286.
    (72)(a) Eddaoudi M, Moler D B, Li H, et.al. Modular Chemistry: Secondary Building Units as aBasis for the Design of Highly Porous and Robust Metal Organic Carboxylate Frameworks.Acc.Chem Res,2001,34:319~330.(b) Barnett S A, Champness N R. Structural diversity ofbuilding-blocks in coordination framework synthesis—combining M(NO3)2junctions andbipyridyl ligands. Coord Chem Rev,2003,246:145~168.(c) Wang J J, Gou L, Hu H M, et.al.Ligand and pH-Controlled ZnIIBilayer Coordination Polymers Based onBiphenyl-3,3‘,4,4‘-tetracarboxylate. Cryst Growth Des,2007,7:1514~1521.
    (73)(a) Wang X L, Qin C, Wang E B, et.al. An unprecedented eight-connected self-penetratingnetwork based on pentanuclear zinc cluster building blocks. Chem Commun,2005:4789~4791.(b) Bi M H, Li G H, Zou Y C, et.al. Zeolite-like Copper Iodide Framework with New66Topology.Inorg Chem,2007,46:604~606.(c) Sun H L, Gao S, Ma B Q, et.al.3D Self-penetratingcoordination network constructed by dicyanamide and1,2-bis(4-pyridyl)ethane-N,N′-dioxide
    (bpeado). Cryst Eng Comm,2004,6:579~583.(d) Luo F, Che Y X, Zheng J M. The FirstSelf-Penetrating Topology Based on an Unusual α-Po Net with Double Edges Constructed from a12-Connected Gd2(μ2-Ocarboxylate)2(μ2-OH2)2(μ3-OH)2Cu2Core. Cryst Growth Des,2006,6:2432~2434.
    (74)(a) Wang X L, Qin C, Wang E B, et.al. Metal Nuclearity Modulated Four-, Six-, andEight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes.Chem–Eur J,2006,12:2680~2691.(b) Wang X L, Qin C, Wang E B, et.al. EntangledCoordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting.Angew Chem Int Ed,2005,44:5824~5827.(c) Fu W F, Gan X, Che C M, et.al. Eur J InorgChem,2004,10:2228~2236.(d) Yang J, Ma J F, Liu Y Y, et.al. Two New CuIICoordinationPolymers: Studies of Topological Networks and Water Clusters. Eur J Inorg Chem,2006,12:1208~1215.
    (75)(a) Tian Z F, Lin J G, Su Y, et.al. Flexible Ligand, Structural, and Topological Diversity:Isomerism in Zn(NO3)2Coordination Polymers. Cryst Growth Des,2007,7:1863~1867.(b) LuZ D, Wen L L, Ni Z P, et.al. Syntheses, Structures, and Photoluminescent and Magnetic Studies ofMetal Organic Frameworks Assembled with5-Sulfosalicylic Acid and1,4-Bis(imidazol-1-ylmethyl)-benzene. Cryst Growth Des,2007,7:268~274.
    (76)(a) Duncan P C M, Goodgame D M L, Menzer S, et.al. Formation of an infiniteinterpenetrating three-dimensional network by tris(N,N′-butylenebismidazole)manganese(II)tetrafluoroborate. Chem. Commun.,1996:2127~2128.(b) Lan Y Q, Li S L, Wang X L, et.al.Spontaneous Resolution of Chiral Polyoxometalate-Based Compounds Consisting of3D ChiralInorganic Skeletons Assembled from Different Helical Units. Chem–Eur J,2008,14:9999~10006.(c) Liu Y Y, Ma J F, Yang J, et.al. Syntheses and Characterization of Six CoordinationPolymers of Zinc(II) and Cobalt(II) with1,3,5-Benzenetricarboxylate Anion and Bis(imidazole)Ligands. Inorg Chem,2007,46:3027~3037.(d) Liu F C, Zeng Y F, Jiao J, et.al. First MetalAzide Complex with Isonicotinate as a Bridging Ligand Showing New Net Topology:Hydrothermal Synthesis, Structure, and Magnetic Properties. Inorg Chem,2006,45:2776~2778.
    (77)(a) Zhang S Y, Lan J B, Mao Z H, et.al. Crystal Water of Cadmium Acetate-DependentFormation of One-Dimensional Channel Structure Based on4,4′-bis(1-Imidazolyl)biphenyl. CrystGrowth Des,2008,8:3134~3136.(b) Qi Y, Che Y X, Zheng J M. Self-Penetrating andInterpenetrating3D Metal Organic Frameworks Constructed from the Rigid1,4-Bis(1-imidazolyl)-benzene Ligand and Aromatic Carboxylate. Cryst Growth Des,2008,8:3602~3608.
    (78)(a) Hu L, Spencer E C, Wang G, et.al. Novel cationic copper coordination frameworksconstructed from copper phosphate8-rings and4,4’-bisimidazolylbiphenyl as a bridging ligand.Inorg Chem Commun,2008,11:982~984.(b) Hu L, Hanson B E, Slebodnick C, et.al.Metal–organic hybrid networks constructed with the4,4′-bisimidazolylbiphenyl ligand. InorgChem Commun,2008,11:1412~1416.(c) Zhang S, Yang S, Lan J, et.al. Ultrasound-inducedswitching of sheetlike coordination polymer microparticles to nanofibers capable of gelatingsolvents. J Am Chem Soc,2009,131:1689~1691.(d) Wen L L, Wang F, Feng J, et.al. Structures,photoluminescence, and photocatalytic properties of six new metal–organic frameworks based onaromatic polycarboxylate acids and rigid imidazole-based synthons. Cryst Growth Des,2009,9:3581~3589.(e) Xu J, Pan Z, Wang T, et.al. Syntheses, structures, photoluminescence andmagnetic properties of five compounds with1,3,5-benzenetricarboxylate acid and imidazoleligands. Cryst Eng Commun,2010,12:612~619.(e) Li Z X,. Hu T L, Ma H, et.al. Adjusting theporosity and interpenetration of cadmium(II) coordination polymers by ligand modification:syntheses, structures, and adsorption properties. Cryst Growth Des,2010,10:1138~1144.(g) XuJ, Yao X Q, Huang L F, et.al. Syntheses, structures, photoluminescence and magnetic properties offour new metal–organic frameworks based on imidazole ligands and aromatic polycarboxylateacids. Cryst Eng Commun,2011,13:857~865.
    (79)(a) So Y H. Novel Thermoset Polyimidazole Amides. Macromolecules,1992,25:516~520.(b) He Yin Hua, Feng Yun Long, Lan You Zhao, et.al. Syntheses, Structures, andPhotoluminescence of Four d10Metal-Organic Frameworks Constructed from3,5-Bis-oxyacetate-benzoic Acid. Crystal Growth Design,2008,(8):3586~3594.(c) Q Wenge, PJason A., W ukasz, et.al. Structural diversity through ligand flexibility: two novel metal–organic nets via ligand-to-ligand cross-linking of “paddlewheels”. Chem Comm,2010,(46):8734–8736.
    (80) SAINT Software Reference Manual; Bruker AXS: Madison, WI,1998.
    (81) Sheldrick G M. SHELXTLNT, Program for Solution and Refinement of Crystal Structures,version5.1; University of G ttingen: G ttingen. Germany,1997.
    (82) Wen Li-Li, Wang Feng, Feng Juan, et.al. Structures, Photoluminescence, and PhotocatalyticProperties of Six New Metal-Organic Frameworks Based on Aromatic Polycarboxylate Acids andRigid Imidazole-Based Synthons. Crystal Growth Design,2009,8:3581~3589.
    (83) Qi Y, Che Y X, Luo F, et.al. A Variety of1D to3D Metal Organic CoordinationArchitectures Assembled with1,1′-(2,2′-Oxybis(ethane-2,1-diyl))bis(1H-imidazole). Crys GrowthDes,2008,8:1654~1662.
    (84)(a) Banfi S, Carlucci L, Caruso E, et.al. Using long bis(4-pyridyl) ligands designed for theself-assembly of coordination frameworks and architectures. J Chem Soc, Dalton Trans,2002:2714~2721.(b) Liu G F, Ye B H, Ling Y H, et.al. Interlocking of molecular rhombi into a2Dpolyrotaxane network viaπ–π interactions. Crystal structure of [Cu2(bpa)2(phen)2(H2O)]2·2H2O
    (bpa2=biphenyl-4,4′-dicarboxylate, phen=1,10-phenanthroline). Chem Commun,2002:1442~1443.
