具有自旋轨道耦合的低维系统中自旋输运的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要讨论了具有自旋轨道耦合的低维系统中的自旋输运问题。在前两章中,我们回顾了自旋电子学的发展进程并简述了基于自旋轨道耦合的自旋输运现象。论文的后几章详细地介绍了我们在这方面取得的如下研究成果:
     我们第一次从SU(2)规范场的角度研究了自旋轨道耦合系统中的自旋流。我们发现,普遍定义的自旋流满足协变形式的连续性方程。利用Noether定理,我们得到了守恒的总自旋流。我们认为,自旋密度和自旋流密度会激发出SU(2)规范场,而此规范场又会对自旋流施加自旋力,从而导致了它的不守恒。因此,守恒的总自旋流应该包含由Su(2)规范场给出的贡献。通过引入Su(2)场强张量,我们可以得到作用在自旋密度和自旋流密度上的自旋力。当只有u(1)电磁场时,该自旋力会简单地退化为Stern-Gerlach力。此外,我们还研究了u(1)×su(2)规范场下的轨道流密度。我们指出,由于在一般情况下u(1)和Su(2)规范场的强度可以随空间变化,系统的总角动量并不守恒。因此,普遍定义下的自旋流密度和轨道流密度的不守恒部分并不能相互抵消。
     从流体力学出发,我们建立了SU(2)×u(1)场中自旋输运的经典图像。基于此图像,我们给出了自旋流满足的协变形式连续性方程的经典对应。考虑到电子在Su(2)×u(1)场中受到Lorentz力和自旋力的作用,我们写下了单电子运动的经典方程。从该方程中我们可以很容易地得到系统具有无穷长自旋弛豫时间的条件。另一方面,该经典方程表明,即使su(2)规范场不随时间变化,由于电子自旋与Su(2)电磁场的耦合,电子将感受到含时的自旋力。从半经典的Boltzmann方程出发,我们得到了耦合的电荷-自旋扩散方程。我们发现,电子的“振颤”运动是导致其耦合的原因。此外,我们研究了在三种不同形式的自旋轨道耦合下一维弹道系统中的自旋进动。结果表明,自旋进动强烈依赖于电子注入时的自旋极化方向。
     我们研究了描述自旋轨道耦合系统对非阿贝尔外场线性响应的SU(2)Kubo公式。我们发现,自旋流满足的协变形式连续性方程保证了SU(2)Kubo公式在两种不同规范固定下的自洽性。我们计算了具有Rashba或Dresselhaus自旋轨道耦合的系统中自旋密度及自旋流密度对SU(2)外场的线性响应。结果表明,当不计入自旋轨道耦合时,如果系统具有平方色散关系,那么即使没有杂质存在,该系统的Su(2)自旋电导率也依然为零。这是由Su(2)李代数生成元之间的反对易关系导致的。此外,我们还将SU(2)Kubo公式推广到了自旋3/2表示。这方便了我们讨论Luttinger模型和耦合的双层二维电子气系统中的自旋输运问题。
     我们研究了双层二维电子气中的自旋霍尔电导率以及隧穿自旋流。结果表明,自旋霍尔电导率在能量简并点附近出现峰值,并且无穷小浓度的非磁性杂质并不能将其压制为零。针对这一现象,我们提出了相关的测量方法。另一方面,我们发现,当两层中的杂质强度相同时,隧穿自旋电导率随门压的变化曲线呈现双峰结构。在考虑了两层间存在杂质强度差后,隧穿自旋电导率的一个峰值被压制并改变符号。此时,隧穿自旋流随门压的变化是非对称的。这表明双层系统具有自旋二极管的特性。
     我们讨论了量子点中核自旋的低能激发问题。运用相干态路径积分,我们得到了该系统的作用量。将电子自由度积掉后,我们得到了描述核自旋的有效作用量以及核自旋的自旋波传播子。这一初步的结果将有助于我们进一步讨论量子点中电子的自旋退相干过程。
This dissertation focuses on the spin transport in low-dimensional systems with spin-orbit coupling. In the first two chapters, we briefly review the de-velopment of spintronics and introduce some spin-orbit-coupling dependent spin transport phenomena. Then we show the details of our following investigations.