    (85)(a) Kuchl C J, Tabellion F M, Arif A M, et.al. Single-and Double-Stranded ChainsAssembled via Concomitant Metal Coordination and Hydrogen Bonding. Organometallics,2001,20:1956~1959.(b) Fraser C S A, Jennings M C, Puddephatt R J. An organometallicpolyrotaxane and a new type of polyrotaxane architecture. Chem Commun,2001:1310~1311.(c)Zaman M B, Smith M D, zur Loye H C. Two different one-dimensional structural motifs in thesame coordination polymer: a novel interpenetration of infinite ladders by bundles of infinitechains. Chem Commun,2001:2256~2257.
    (86)(a) Carlucci L, Ciani G, Proserpio D M. A new type of supramolecular entanglement in thesilver(I) coordination polymer [Ag2(bpethy)5](BF4)2[bpethy=1,2-bis(4-pyridyl)ethyne]. ChemCommun,1999:449~450.(b) Tong M L, Chen H J, Chen X M. Molecular Ladders withMultiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for[M2(4,4‘-bpy)3(H2O)2(phba)2](NO3)2·4H2O (M=Cu2+or Co2+;4,4‘-bpy=4,4‘-Bipyridine; phba=4-Hydroxybenzoate). Inorg Chem,2000,39:2235~2238.
    (87)(a) Qin C, Wang X L, Carlucci L, et.al. From arm-shaped layers to a new type ofpolythreaded array: a two fold interpenetrated three-dimensional network with a rutile topology.Chem Commun,2004:1876~1877.(b) Wang X L, Qin C, Wang E B, et.al. EntangledCoordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting.Angew Chem Int Ed,2005,44:5824~5827.(c) Du M, Wang X G, Zhang Z H, et.al.Solvent-directed layered Co(II) coordination polymers with unusual solid-state properties: from ananoporous framework to the dense polythreading3-D aggregation. Cryst Eng Comm,2006,8:788~793.(d) Du M, Zhang Z H, Wang X G, et.al. Structural modulation of polythreading andinterpenetrating coordination networks with an elongated dipyridyl building block and variousanionic co-ligands. Cryst Eng Comm,2008,10:1855~1865.(e). Wang G H, Li Z G, Jia H Q,et.al. Topological Diversity of Coordination Polymers Containing the Rigid Terephthalate and aFlexible N,N′-Type Ligand: Interpenetration, Polyrotaxane, and Polythreading. Cryst Growth Des,2008,8:1932~1939.(f) Xu B, Lv J, Cao R. Anion-Assisted Structural Variation of CadmiumCoordination Polymers: From2D→3D Inclined Polycatenation to2D→3D Polythreading.Cryst Growth Des,2009,9:3003~3005.(g) Zheng B, Bai J F. An unprecedented nanoscaletrilayered polythreading coordination array hierarchically formed from2D square grid networksand induced by protonated1,2-bis(4-pyridyl)ethane. Cryst Eng Comm,2009,11:271~273.(h)Wen G L, Wang Y Y, Zhang Y N, et.al. A novel polythreaded metal–organic framework withinherent features of different side arms and five-fold interpenetration. Cryst Eng Comm,2009,11,1519~1521.(i) Guo H D, Qiu D F, Guo X M, et.al. Entangled metal–organic frameworksmodulated by N-donor ligands of different conformations. Cryst Eng Comm,2009,11:2425~2430.(j) Kong Z G, Wang X Y, Carlucci L. A polythreaded three-dimensional architecture ofundulated layers originated by the contribution of different supramolecular interactions. InorgChem Commun,2009,12:691~694.(k) Wang X Y, He Y, Zhao L N, et.al. An unusual2D→3Dpolythreading framework based on a long1,10-phenanthroline derivative ligand. Inorg ChemCommun,2011,14:1186~1189.(l) Liu Y Y, Wang Z H, Yang J, et.al. A series of coordinationpolymers based on reduced Schiff base multidentate anions and bis(imidazole) ligands: syntheses,structures and photoluminescence. Cryst Eng Comm,2011,13:3811~3821.
    (88)(a) Sharma C V K, Rogers R D.‘Molecular Chinese blinds’: self-organization of tetranitratolanthanide complexes into open, chiral hydrogen bonded networks. Chem Commun,1999:83~84.(b) Tong M L, Wu Y M, Ru J, et.al. Pseudo-Polyrotaxane and β-Sheet Layer-BasedThree-Dimensional Coordination Polymers Constructed with Silver Salts and FlexiblePyridyl-Type Ligands. Inorg Chem,2002,41:4846~4848.(c) Du M, Jiang X J, Zhao X J.Direction of unusual mixed-ligand metal–organic frameworks: a new type of3-D polythreadinginvolving1-D and2-D structural motifs and a2-fold interpenetrating porous network. ChemCommun,2005:5521~5523.(d) Wang J, Zhu X, Cui Y F, et.al. A polythreading coordinationarray formed from2D grid networks and1D chains. Cryst Eng Comm,2011,13:3342~3344.
    (89) Xu Jiao, Pan Zhaorui, Wang Tianwei, et.al. Syntheses, structures, photoluminescence andmagnetic properties of five compounds with1,3,5-benzenetricarboxylate acid and imidazoleligands. Cryst Eng Comm,2010,12:612~619.
    (90) Blatov VA. TOPOS, A Multipurpose Crystallochemical Analysis with the Program Package,Russia,2004.
    (91) http://rcsr.anu.edu.au/home.
    (92)(a) Chen S S, Bai Z S, Fan J, et.al. Synthesis and characterization of metal complexes with amixed4-imidazole-containing ligand and a variety of multi-carboxylic acids. Cryst Eng Comm,2010,12:3091~3104.(b) Bourne S A, Lu J J, Moulton B, et.al. Coexisting covalent andnoncovalent nets: parallel interpenetration of a puckered rectangular coordination polymer andaromatic noncovalent nets. Chem Commun,2001:861~862.(c) Chesman A S R, Turner D R,Ross T M, et.al. Chains, helices, sheets and unusual3D nets: Diverse structures of the flexible,ditopic ligand1,2-bis(3-(4-pyridyl)pyrazolyl)ethane. Polyhedron,2010,29:2~9.(d) Wang F, KeX H, Zhao J B, et.al. Six new metal–organic frameworks with multi-carboxylic acids andimidazole-based spacers: syntheses, structures and properties. Dalton Trans,2011,40:11856~11865.
    (93) Yang J, Ma J F, Batten S R,et.al. Unusual parallel and inclined interlocking modes inpolyrotaxane-like metal–organic frameworks. Chem Commun,2008:2233~2235.
    (94)(a) Chun H, Kim D, Dybtsev D N, et.al. Metal–organic replica of fluorite built with aneight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand. AngewChem Int Ed,2004,43:971~974;(b) Borel C, Hakansson M, hrstr m L. Coordination bondsand strong hydrogen bonds giving a framework material based on a4-and8-connected net in[Ca[Co(en)(oxalato)2]2]n. Cryst Eng Commun,2006,8:666~669.(c) Zhai Q G, Lu C Z, Wu XY, et.al. Coligand modulated six-, eight-, and ten-connected Zn/Cd-1,2,4-triazolate frameworksbased on mono-, bi-, tri-, penta-, and heptanuclear cluster units. Cryst Growth Des,2007,7:2332~2342.(d) Wen Y H, Zhang Q W, He Y H, et.al. Highly thermal stable zinc complex withunusual (4,8)-connected topology. Inorg Chem Commun,2007,10:543~546.(e) Ji W J, Zhai QG, Hu M C, et.al. Ionothermal synthesis and characterization of a3-D (4,8)-connected porousanionic metal–organic framework entrapped with1-D [K2(H2O)6] chains. Inorg Chem Commun,2008,11:1455~1458.(f) Cheng X, Duan X, Liu T, et.al. A novel3D (4,8)-connectedmetal-organic framework of scu topology with two types of1D channel constructed bymethylenediisophthalic acid (H4MDIP). Inorg Chem Commun,2010,13:818~821.(g) Ma R,Chen C, Sun B, et.al. A new3D metal–organic framework with (4,8)-connected AlB2topologyconstructed from coordinated evolution of a C3symmetry ligand. Inorg Chem Commun,2011,14:1532~1536.