     We study the spin current in systems with spin-orbit coupling from the point of view of SU(2) gauge fields for the first time. We find that the naturally defined spin current obeys the covariant continuity equation. By means of the Noether theorem, we obtain the conserved total spin current. We argue that the spin density and spin current density are the sources of SU(2) gauge fields which in turn exert spin force on them. This leads to the nonconservation of the spin current. Thus the conserved spin current should include the contributions from SU(2) gauge fields. By introducing the SU(2) field strength tensor, we can easily obtain the spin force which reduces to the Stern-Gerlach force. We investigate the orbit current in the presence of U(1)×SU(2) gauge fields. We point out that due to the spatially dependent spin-orbit coupling, the total angular momentum does not conserve. Hence the nonconservation parts of the spin and orbit currents can not counteract each other precisely.
     Starting from the fluid mechanics, we construct a classical picture for the spin transport in SU(2)×U(1) fields. Based on this picture, we derive the clas-sical analogy of the covariant continuity equation which the spin current obeys. Considering that the electron experiences both Lorentz force and spin force, we obtain the classical equations of motion for an electron moving in SU(2)×U(1) fields. From these equations, we can directly obtain the condition for the occur-rence of the infinite spin relaxation time. On the other hand, these equations show that even though the SU(2) gauge fields do not vary with respect to time, the electron can feel an effective time-dependent spin force due to the coupling between the spin and SU(2) gauge fields. We also formulate the diffusion equa- tions for the charge and spin densities. We find that the Zitterbewegung makes these equations couple to each other. Besides, we study the spin precession in one-dimensional ballistic system with three different forms of spin-orbit coupling. The results manifest that the spin precession strongly depends on the initial con-ditions.
     We investigate the SU(2) Kubo formula which describes the linear response to the nonabelian external fields. We find that the covariant continuity equation for the spin current plays a key role in keeping the consistency of the SU(2) Kubo formula with different gauge fixings. We calculate the linear responses of the spin density and spin current density to the SU(2) external fields. It is shown that if the system possesses the parabolic dispersion relation in the absence of the spin-orbit coupling, the SU(2) spin conductivity still vanishes even without the impurities. This is due to the anticommunication relation between the SU(2) generators. Moreover, we generate the SU(2) Kubo formula to the spin 3/2 representation. It facilitates the discussions of the spin transport in the Luttinger model and coupled bilayer two-dimensional gas.
     We study the spin Hall conductivity and tunneling spin current in the bi-layer two-dimensional electron gas. The results demonstrate that the spin Hall conductivity shows a sharp peak around the energy degenerate point. This peak can not be suppressed to zero by the infinitesimal concentration of nonmagnetic impurities. We also propose a experimental scheme to detect this magnification effect of the spin Hall conductivity. On the other hand, we find that the tunnel-ing spin conductivity exhibits a double-peak structure in the twin-layer situation. Taking the difference of strengthes of impurity potentials between layers, we find out that the tunneling spin current is asymmetric with respect to the gate voltage. It makes the bilayer system a candidate for the spin diode.
     We discuss the low-energy excitation of nuclear spins in quantum dots. Using the path integral approach, we obtain the action of this system. After integrating out the electron degrees of freedom, we derive the effective action describing the nuclear spins and the propagator for the spin wave. This helps us to further investigate the spin decoherence caused by the hyperfine interaction in quantum dots.
引文
[1]G. E. Moore, Cramming more components onto integrated circuits, Electron-ics 38 (1965).
    [2]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics:A Spin-Based Electronics Vision for the Future, Science 294,1488 (2001).
    [3]I. Zutic, J. Fabian, and S. Das Sarma, Spintronics:Fundamentals and ap-plications, Rev. Mod. Phys.76,323 (2004).
    [4]N. F. Mott, The Electrical Conductivity of Transition Metals, Proc. R. Soc. Lond. A 153,699 (1936).
    [5]N. F. Mott, The Resistance and Thermoelectric Properties of the Transition Metals, Proc. R. Soc. Lond. A 156,368 (1936).
    [6]I. A. Campbell, A. Fert, and A. R. Pomeroy, Evidence for two current con-duction iron, Philos. Mag.15,977 (1967).
    [7]A. Fert, and I. A. Campbell, Two-current conduction in nickel, Phys. Rev. Lett.21,1190 (1968).