    (95)(a) Yam V W, Lo K K. Luminescent polynuclear d10metal complexes. Chem Soc Rev,1999,28:323~334.(b) Chen W, Wang J Y, Chen C, et.al. Photoluminescent metal organic polymerconstructed from trimetallic clusters and mixed carboxylates. Inorg Chem.2003,42:944~946.
    (96) Balasubramanian K. Relativistic Effects in Chemistry Part A: Theory&Techniques; Part B:Applications to Molecules&Clusters. Wiley, New York,1997.
    (97) Zhu H F, Fan J, Okamura T, et.al. Syntheses and Structures of Zinc(II), Silver(I), Copper(II),and Cobalt(II) Complexes with Imidazole-Containing Ligand:1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene. Cryst Growth Des,2005,5:289~294.
    (98)(a) Janiak C. Functional Organic Analogues of Zeolites Based on Metal-OrganicCoordination Frameworks, Angew Chem Int Ed1997,36:1431~1434;(b) Noro S, Kitagawa S,Kondo M, et.al., A New, Methane Adsorbent, Porous Coordination Polymer[{CuSiF6(4,4-bipyridine)2}n], Angew Chem Int Ed2000,39:2081~2084;(c) Zaworotko M J.Polygons and Faceted Polyhedra and Nanoporous Networks, Angew Chem, Int Ed2001,40:2113~2116;(d) Kitaura R, Seki K, Akiyama G, et.al., Porous Coordination-Polymer Crystalswith Gated Channels Specific for Supercritical Gases, Angew Chem Int Ed2003,42:428~431.
    (99)(a) Eddaoudi M, Li H, Yaghi O M. Highly Porous and Stable Metal-Organic Frameworks:Structure Design and Sorption Properties, J Am Chem Soc2000,122:1391~1397;(b) Kepert C J,Prior T J, Rosseinsky M J. J Am Chem Soc2001,123:10001~10011;(c) Noro S, Kitaura R,Kondo M, et.al. Framework Engineering by Anions and Porous Functionalities of Cu(II)/4,4'-bpyCoordination Polymers, J Am Chem Soc2002,124:2568~2583.
    (100)(a) Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement. AngewChem Int Ed,1998,37:1460~1494.(b) Batten S R. Topology of interpenetration. Cryst EngComm,2001,3:67~72.
    (101)(a) Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: SupramolecularIsomerism and Polymorphism in Network Solids. Chem Rev,2001,101:1629~1658.(b)Carlucci L, Ciani G., Proserpio D M. Polycatenation, polythreading and polyknotting incoordination network chemistry, Coordination Chemistry Reviews,2003,246:247~289;Carlucci L, Ciani G., Proserpio D M. Polycatenation, polythreading and polyknotting incoordination network chemistry. Coord Chem Rev,2003,246:247~289.(c) Blatov V A,Carlucci L, Ciani G, et.al. Interpenetrating metal–organic and inorganic3D networks: acomputer-aided systematic investigation. Part I. Analysis of the Cambridge structural database.Cryst Eng Comm,2004,6:378~395.(d) Baburin I A, Blatov V A, Carlucci L, et.al.Interpenetrating metal-organic and inorganic3D networks: a computer-aided systematicinvestigation. Part II. Analysis of the Inorganic Crystal Structure Database (ICSD). J Solid StateChem,2005,178:2452~2474.(e) Baburin I A, Blatov V A, Carlucci L, et.al. InterpenetratedThree-Dimensional Networks of Hydrogen-Bonded Organic Species: A Systematic Analysis ofthe Cambridge Structural Database. Cryst Growth Des,2008,8:519–539.
    (102) Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in‘polycatenated’ coordination polymers: re-examination of some puzzling networks. Cryst EngComm,2003,5:269~279.
    (103) Reineke T M, Eddaoudi M, Moler D M, et.al. Large Free Volume in MaximallyInterpenetrating Networks: The Role of Secondary Building Units Exemplified byTb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. J Am Chem Soc,2000,122:4843~4844.
    (104)(a) Carlucci L, Ciani G., Proserpio D M. Polycatenation, polythreading and polyknotting incoordination network chemistry. Coordination Chemistry Reviews,2003,246:247~289.(b)Wang X L, Qin C, Wang E B, et.al. An unprecedented eight-connected self-penetrating networkbased on pentanuclear zinc cluster building blocks. Chem Commun,2005:4789~4791.
    (105)(a) Bi M H, Li G H, Zou Y C, et. al. Zeolite-like Copper Iodide Framework with New66Topology. Inorg Chem,2007,46:604~606.(b) Sun H L, Gao S, Ma B Q, et.al.3DSelf-penetrating coordination network constructed by dicyanamide and1,2-bis(4-pyridyl)ethane-N,N’-dioxide (bpeado). Cryst Eng Comm,2004,6:579~583.(c) LuoF, Che Y X, Zheng J M. The First Self-Penetrating Topology Based on an Unusual α-Po Net withDouble Edges Constructed from a12-Connected Gd2(μ2-Ocarboxylate)2(μ2-OH2)2(μ3-OH)2Cu2Core.Cryst Growth Des,2006,6:2432~2434.(d) Wang X L, Qin C, Wang E B, et. al. MetalNuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-,Bi-, and Trimetallic Cores as Nodes. Chem Eur J,2006,12:2680~2691.
    (106)(a) Yan Qi, Yun-Xia Che and Ji-Min Zheng. Self-penetrating and Interpenetrating3DMetal–Organic Frameworks (MOFs) Constructed from the Rigid1,4-Bis(1-imidazolyl)-benzeneLigand. Crystal Growth Design,2008,8:3602~3608.(b) Qi Yan, Luo Feng, Che Yunxia, et.al.Hydrothermal Synthesis of Metal-Organic Frameworks Based on Aromatic Polycarboxylate andFlexible Bis(imidazole) Ligands. Crystal Growth Design,2008,8:606~611.(c) Blake K M,Lucas J S, LaDuca R L. Zinc Pyromellitate Coordination Polymers withBis(pyridylmethyl)piperazine Tethers: A Rare Binodal Network and a New SimpleSelf-Penetrated Topology. Cryst Growth Des,2011,11:1287~1293.(d) Jia Q X, Wang Y Q,Yue Q, et.al. Isomorphous CoIIand MnIImaterials of tetrazolate-5-carboxylate with anunprecedented self-penetrating net and distinct magnetic behaviours. Chem Commun,2008:4894~4896.(e) Meng J X, Wang X L, Wang E B, et.al. An unprecedented (3,4)-connectedself-penetrating network of zinc complex: In situ formation of a tetradentate N-heterocyclic ligandunder POMs-mediated hydrothermal conditions. Inorg Chim, Acta,2008,361:2447~2454.(f)Lan Y Q, Li S L, Wang X L, et.al. Spontaneous Resolution of Chiral Polyoxometalate-BasedCompounds Consisting of3D Chiral Inorganic Skeletons Assembled from Different Helical Units.Chem Eur J,2008,14:9999~10006.
    (107)(a) Banfi S, Carlucci L, Caruso E, et.al. Using long bis(4-pyridyl) ligands designed for theself-assembly of coordination frameworks and architectures. J Chem Soc, Dalton Trans,2002:2714~2721.(b) Liu G F, Ye B H, Ling Y H, et.al. Interlocking of molecular rhombi into a2Dpolyrotaxane network viaπ–π interactions. Crystal structure of [Cu2(bpa)2(phen)2(H2O)]2·2H2O(bpa2=biphenyl-4,4′-dicarboxylate, phen=1,10-phenanthroline). Chem Commun,2002:1442~1443.
    (108)(a) Kuchl C J, Tabellion F M, Arif A M, et.al. Single-and Double-Stranded ChainsAssembled via Concomitant Metal Coordination and Hydrogen Bonding. Organometallics,2001,20:1956~1959.(b) Fraser C S A, Jennings M C, Puddephatt R J. An organometallicpolyrotaxane and a new type of polyrotaxane architecture. Chem Commun,2001:1310~1311.(c)Zaman M B, Smith M D, zur Loye H C. Two different one-dimensional structural motifs in thesame coordination polymer: a novel interpenetration of infinite ladders by bundles of infinitechains. Chem Commun,2001:2256~2257.
    (109)(a) Carlucci L, Ciani G, Proserpio D M. A new type of supramolecular entanglement in thesilver(I) coordination polymer [Ag2(bpethy)5](BF4)2[bpethy=1,2-bis(4-pyridyl)ethyne]. ChemCommun,1999:449~450.(b) Tong M L, Chen H J, Chen X M. Molecular Ladders withMultiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for[M2(4,4‘-bpy)3(H2O)2(phba)2](NO3)2·4H2O (M=Cu2+or Co2+;4,4‘-bpy=4,4‘-Bipyridine; phba=4-Hydroxybenzoate). Inorg Chem,2000,39:2235~2238.
    (110)(a) Qin C, Wang X L, Carlucci L, et.al. From arm-shaped layers to a new type ofpolythreaded array: a two fold interpenetrated three-dimensional network with a rutile topology.Chem Commun,2004:1876~1877.(b) Wang X L, Qin C, Wang E B, et.al. EntangledCoordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting.Angew Chem Int Ed,2005,44:5824~5827.(c) Du M, Wang X G, Zhang Z H, et.al.Solvent-directed layered Co(II) coordination polymers with unusual solid-state properties: from ananoporous framework to the dense polythreading3-D aggregation. Cryst Eng Comm,2006,8:788~793.(d) Du M, Zhang Z H, Wang X G, et.al. Structural modulation of polythreading andinterpenetrating coordination networks with an elongated dipyridyl building block and variousanionic co-ligands. Cryst Eng Comm,2008,10:1855~1865.(e). Wang G H, Li Z G, Jia H Q,et.al. Topological Diversity of Coordination Polymers Containing the Rigid Terephthalate and aFlexible N,N′-Type Ligand: Interpenetration, Polyrotaxane, and Polythreading. Cryst Growth Des,2008,8:1932~1939.(f) Xu B, Lv J, Cao R. Anion-Assisted Structural Variation of CadmiumCoordination Polymers: From2D→3D Inclined Polycatenation to2D→3D Polythreading.Cryst Growth Des,2009,9:3003~3005.(g) Zheng B, Bai J F. An unprecedented nanoscaletrilayered polythreading coordination array hierarchically formed from2D square grid networksand induced by protonated1,2-bis(4-pyridyl)ethane. Cryst Eng Comm,2009,11:271~273.(h)Wen G L, Wang Y Y, Zhang Y N, et.al. A novel polythreaded metal–organic framework withinherent features of different side arms and five-fold interpenetration. Cryst Eng Comm,2009,11,1519~1521.(i) Guo H D, Qiu D F, Guo X M, et.al. Entangled metal–organic frameworksmodulated by N-donor ligands of different conformations. Cryst Eng Comm,2009,11:2425~2430.(j) Kong Z G, Wang X Y, Carlucci L. A polythreaded three-dimensional architecture ofundulated layers originated by the contribution of different supramolecular interactions. InorgChem Commun,2009,12:691~694.(k) Wang X Y, He Y, Zhao L N, et.al. An unusual2D→3Dpolythreading framework based on a long1,10-phenanthroline derivative ligand. Inorg ChemCommun,2011,14:1186~1189.(l) Liu Y Y, Wang Z H, Yang J, et.al. A series of coordinationpolymers based on reduced Schiff base multidentate anions and bis(imidazole) ligands: syntheses,structures and photoluminescence. Cryst Eng Comm,2011,13:3811~3821.
    (111)(a) Sharma C V K, Rogers R D.‘Molecular Chinese blinds’: self-organization of tetranitratolanthanide complexes into open, chiral hydrogen bonded networks. Chem Commun,1999:83~84.(b) Tong M L, Wu Y M, Ru J, et.al. Pseudo-Polyrotaxane and β-Sheet Layer-BasedThree-Dimensional Coordination Polymers Constructed with Silver Salts and FlexiblePyridyl-Type Ligands. Inorg Chem,2002,41:4846~4848.(c) Du M, Jiang X J, Zhao X J.Direction of unusual mixed-ligand metal–organic frameworks: a new type of3-D polythreadinginvolving1-D and2-D structural motifs and a2-fold interpenetrating porous network. ChemCommun,2005:5521~5523.(d) Wang J, Zhu X, Cui Y F, et.al. A polythreading coordinationarray formed from2D grid networks and1D chains. Cryst Eng Comm,2011,13:3342~3344.
    (112)(a) Liu F Q, Tilley T D. Coordination Networks Based on Tetrahedral Silane BuildingBlocks: Influence of the Anion on Structures Adopted by Ag+Si(p-C6H4CN)4Arrays. InorgChem,1997,36:5090~5096.(b) Chesnut D J, Kusnetzow A, Birge R, et.al. Ligand Influenceson Copper Cyanide Solid-State Architecture: Flattened and Fused “Slinky”, Corrugated Sheet,and Ribbon Motifs in the Copper Cyanide Triazolate Organoamine Family. Inorg Chem,1999,38:5484;(c) Gao E Q, Wang Z M, Liao C S, et.al. Topological isomerism in the formation of anovel three-dimensional metal-organic polycatenane. New J. Chem.2002,26:1096~1098.(d)Knaust J M, Lopez S, Keller S W. Dimensional control of Cu(I)–bis(4-pyridyl)ethylenecoordination networks. Inorg Chim Acta,2001,324:81~89.(e) Zhang X M, Chen X M. A NewPorous3-D Framework Constructed From Fivefold Parallel Interpenetration of2-D (6,3) Nets: AMixed-Valence Copper(I,II) Coordination Polymer [CuII2CuI(4,4′-bpy)2(pydc)2]·4H2O. Eur J InorgChem,2003,3:413~417.
    (113)(a) Carlucci L, Ciani G, Macchi P, et.al. Complex Interwoven Polymeric Frames from theSelf-Assembly of Silver(I) Cations and Sebaconitrile. Chem Eur J,1999,5:237~243.(b) Lo S MF, Chui S S Y, Shek L Y, et.al. Solvothermal Synthesis of a Stable Coordination Polymer withCopper-I Copper-II Dimer Units:[Cu4{1,4-C6H4(COO)2}3(4,4‘-bipy)2]n. J Am Chem Soc,2000,122:6293~6294.(c) Fu Y, Wu X T, Dai J C, et.al. Interpenetration in[Cd(isonicotinate)2(1,2-bis(4-pyridyl)ethane)0.5(H2O)]n, a novel octahedral polymer containing anunusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks.Chem Commun,2001:1856.(d) Lu J Y, Babb A M. The First Triple-Layer2-D CoordinationPolymer:[Cu3(bpen)(IN)6(H2O)2]. Inorg Chem,2001,40:3261~3262.(e) Lu J Y, Babb A M.The First Triple-Layer2-D Coordination Polymer:[Cu3(bpen)(IN)6(H2O)2]. Inorg Chem,2001,40:3261~3262.
    (114) Cao X Y, Lin Q P, Qin Y Y, et.al. In Situ Obtained Cu(II) Compound with Coexistence ofPolycatenation and Polythreading. Cryst Growth Des,2009,9:20~23.
    (115) Withersby M A, Blake A J, Champness N R. et al. Anion Control in Bipyridylsilver(I)Networks: A Helical Polymeric Array, Angew Chem Int Ed1997,36:2327~2329;
    (116)(a) Lu J, Paliwala T, Lim S C., et. al., Coordination Polymers of Co(NCS)2with Pyrazineand4,4'-Bipyridine: Syntheses and Structures, Inorg Chem1997,36:923~929;(b) Jung Q S,Park S H, Kim K M, et.al., Solvent-Dependent Structures of Co(NO3)2with1,2-Bis(4-pyridyl)ethylene. Interconversion of Molecular Ladders versus MononuclearComplexes, Inorg Chem1998,37:5781~5785;(c) Withersby M A, Blake A J, Champness N R.et al. Solvent Control in the Synthesis of3,6-Bis(pyridin-3-yl)-1,2,4,5-tetrazine-BridgedCadmium(II) and Zinc(II) Coordination Polymers, Inorg Chem1999,38:2259~2266;(d)Hennigar T L, Macquarrie D C, Losier P, et. al., Supramolecular Isomerism in CoordinationPolymers: Conformational Freedom of Ligands in [Co(NO3)2(1,2-bis(4-pyridyl)ethane)1.5]n,Angew Chem Int Ed1997,36:972~973.
    (117) Tong M L, Ye B H, Cai J W, et. al., Clathration of Two-Dimensional Coordination Polymers:Synthesis and Structures of [M(4,4'-bpy)2(H2O)2](ClO4)2·(2,4'-bpy)2·H2O and[Cu(4,4'-bpy)II2(H2O)2](ClO4)4·(4,4'-H2Bpy)(M=Cd, ZnIIand bpy=Bipyridine), Inorg Chem1998,37:2645~2650.