    [8]W. Thomson, On the electro-dynamic qualities of metals:Effects of mag-netization on the electric conductivity of nickel and of iron, Proc. R. Soc. London 8,546 (1857).
    [9]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eti-enne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett.61,2472 (1988).
    [10]G. Binash,, P. Griinberg, F. Saurenbach, and W. Zinn, Enhanced magne-toresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39,4828 (1989).
    [11]S. S. P. Parkin, Z. G. Li, and D. J. Smith, Giant Magnetoresistance in Antiferromagnetic Co/Cu Multilayers, Appl. Phys. Lett.58,2710 (1991).
    [12]S. S. P. Parkin, R. Bhadra, and K. P. Roche, Oscillatory Magnetic Exchange Coupling Through Thin Copper Layers, Phys. Rev. Lett.66,2152 (1991).
    [13]Freitas, P. P., H. Ferreira, D. Graham, L. Clarke, M. Amaral, V. Martins, L. Fonseca, and J. S. Cabral, Magnetoresistive biochips, Europhys. News 34, 225 (2003).
    [14]S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, Spintronics—A retro-spective and perspective, IBM J. RES. and DEV.,50,101 (2006).
    [15]Albert Fert, Nobel Lecture:Origin, development, and future of spintronics, Rev. Mod. Phys.80,1517 (2008).
    [16]P. Griinberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Layered Magnetic Structures:Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers, Phys. Rev. Lett.57,2442 (1986).
    [17]C. Chappert, A. Fert, and F. N. Van Dau, The emergence of spin electronics in data storage, Nature Materials 6,813, (2007).
    [18]B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers, Phys. Rev. B 43,1297 (1991).
    [19]G. A. Prinz, Magnetoelectronics, Science 282,1660 (1998).
    [20]W. P. Pratt, S. F. Lee, J. M. Slaughter, R. Loloee, P. A. Schroeder, and J. Bass, Perpendicular giant magnetoresistances of Ag/Co multilayers, Phys. Rev. Lett.66,3060 (1991).
    [21]L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, and R. Legras, K. Ounadjela, and A. Fert, Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett.65,2484 (1994).
    [22]A. Fert, and L. Piraux, Magnetic nanowires, J. Magn. Magn. Mater.,200, 338 (1999).
    [23]L. Esaki, P. Stiles, and S. von Molnar, Magnetointernal field emission in junctions of magnetic insulators, Phys. Rev. Lett.19,852 (1967).
    [24]T. Kasuya, and A. Yanase, Anomalous transport phenomena in Eu-chalcogenide alloys, Rev. Mod. Phys.40,684 (1968).
    [25]J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Electron-spin po-larization in tunnel junctions in zero applied field with ferromagnetic EuS barriers, Phys. Rev. B 42,8235 (1988).
    [26]M. Julliere, Tunneling between ferromagnetic films, Phys. Lett.54A,225 (1975).
    [27]J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Large Mag-netoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys. Rev. Lett.74,3273 (1994).
    [28]T. Miyazaki, and N. Tezuka, Spin polarized tunneling in ferromag-net/insulator/ferromagnet junctions, J. Magn. Magn. Mater.151,403 (1995).
    [29]Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier, Appl. Phys. Lett.90, 212507 (2007).
    [30]S. Mao, Y. Chen, F. Liu et. al., Commercial TMR heads for hard disk drives: characterization and extendibility at 300 gbit/in2 IEEE Trans. Magn.42,97 (2006).
    [31]L. Berger, Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals, J. Phys. Chem. Solids 35,947 (1974).
    [32]P. P. Freitas, and L. Berger, Observation of s-d exchange force between domain walls and electric current in very thin Permalloy films, J. Appl. Phys.57,1266 (1985).
    [33]J. C. Slonczewski, Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier, Phys. Rev. B 39,6995 (1989).
    [34]J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater.159, L1 (1996).
    [35]L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54,9353 (1996).
    [36]F. J. Albert, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett.77,3809 (2000).
    [37]Sadamichi Maekawa(editor), Concepts in Spin Electronics, Oxford Univer-sity Press, New York,2006.
    [38]P. Lederer, and D. L. Mills, Possible Experimental Test of the Band Theory of Magnetism, Phys. Rev.148,542 (1966).