    (118)(a) Saalfrank R W, Bernt I, Chowdhry M M, et. al., Ligand-to-Metal Ratio ControlledAssembly of Tetra-and Hexanuclear Clusters Towards Single-Molecule Magnets, Chem Eur J2001,7:2765~2769;(b) Du M, Chen S T, Gu X H.{[Cd(bpo)(SCN)2]·CH3CN}n: A NovelThree-Dimensional (3D) Noninterpenetrated Channel-Like Open Framework with PorousProperties, Cryst Growth Des2002,2:625~629.
    (119)(a) Pan L, Huang X Y, Li J, et. al., Novel Single-and Double-Layer and Three-DimensionalStructures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction andAcidity Control in Crystal Structure Formation, Angew Chem Int Ed200039:527~530;(b)Matsumoto N, Motoda Y, Matsue T, et. al., pH-Dependent Monomer Oligomer Interconversionof Copper(II) Complexes with N-(2-R-imidazol-4-ylmethylidene)-2-aminoethylpyridine (R=Methyl, Phenyl), Inorg Chem1999,38:1165~1173;(c) Liu B, Yin P, Yi X Y, et. al., Template-and pH-Directed Assembly of Diruthenium Diphosphonates with Different Topologies andOxidation States, Inorg Chem2006,45:4205~4213.
    (120) SAINT Software Reference Manual; Bruker AXS: Madison, WI,1998.
    (121) Sheldrick G M. SHELXTLNT, Program for Solution and Refinement of Crystal Structures,version5.1; University of G ttingen: G ttingen. Germany,1997.
    (122) Qi Y, Che Y X, Luo F, et.al. A Variety of1D to3D Metal Organic CoordinationArchitectures Assembled with1,1′-(2,2′-Oxybis(ethane-2,1-diyl))bis(1H-imidazole).Cryst Growth Des,2008,8:1654.
    (123)(a) Yaghi O M, Li H L. T-Shaped Molecular Building Units in the Porous Structure ofAg(4,4‘-bpy)·NO3. J Am Chem Soc,1996,118:295~296.(b) Kondo M, Yoshitomi T, Seki K,et.al. Three-Dimensional Framework with Channeling Cavities for Small Molecules:{[M2(4,4′-bpy)3(NO3)4]·xH2O}n(M=Co, Ni, Zn). Angew Chem Int Ed.1997,36:1725~1727.(c) PowerK N, Hennigar T L, Zaworotko M J. Crystal structure of the coordination polymer[Co(bipy)1.5(NO3)2]·CS2(bipy=4,4′-bipyridine), a new motif for a network sustained by ‘T-shape’building blocks. New J Chem,1998,22:177~181.(d) Kepert C J, Rosseinsky M J. Zeolite-likecrystal structure of an empty microporous molecular framework. Chem Commun,1999:375~376.(e) Gudbjartson H, Biradha K, Poirier K M, et.al. Novel Nanoporous Coordination PolymerSustained by Self-Assembly of T-Shaped Moieties. J Am Chem Soc,1999,121:2599~2600.
    (124)(a) Yaghi O M, O’Keeffe M, Ockwig N W, et.al. Reticular synthesis and the design of newmaterials. Nature,2003,423:705~714.(b) Kitagawa S, Kitaura R, Noro S. Functional PorousCoordination Polymers. Angew Chem Int Ed,2004,43:2334~2375.
    (125)(a) Ma L Q, Abney C, Lin W B. Enantioselective catalysis with homochiral metal–organicframeworks. Chem Soc Rev,2009,38:1248~1256.(b) Zhou W W, Chen J T, Xu G, et.al.Nonlinear optical and ferroelectric properties of a3-D Cd(II) triazolate complex with a novel(63)2(610·85) topology. Chem Commun,2008:2762~2764.(c) Guo Z G, Cao R, Wang X, et.al.A Multifunctional3D Ferroelectric and NLO-Active Porous Metal Organic Framework. J AmChem Soc,2009,131:6894~6895.(d) Hang T, Zhang W, Ye H Y, et.al. Metal–organic complexferroelectrics. Chem Soc Rev,2011,40:3577~3598.(e) Kaneko W, Kitagawa S, Ohba M. ChiralCyanide-Bridged MnIIMnIIIFerrimagnets,[MnII(HL)(H2O)][MnIII(CN)6]·2H2O (L=S-orR-1,2-diaminopropane): Syntheses, Structures, and Magnetic Behaviors. J Am Chem Soc,2007,129:248~249.
    (126)(a) Carlucci L, Ciani G, Macchi P, et.al. An unprecedented triply interpenetrated chiralnetwork of ‘square-planar’ metal centres from the self-assembly of copper(II) nitrate and1,2-bis(4-pyridyl)ethyne. Chem Commun,1998:1837~1838.(b) Carlucci L, Ciani G, Macchi P,et.al. Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional networkin the coordination polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe=1,2-bis(4-pyridyl)ethane]. Chem Commun,2000:1319~1320.(c) Kepert C J, Rosseinsky M J. Aporous chiral framework of coordinated1,3,5-benzenetricarboxylate: quadruple interpenetrationof the (10,3)-a network. Chem Commun,1998:31~32.(d) Xiong R G, Zuo J L, You X Z,et.al.Opto-electronic multifunctional chiral diamondoid-network coordination polymer:bis{4-[2-(4-pyridyl)ethenyl]benzoato}zinc with high thermal stability. Chem Commun,2000:2061~2062.(e) Blake A J, Champness N R, Cooke P A et.al. Synthesis of a chiral adamantoidnetwork—the role of solvent in the construction of new coordination networks with silver(I).Chem Commun,2000:665~666.
    (127)(a) Kondo M, Miyazawa M, Irie Y, et.al. A new Zn(II) coordination polymer with4-pyridylthioacetate: assemblies of homo-chiral helices with sulfide sites. Chem Commun,2002:2156~2157.(b) Gao E, Yue Y, Bai S, et.al. From Achiral Ligands to Chiral CoordinationPolymers: Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism. JAm Chem Soc,2004,126:1419~1429.(c) Lan Y Q, Li S L, Wang X L, et.al. SpontaneousResolution of Chiral Polyoxometalate-Based Compounds Consisting of3D Chiral InorganicSkeletons Assembled from Different Helical Units. Chem Eur J,2008,14:9999~10006.
    (128)(a) Ma Y, Han Z B, He Y K, et.al. A3D chiral Zn(II) coordination polymer with tripleZn–oba–Zn helical chains (oba=4,4′-oxybis(benzoate)). Chem Commun,2007:4107~4109.(b)Yao Q X, Xuan W M, Zhang H, et.al. The formation of a hydrated homochiral helix from anachiral zwitterionic salt, spontaneous chiral symmetry breaking and redox chromism of crystals.Chem Commun,2009:59~61.(c) Su Z, Chen M S, Fan J, et.al. Spontaneous resolution of twohomochiral ferroelectric cadmium(II) frameworks and an achiral framework from a one-potreaction involving achiral rigid ligands. Cryst Eng Comm,2010,12:2040~2043.
    (129)(a) Su Z, Xu J, Fan J, et.al. Crystal Structure, and Photoluminescence of CoordinationPolymers with Mixed Ligands and Diverse Topologies. Cryst Growth Des,2009,9:2801~2811.(b) Su Z, Fan J, Okamura T-a, et.al. Interpenetrating and Self-Penetrating Zinc(II) Complexeswith Rigid Tripodal Imidazole-Containing Ligand and Benzenedicarboxylate. Cryst Growth Des,2010,10:1911~1922.(c) Su Z, Song Y, Bai Z, et.al. Unprecedented three-dimensional10-connected bct nets based on trinuclear secondary building units and their magnetic behavior.Cryst Eng Comm,2010,12:4339~4346.(d) Su Z, Fan J, Okamura T-a, et.al. Ligand-Directedand pH-Controlled Assembly of Chiral3d3d Heterometallic Metal Organic Frameworks. CrystGrowth Des,2010,10:3515~3521.
    (130)(a) Fan J, Sun W Y, Okamura T-a, et.al. Novel Metal Organic Frameworks with SpecificTopology from New Tripodal Ligands:1,3,5-Tris(1-imidazolyl)benzene and1,3-Bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene. Inorg Chem,2003,42:3168~3175.(b)Fan J, Gan L, Kawaguchi H, et.al. Reversible Anion Exchanges between the LayeredOrganic–Inorganic Hybridized Architectures: Syntheses and Structures of Manganese(II) andCopper(II) Complexes Containing Novel Tripodal Ligands. Chem Eur J.2003,9:3965~3973.(c)Fan J, Shu M H, Okamura T-a, et.al. Solvent effect on the structure and topology of metal-organicframeworks with the rigid tripodal star ligand1,3,5-tris(1-imidazolyl)benzene and lead(II) nitrate.New J Chem,2003,27:1307~1309.(d) Zhao W, Fan J, Song Y, et.al. Syntheses, crystalstructures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfatepentahydrate with tripodal ligands. Dalton Trans.2005:1509~1517.
    (131) So Y H. Novel Thermoset Polyimidazole Amides. Macromolecules,1992,25:516~520.(9) SAINT Software Reference Manual; Bruker AXS: Madison, WI,1998.
    (132) Sheldrick G M. SHELXTLNT, Program for Solution and Refinement of Crystal Structures,version5.1; University of G ttingen: G ttingen. Germany,1997.
    (133)(a) Zhang J, Bu X H. Absolute helicity induction in three-dimensional homochiralframeworks. Chem Commun,2009:206~208.(b) L. Q.Ma, W. B. Lin, Chirality-Controlled andSolvent-Templated Catenation Isomerism in Metal Organic Frameworks. J Am Chem Soc,2008,130:13834~13835.(c) Heo J S, Jeon M Y, Mirkin C A. Reversible Interconversion ofHomochiral Triangular Macrocycles and Helical Coordination Polymers. J Am Chem Soc,2007,129:7712~7713.(d) Mason S F. Molecular Optical Activity and the Chiral Discriminations,Cambridge University Press, Cambridge,1982.
    (134)(a) Xiao D R, Wang E B, An H Y, et.al. A Bridge between Pillared-Layer and HelicalStructures: A Series of Three-Dimensional Pillared Coordination Polymers with MultiformHelical Chains. Chem Eur J,2006,12:6528~6541.(b) Zang S Q, Su Y, Li Y Z, et.al.Interweaving of Triple-Helical and Extended Metal O Metal Single-Helical Chains with theSame Helix Axis in a3D Metal Organic Framework. Inorg Chem,2006,45:3855~3857.(c)Huang X H, Sheng T L, Xiang S C, et.al.{[Cu(mtz)]3(CuI)}n: An UnprecedentedNon-interpenetrated (123)(122·14)3Network with Triple-Stranded Helices. Inorg Chem,2007,46:497~500.(d) Xu Y Q, Xi J S, Wei W, et.al. A3D homochiral framework with rare49·66structuraltopology constructed by unique triple-stranded helices. Inorg Chem Commun,2010,13:852~854.
    (135)(a) Dybtsev D N, Chun H, Kim K. Three-dimensional metal–organic framework with(3,4)-connected net, synthesized from an ionic liquid medium. Chem Commun,2004:1594~1595.(b) O’Keeffe M, Eddaoudi M, Li H, et.al. Frameworks for Extended Solids: GeometricalDesign Principles. J Solid State Chem,2000,152:3~20.(c) Chui S S Y, Lo S M F, Charmant J PH, et.al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science,1999,283:1148~1150.(d) Chen B, Eddaoudi M, Hyde S T, et.al. Interwoven Metal-OrganicFramework on a Periodic Minimal Surface with Extra-Large Pores. Science,2001,291:1021~1023.
    (136)(a) Yan Qi, Yun-Xia Che and Ji-Min Zheng. Self-penetrating and Interpenetrating3DMetal–Organic Frameworks (MOFs) Constructed from the Rigid1,4-Bis(1-imidazolyl)-benzeneLigand. Crystal Growth Design,2008,8:3602~3608.(b) Qi Yan, Luo Feng, Che Yunxia, et.al.Hydrothermal Synthesis of Metal-Organic Frameworks Based on Aromatic Polycarboxylate andFlexible Bis(imidazole) Ligands. Crystal Growth Design,2008,8:606~611.(c) Blake K M,Lucas J S, LaDuca R L. Zinc Pyromellitate Coordination Polymers withBis(pyridylmethyl)piperazine Tethers: A Rare Binodal Network and a New SimpleSelf-Penetrated Topology. Cryst Growth Des,2011,11:1287~1293.(d) Jia Q X, Wang Y Q,Yue Q, et.al. Isomorphous CoIIand MnIImaterials of tetrazolate-5-carboxylate with anunprecedented self-penetrating net and distinct magnetic behaviours. Chem Commun,2008:4894-4896.(e) Meng J X, Wang X L, Wang E B, et.al. An unprecedented (3,4)-connectedself-penetrating network of zinc complex: In situ formation of a tetradentate N-heterocyclic ligandunder POMs-mediated hydrothermal conditions. Inorg Chim, Acta,2008,361:2447~2454.(f)Lan Y Q, Li S L, Wang X L, et.al. Spontaneous Resolution of Chiral Polyoxometalate-BasedCompounds Consisting of3D Chiral Inorganic Skeletons Assembled from Different Helical Units.Chem Eur J,2008,14:9999~10006.
    (137)(a) Schareina T, Schick C, Abrahams B F, et.al. Coordination Polymers ofBipyridyldicarboxylates–a Cobalt Containing12,3-net with Potential Reactive Sites. Z AnorgAllg Chem,2001,627:1711~1713.(b) Zhang Z H, Chen S C, Mi J L, et.al. Unique ZnIIcoordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tectonand benzenedicarboxylates. Chem Comm,2010,46:8427~8429.(c) Wang X L, Chen Y Q, GaoQ, et.al. Coordination Behavior of5,6-Substituted1,10-Phenanthroline Derivatives and StructuralDiversities by Coligands in the Construction of Lead(II) Complexes. Cryst Growth Des,2010,10:2174.
    (138)(a) Blatov V A. TOPOS, AMultipurpose Crystallochemical Analysiswith the ProgramPackage, Russia,2004.(b) Blatov V A. Topological relations between three-dimensionalperiodic nets. I. Uninodal nets. Acta Crystallogr. A,2007,63:329~343.(c) Blatov V A, CarlucciL, Giani G, et.al. Interpenetrating metal–organic and inorganic3D networks: a computer-aidedsystematic investigation. Part I. Analysis of the Cambridge structural database. Cryst Eng Comm,2004,6:378~395.(d) Batten S R, Turner D R, Neville M S. Coordination Polymers: Design,Analysis and Application, RSC, Cambridge,2009; Baburin I A, Blatov V A, Carlucci L, et.al.Interpenetrated Three-Dimensional Networks of Hydrogen-Bonded Organic Species: ASystematic Analysis of the Cambridge Structural Database. Cryst Growth Des,2008,8:519~539.(f) hrstr m L, Larsson K. What kinds of three-dimensional nets are possible with tris-chelatedmetal complexes as building blocks?. Dalton Trans,2004,3:347~353.(g) hrstr m L, LarssonK. Molecule-Based Materials, The Structural Network Approach, Elsevier, Amsterdam,2005.(h)O'Keeffe M, Peskov M A, Ramsden S J, et.al. The Reticular Chemistry Structure Resource(RCSR) Database of, and Symbols for, Crystal Nets. Acc Chem Res,2008,41:1782~1789.(i)Hyde S T, Friedrichs O D, Ramsden S J, et.al. Towards enumeration of crystalline frameworks:the2D hyperbolic approach. Solid State Sci.2006,8:740~752.(j) Yaghi O M, Li H, Davis C,et.al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry ofModular Porous Solids. Acc Chem Res,1998,31:474~484.(k) Blatov V A. Topologicalrelations between three-dimensional periodic nets. I. Uninodal nets. Acta Crystallogr. A,2007,63:329~343.(l) Baburin I A, Blatov V A, Carlucci L, et.al. Interpenetrated three-dimensionalhydrogen-bonded networks from metal–organic molecular and one-or two-dimensionalpolymeric motifs. Cryst Eng Comm,2008,10:1822~1838.(m) Blatov V A, Peskov M V. Acomparative crystallochemical analysis of binary compounds and simple anhydrous saltscontaining pyramidal anions LO3(L=S, Se, Te, Cl, Br, I). Acta Crystallogr. B,2006,62:457~466.(n) Wells A F. Three-dimensional Nets and Polyhedra, Wiley, New York,1977.(o) Wells A F.Further Studies of Three-dimensional Nets, ACA Monograph,8, American CrystallographicAssociation, Buffalo, NY,1979.(p) O'Keeffe M, Hyde S T. Vertex symbols for zeolite nets.Zeolites,1997,19:370~374.(p) Lv Y K, Feng Y L, Cheng J W. Two new Cerium-OrganicFrameworks with unusual network topologies constructed by racemic tartaric acid involving insitu reaction. Inorg Chem Commun,2012,15:130~135.