    [39]J. Fernandez-Rossier, M. Braun, A. S. Nunez, and A. H. MacDonald Influ-ence of a uniform current on collective magnetization dynamics in a ferro-magnetic metal, Phys. Rev. B 69,174412 (2004).
    [40]V. Vlaminck, and M. Bailleu, Current-Induced Spin-Wave Doppler Shift, Science 322,410 (2008).
    [41]V. Vlaminck, and M. Bailleu, Online Material of Current-Induced Spin-Wave Doppler Shift.
    [42]D. D. Awschalom, and M. E. Flatte, Challenges for semiconductor spintron-ics, Nature Physics 3,153 (2007).
    [43]S. Datta, and B. Das, Electronic analog of the electrooptic modulator, Appl. Phys. Lett.56,665 (1990).
    [44]S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie, Spin-valve effects in a semiconductor field-effect transistor:A spintronic de-vice, Phys. Rev. B 60,7764 (1999).
    [45]P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Observation of Spin Injection at a Ferromagnet-Semiconductor Interface, Phys. Rev. Lett. 83,203 (1999).
    [46]W. Y. Lee, S. Gardelis, B. C. Choi, Y. B. Xu, C. G. Smith, C. H. W. Barnes, D. A. Ritchie, E. H. Linfield, and J. A. C. Bland, Magnetization reversal and magnetoresistance in a lateral spin-injection device, J. Appl. Phys.85,6682 (1999).
    [47]A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-Oscillatory Conductance in Silicon Surfaces, Phys. Rev. Lett.16,901 (1966).
    [48]R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann Electron mobil-ities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett.33,665 (1978).
    [49]D. K. Ferry, and S. M. Goodnick, Tansport in Nanostructures, Cambridge University Press, New York,1997.
    [50]J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, and P. L. McEuen, Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417,722 (2002).
    [51]J. R. Petta, and D. C. Ralph, Studies of Spin-Orbit Scattering in Noble-Metal Nanoparticles Using Energy-Level Tunneling Spectroscopy, Phys. Rev. Lett.87,266801 (2001).
    [52]D. C. Ralph, C. T. Black, and M. Tinkham, Spectroscopic Measurements of Discrete Electronic States in Single Metal Particles, Phys. Rev. Lett.74, 3241 (1995).
    [53]D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Ross, and A. P. Alivisatos, An approach to electrical studies of single nanocrystals, Appl. Phys. Lett. 68,2574 (1996).
    [54]L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Few-electron quantum dots, Rep. Prog. Phys.64,701 (2001).
    [55]L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Wester-velt, and N. S. Wingreen, Mesoscopic Electron Transport, Kluwer Academic, Dordrecht,1997.
    [56]R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys.79,1217 (2007).
    [57]S. M. Reimann, and M. Manninen, Electronic structure of quantum dots, Rev. Mod. Phys.74,1283 (2002).
    [58]A. Kumar, S. E. Laux, and F. Stern, Electron states in a GaAs quantum dot in a magnetic field, Phys. Rev. B 42,5166 (1990).
    [59]C. Sikorski, and U. Merkt, Spectroscopy of electronic states in InSb quantum dots, Phys. Rev. Lett.62,2164 (1989).
    [60]Demel, T., D. Heitmann, P. Grambow, and K. Ploog, Nonlocal dynamic response and level crossings in quantum-dot structures, Phys. Rev. Lett.64, 788 (1990).
    [61]Lorke, A., J. P. Kotthaus, and K. Ploog, Coupling of quantum dots on GaAs, Phys. Rev. Lett.64,2559 (1990).
    [62]V. Fock, Z. Phys.47,446 (1928).
    [63]C. G. Darwin, Proc. Camb. Phil. Soc.27,86 (1930).
    [64]W. G. Clark, and G. Feher, Nuclear polarization in InSb by a dc current, Phys. Rev. Lett.10,134 (1963).
    [65]A. G. Aronov, Spin injection and polarization of excitations and nuclei in superconductors, Sov. Phys. JETP,44,193 (1976).
    [66]A. G. Aronov, Spin injection in metals and polarization of nuclei, JETP Lett.24,32 (1976).
    [67]A. G. Aronov, and G. E. Pikus, Spin injection into semiconductors, Sov. Phys. Semicond,10,1177 (1976).