    (139) Zhi S, Fan J, Okamura T-aki, et.al. Interpenetrating and Self-Penetrating Zinc(II)Complexes with Rigid Tripodal Imidazole-Containing Ligand and Benzenedicarboxylate. CrystGrowth Des,2010,10:1911~1922.
    (140)(a) Tian G, Zhu G S, Yang X Y, et.al. A chiral layered Co(II) coordination polymer withhelical chains from achiral materials. Chem Commun,2005:1396~1398.(b) Ma Y, Han Z B, HeY K, et.al. A3D chiral Zn(II) coordination polymer with triple Zn–oba–Zn helical chains (oba=4,4′-oxybis(benzoate)). Chem Commun,2007,4107~4109.
    (141)(a) Janiak C. Engineering coordination polymers towards applications. Dalton Trans,2003,2781~2804;(b) James S L. Metal-organic frameworks. Chem Soc Rev,2003,276~288;(c) RosiN L, Eckert J, Eddaoudi M, et.al. Hydrogen Storage in Microporous Metal-Organic Frameworks.Science,2003,300:1127~1129.
    (142)(a) Eddaoudi M, Kim J, Wachter J B, et.al. Porous Metal-Organic Polyhedra:25Cuboctahedron Constructed from12Cu2(CO2)4Paddle-Wheel Building Blocks. J Am Chem Soc,2001,123:4368~4369;(b) Vodak D T, Braun M E, Kim J, et.al. Chem Commun,2001,2534~2535;(c) Kim J, Chen B, Reineke T M, et. al. Assembly of Metal-Organic Frameworks fromLarge Organic and Inorganic Secondary Building Units: New Examples and SimplifyingPrinciples for Complex Structures. J Am Chem Soc,2001,123:8239~8247.
    (143)(a) Kurmoo M, Kumagai H, Akita-Tanaka M, et.al. Metal-Organic Frameworks fromHomometallic Chains of Nickel(II) and1,4-Cyclohexanedicarboxylate Connectors:Ferrimagnet-Ferromagnet Transformation. Inorg Chem,2006,45:1627~1637;(b) Zhang L, LüX Q, Chen C L, et.al. Cryst Growth Des,2005,5:283~287;(c) Wang X, Qin C, Wang E, et.al.Designed double layer assembly: a three-dimensional open framework with two types of cavitiesby connection of infinite two-dimensional bilayer. Chem Commun,2004,378~379;(d) Dan M,Udayakumar D, Rao C N R. Chem Commun,2003,2212~2213;(e) Bu X H, Chen W, Lu S L,et.al. Flexible meso-Bis(sulfinyl) Ligands as Building Blocks for Copper(II) CoordinationPolymers: Cavity Control by Varying the Chain Length of Ligands. Angew Chem Int Ed,2001,40:3201~3203.
    (144) Liu Hong-Ke, Sun Wei-Yin, Zhu Hai-Liang, et.al. A two-dimensional network constructedvia72-membered heart-shaped macrocycles, a copper(II) complex with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and diethylenetriamine ligands.Inorganica Chimica Acta,1999,2:129~135.
    (145) SAINT Software Reference Manual; Bruker AXS: Madison, WI,1998.
    (146) Sheldrick G M. SHELXTLNT, Program for Solution and Refinement of Crystal Structures,version5.1; University of G ttingen: G ttingen. Germany,1997.
    (147) The website of Reticular Chemistry Structure Resource (RCSR):.
    (148) Blatov V A, Carlucci L, Giani G, et.al. Interpenetrating metal–organic and inorganic3Dnetworks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structuraldatabase. Cryst Eng Comm,2004,6:378~395.
    (149) Zhou H, Lin J D, Du S W. Synthesis, structures and fluorescent properties of cadmium/zinccoordination polymers with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and1,3,5-benzenetricarboxylic acid. J Mol Struct,2009,930:49~54.
    (150)(a) Liu H K, Huang X H, Lu T G, et.al. Discrete and infinite1D,2D/3D cage frameworkswith inclusion of anionic species and anion-exchange reactions of Ag3L2type receptor withtetrahedral and octahedral anions. Dalton Trans,2008:3178~3188.(b) Fan J, Zhu H F, OkamuraT-A, et.al. Discrete and Infinite Cage-Like Frameworks with Inclusion of Anionic and NeutralSpecies and with Interpenetration Phenomena. Chem Eur J,2003,9:4724~4731.(c) Liu H K,Tong X J. Assembly of supermolecular complexes from the tripodal ligand titmb: assembly of alarge M6L8cage from14components. Chem Commun,2002:1316~1317.(d) Fan J, Sun W Y,Okamura T-A, et.al. First example of a dumbbell-like architecture containing M3L2cages andterephthalate anions. New J Chem,2002,26:199~201.(e) Sun W Y, Fan J, Okamura T-A, et.al.Self-Assembly of Frameworks with Specific Topologies: Construction and Anion ExchangeProperties of M3L2Architectures by Tripodal Ligands and Silver(I) Salts. Chem Eur J,2001,7:2557~2562.
    (151)(a) Meng W L, Fan J, Okamur a T-A, et.al. Molecular Cage, One-Dimensional Tube andTwo-Dimensional Polycatenane obtained from Reactions of Flexible Tripodal Ligand1,3,5-Tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene with Copper Salts. Z Anorg Allg Chem,2006,632:1890~1896.(b) Zhao W, Song Y, Okamura T-A, et.al. Syntheses, Crystal Structures,and Magnetic Properties of Novel Manganese(II) Complexes with Flexible Tripodal Ligand1,3,5-Tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene. Inorg Chem,2005,44:3330~3336.(c)Fan J, Zhu H F, Okamura T-A, et.al. Novel One-Dimensional Tubelike and Two-DimensionalPolycatenated Metal Organic Frameworks. Inorg Chem,2003,42:158~162.
    (152)(a) Fan J, Sun W Y, Okamura T-A, et.al. An unusual2D→3D parallel interpenetration:synthesis and X-ray structure of compound [Ag2(titmb)2][Hsal]2·3H2O(titmb=1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and H2sal=salicylic acid). InorgChim Acta,2004,357:2385~2389.(b) Liu H K, Sun W Y, Tan g W X, et.al. Assembly ofsupermolecular complexes with tripodal ligand titmb and tib: a2D rhombic grid networkassembled from2-connected tib. J Chem Soc, Dalton Trans,2002:3886~3891.(c) Fan J, Sui B,Okamura T-A, et.al. Synthesis, structures and properties of two-dimensional honeycomb andstepwise networks from self-assembly of tripodal ligand1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene with metal salts. J Chem Soc, DaltonTrans,2002:3868~3873.(d) Liu H K, Sun W Y, Zhu H L, et.al. A two-dimensional networkconstructed via72-membered heart-shaped macrocycles, a copper(II) complex with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and diethylenetriamine ligands. InorgChim Acta,1999,295:129~135.
    (153)(a) Wang H L, Feng Y F, Liang N, et.al. A (3,4)-connected two-dimensional coppercoordination polymer with a2D→3D polycatenation network. J Mol Struct,2010,964:5~8.(b)Willans C E, French S, Barbour L J, Gertenbach J-A, et.al. A catenated imidazole-basedcoordination polymer exhibiting significant CO2sorption at low pressure. Dalton Trans,2009:6480~6482.(c) Zhou H, Lin J D, Du S W. Synthesis, structures and fluorescent properties ofcadmium/zinc coordination polymers with1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzeneand1,3,5-benzenetricarboxylic acid. J Mol Struct,2009,930:49~54.
    (154)(1) Carlucci L, Ciani G., Proserpio D M. Polycatenation, polythreading and polyknotting incoordination network chemistry. Coord Chem Rev,2003,246:247~289..