    [68]V. F. Masterov, and L. L. Makovskii, Spin-dependent recombination on in-jection of electrons from a ferromagnet into a semiconductor, Sov. Phys. Semicond.13,2042 (1979).
    [69]M. Johnson, and R. H. Silsbee, Thermodynamic analysis of interfacial trans-port and of the thermomagnetoelectric system, Phys. Rev. B 35,4959 (1987).
    [70]M. Johnson, and R. H. Silsbee, Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface, Phys. Rev. B 37,5312 (1988).
    [71]T. Valet, and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48,7099 (1993).
    [72]S. Hershfield, and H. L. Zhao, Charge and spin transport through a metallic ferromagnetic-paramagneticferromagnetic junction, Phys. Rev. B 56,3296 (1997).
    [73]G. Schmidt, D. Ferrand, L. W. Mollenkamp, A. T. Filip, and B. J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62, R4790 (2000).
    [74]M. Oestreich, J. Hubner, D. Hagele, P. J. Klar, W. Heimbrodt, W. W. Riihle, D. E. Ashenford, and B. Lunn, Spin injection into semiconductors, Appl. Phys. Lett.74,1251 (1999).
    [75]E. I. Rashba, Theory of electrical spin injection:Tunnel contacts as a solu-tion of the conductivity mismatch problem, Phys. Rev. B 62, R16267 (2000).
    [76]A. Fert, and H. Jaffres, Conditions for efficient spin injection from a ferro-magnetic metal into a semiconductor, Phys. Rev. B 64,184420 (2001).
    [77]D. L. Smith, and R. N. Silver, Electrical spin injection into semiconductors, Phys. Rev. B 64,045323 (2001).
    [78]M. Johnson, and J. Byers, Charge and spin diffusion in mesoscopic metal wires and at ferromagnet/nonmagnet interfaces, Phys. Rev. B 67,125112 (2003).
    [79]S. Takahashi, and S. Maekawa, Spin injection and detection in magnetic nanostructures, Phys. Rev. B 67,052409 (2003).
    [80]P. Recher, E. Sukhorukov, and D. Loss, Quantum Dot as Spin Filter and Spin Memory, Phys. Rev. Lett.85,1962 (2000).
    [81]R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzer-man, I. T. Vink, and L. P. Kouwenhoven, Semiconductor few-electron quan-tum dot operated as a bipolar spin filter, Phys. Rev. B 70,241304(R) (2004).
    [82]R. Fiederling, M. Kleim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Injection and detection of a spin-polarized current in a light-emitting diode, Nature 402,787 (1999).
    [83]B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Robust electrical spin injection into a semiconductor heterostruc-ture, Phys. Rev. B 62,8180 (2000).
    [84]A. S. Davydov, Quantum Mechanics, Pergamon Press, Oxford,1973.
    [85]C. G. Darwin, The Wave Equations of the Electron, Proc. Roy. Soc. A 118, 654 (1928).
    [86]E. I. Rashba, Electron spin operation by electric fields:spin dynamics and spin injection, Physica E 20,189 (2004).
    [87]C. Kittel, Quantum Theory of Solids, John Wiley and Sons, New York,1963.
    [88]R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer, Berlin,2003.
    [89]E.O. Kane, J. Phys. Chem. Solids 1,249 (1957)
    [90]M. I. Dyakonov, and V. I. Perel, Spin orientation of electrons associated with the interband absorption of light in semiconductors, Zh. Eksp. Teor. Fiz.60, 1954 (1971) [Sov. Phys. JETP 33,1053 (1971)].
    [91]G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev.100,580 (1955).
    [92]E. I. Rashba, Properties of semiconductors with an extremum loop.1. Cy-clotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Fiz. Tverd. Tela 2,1109 (1960) [Sov. Phys. Solid State 2, 1224-1238 (1960)].
    [93]E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Spin-split subbands and magneto-oscillations in Ⅲ-Ⅴ asymmetric heterostructures, Phys. Rev. B 50,8523 (1994).
    [94]R. Winkler and U. Rossler, General approach to the envelope-function ap-proximation based on a quadrature method, Phys. Rev. B 48,8918 (1993).
    [95]X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure, Phys. Rev. B 63,245305 (2001).