    (155)(a) Kuehl C J, Tabellion F M, Arif A M, et.al. Single-and Double-Stranded ChainsAssembled via Concomitant Metal Coordination and Hydrogen Bonding. Organometallics,2001,20:1956~1959.(b) Fraser C S A, Jennings M C, Puddephatt R J. An organometallicpolyrotaxane and a new type of polyrotaxane architecture. Chem Commun,2001:1310~1311.(c)Wang Z, Cheng Y, Liao C, et.al. The first supramolecular architectures assembled by infinitehydrogen-bonded, protonated nucleobase–water ribbons and unusual polyiodide frameworks.Cryst Eng Comm,2001,3:237~242.(d) Fan J, Sun W Y, Okamura T, et.al. NovelMetal Organic Frameworks with Specific Topology Formed through Noncovalent Br···BrInteractions in the Solid State. Cryst Growth Des,2004,4:579~584.(e) Arora K K, Pedireddi VR. Poly(pseudo)rotaxane-like Network Mediated by Hydrogen Bonds in the Solid-State Structureof1,7-Phenanthroline. Cryst Growth Des,2005,5:1309~1312.(f) Kosal M E, Chou J H, SuslickK S. A calcium-bridged porphyrin coordination network. J Porphyrins Phthalocyanines,2002,6:377~381.(g) Zhu H F, Zhao W, Okamura T, et.al. Syntheses and crystal structures of1D tubularchains and2D polycatenanes built from the asymmetric1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene ligand with metal salts. New J Chem,2004,28:1010~1018.
    (156)(a) Hoskins B F, Robson R, Slizys D A. An Infinite2D Polyrotaxane Network inAg2(bix)3(NO3)2(bix=1,4-Bis(imidazol-1-ylmethyl)benzene). J Am Chem Soc,1997,119:2952~2953.(b) Carlucci L, Ciani G, Proserpio D M. Parallel and Inclined (1D→2D) InterlacingModes in New Polyrotaxane Frameworks [M2(bix)3(SO4)2][M=Zn(II), Cd(II); Bix=1,4-Bis(imidazol-1-ylmethyl)benzene]. Cryst Growth Des,2005,5:37~39.(c) Zhu H F, Fan J,Okamura T, et.al. Syntheses and Structures of Zinc(II), Silver(I), Copper(II), and Cobalt(II)Complexes with Imidazole-Containing Ligand:1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene.Cryst Growth Des,2005,5:289~294.
    (157)(a) Liu Yang, Qi Yan, Lv Yan-Yan, Che Yun-Xia, et.al. Polyrotaxane-like andInterpenetrating Metal-Organic Frameworks (MOFs) Constructed fromBiphenyl-4,4’-Dicarboxylate and Bis(imidazole) Ligand. Cryst Growth Des,2009,9:4791~4801.(b) Yang J, Ma J F, Batten S R, et.al. Unusual parallel and inclined interlocking modes inpolyrotaxane-like metal–organic frameworks. Chem Commun2008:2233~2235.(c) Hoskins BF, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)2]·4.5H2O (bix=1,4-Bis(imidazol-1-ylmethyl)benzene): A New Type of Two-Dimensional Polyrotaxane. AngewChem Int Ed,1997,36:2336~2338.(d) Wang G H, Li Z G, Jia H Q, et.al. Topological Diversityof Coordination Polymers Containing the Rigid Terephthalate and a Flexible N,N′-Type Ligand:Interpenetration, Polyrotaxane, and Polythreading. Cryst Growth Des,2008,8:1932~1939.(e)Goodgame D M L, Menzer S, Smith A M, et.al.[Mn(C18H16N2O2)3](ClO4)2: A Polymeric34-and68-Membered Metallacyclic Network Forming a Novel Woven Polycatenated Structure. AngewChem Int Ed,1995,34:574~575;(f) Luo F, Yang Y T, Che Y X, et.al. An unusual metal–organicframework showing both rotaxane-and cantenane-like motifs. Cryst Eng Comm,2008,10:981~982.(g) Lan Y Q, Li S L, Qin J S, et.al. Self-Assembly of2D→2D Interpenetrating CoordinationPolymers Showing Polyrotaxane-and Polycatenane-like Motifs: Influence of Various Ligands onTopological Structural Diversity. Inorg Chem,2008,47:10600~10610.(h) Wang G H, Li Z G,Jia HQ, et.al. Topological Diversity of Coordination Polymers Containing the Rigid Terephthalateand a Flexible N,N′-Type Ligand: Interpenetration, Polyrotaxane, and Polythreading. Cryst.Growth Des.,2008,8,1932~1939.(d) Liu J Q, Wang Y Y, Zhang Y N, et.al. TopologicalDiversification in Metal-Organic Frameworks: Secondary Ligand and Metal Effects. Eur J InorgChem,2009:147~154.
    (158)(8)(a) Qi Y, Luo F, Batten S R, et.al. Syntheses and Crystal Structures of a Series of NovelHelical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts.Cryst Growth Des,2008,8:2806~2813.
    (b) Qi Y, Luo F, Che Y X, et.al. Hydrothermal Synthesis of Metal-Organic Frameworks Based onAromatic Polycarboxylate and Flexible Bis(imidazole) Ligands. Cryst Growth Des,2008,8:606~611.
    (159) So Y H. Novel Thermoset Polyimidazole Amides. Macromolecules,1992,25:516~520.
    (160) SAINT Software Reference Manual; Bruker AXS: Madison, WI,1998.
    (161) Sheldrick G M. SHELXTLNT, Program for Solution and Refinement of Crystal Structures,version5.1; University of G ttingen: G ttingen. Germany,1997.
    (162) Kahn O, Molecular Magnetism, VCH Publishers, Weinheim,1993.
    (163) Luo F, Che Y X, Zheng J M. Trinuclear Cobalt Based Porous Coordination PolymersShowing Unique Topological and Magnetic Variety upon Different Dicarboxylate-like Ligands.Cryst Growth Des,2009,9:1066~1071.
    (164)(a) Lin J D, Cheng J W, Du S W. Five d103D Metal Organic Frameworks ConstructedFrom Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Ligands. Cryst Growth Des,2008,8:3345~3353.(b) Schaate A, Klingelhofer S, Behrens P, et.al. Two Zinc(II) CoordinationPolymers Constructed with Rigid1,4-Benzenedicarboxylate and Flexible1,4-Bis(imidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene Linkers: From Interpenetrating Layersto Templated3D Frameworks. Cryst. Growth Des,2008,8:3200~3205.(c) Yao J, Lu Z D, Li YZ, et.al. Three-dimensional metal–organic frameworks constructed from bix and1,2,4-benzenetricarboxylate. Cryst Eng Comm,2008,10:1379~1383(d) Zhang L P, Yang J, MaJ F, et.al. A series of2D and3D metal–organic frameworks based on different polycarboxylateanions and a flexible2,2′-bis(1H-imidazolyl)ether ligand. Cryst Eng Comm,2008,10:1410~1420.(e) Yang J, Ma J F, Liu Y Y, et.al. Two New CuIICoordination Polymers: Studies ofTopological Networks and Water Clusters. Eur J Inorg Chem,2006:1208~1215.(f) Liu Y Y, MaJ F, Yang J, et.al. Syntheses and Characterization of Six Coordination Polymers of Zinc(II) andCobalt(II) with1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands. Inorg Chem,2007,46:3027~3037.
    (165)(a) Kurmoo M, Kumagai H, Akita-Tanaka M, et.al. Metal-Organic Frameworks fromHomometallic Chains of Nickel(II) and1,4-Cyclohexanedicarboxylate Connectors:Ferrimagnet-Ferromagnet Transformation. Inorg Chem,2006,45:1627~1637;(b) Zhang L, LüX Q, Chen C L, et.al. Cryst Growth Des,2005,5:283~287;(c) Wang X, Qin C, Wang E, et.al.Designed double layer assembly: a three-dimensional open framework with two types of cavitiesby connection of infinite two-dimensional bilayer. Chem Commun,2004:378~379;(d) Dan M,Udayakumar D, Rao C N R. Chem Commun,2003:2212~2213;(e) Bu X H, Chen W, Lu S L,et.al. Flexible meso-Bis(sulfinyl) Ligands as Building Blocks for Copper(II) CoordinationPolymers: Cavity Control by Varying the Chain Length of Ligands. Angew Chem Int Ed,2001,40:3201~3203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700