    [96]S. Lamari, Rashba effect in inversion layers on p-type InAs MOSFET's, Phys. Rev. B 64,245340 (2001).
    [97]W. Yang, and K. Chang, Rashba spin splitting in biased semiconductor quan-tum wells, Phys. Rev. B 73,113303 (2006).
    [98]W. Yang, and K. Chang, Nonlinear Rashba model and spin relaxation in quantum wells, Phys. Rev. B 74,193314 (2006).
    [99]W. Yang, K. Chang, and S. C. Zhang, Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells, Phys. Rev. Lett. 100,056602 (2008).
    [100]S. Murakami, Intrinsic Spin Hall Effect, Adv. in Solid State Phys.45,197 (2005).
    [101]J. Schliemann, Spin Hall Effect, Int. J. Mod. Phys. B 20,1015 (2006).
    [102]J. Sinova, S. Murakami, S.-Q. Shen, M.-S. Choi, Spin-Hall effect:Back to the Beginning on a Higher Level, Solid State Comm.138,214 (2006).
    [103]K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Re-sistance, Phys. Rev. Lett.45,494 (1980).
    [104]A. Karlhede, S. A. Kivelson, and S. L. Sondhi, The quantum Hall effect, Jerusalem 2002.
    [105]D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magneto-transport in the Extreme Quantum Limit, Phys. Rev. Lett.48,1559 (1982).
    [106]R. B. Laughlin, Anomalous Quantum Hall Effect:An Incompressible Quan-tum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett.50,1395 (1983).
    [107]V. J. Goldman, and B. Su, Resonant Tunneling in the Quantum Hall Regime:Measurement of Fractional Charge, Science 267,1010 (1995).
    [108]J. Inoue, and H. Ohno, Taking the Hall Effect for a Spin, Science 309,2004 (2005).
    [109]M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of elec-trons in semiconductors, Phys. Lett. A 35,459 (1971).
    [110]N. F. Mott, The Scattering of Fast Electrons by Atomic Nuclei, Proc. R. Soc. London A,124,425 (1929).
    [111]J. Hirsch,Spin Hall Effect, Phys. Rev. Lett.83,1834 (1999).
    [112]S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless Quantum Spin Current at Room Temperature, Science 301,1348 (2003).
    [113]J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal Intrinsic Spin Hall Effect, Phys. Rev. Lett.92,126603 (2004).
    [114]D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald, and Q. Niu, Semiclassical Spin Transport in Spin-Orbit-Coupled Bands, Phys. Rev. Lett.93,046602 (2004).
    [115]S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Resonant Spin Hall Con-ductance in Two-Dimensional Electron Systems with a Rashba Interaction in a Perpendicular Magnetic Field, Phys. Rev. Lett.92,256603 (2004).
    [116]S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin Hall conductance in quantum Hall systems lacking bulk and structural inversion symmetry, Phys. Rev. B 71,155316 (2005).
    [117]T. X. Ma, and Q. Liu, Spin Hall conductance of the two-dimensional hole gas in a perpendicular magnetic field, Physical Review B 73,245315 (2006).
    [118]S. Murakami, N. Nagaosa, and S.-C. Zhang, Spin-Hall Insulator, Phys. Rev. Lett.93,156804 (2004).
    [119]C. L. Kane, and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett,95,226801 (2005).
    [120]C. L. Kane, and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett 95,146802 (2005).
    [121]X. L. Qi, Y. S. Wu, and S. C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B 74,045125 (2006).
    [122]B. A. Bernevig, and S. C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett.96,106802 (2006).
    [123]X. L. Qi, Y. S. Wu, and S. C. Zhang, Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B 74,085308 (2006).
    [124]H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets, Phys. Rev. B 74,165310 (2006).
    [125]Y. G. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spin-orbit gap of graphene:First-principles calculations, Phys. Rev. B 75,041401 (2007).
    [126]B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).
    [127]褚君浩,窄禁带半导体物理学,科学出版社,北京2005.
    [128]M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science 318,766 (2007).
    [129]Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors, Science 306,1910 (2004).
    [130]J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Experimental Ob-servation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System, Phys. Rev. Lett.94,047204 (2005).
    [131]沈学础,半导体光谱和光学性质,科学出版社,北京(2002).
    [132]C. Day, Two Groups Observe the Spin Hall Effect in Semiconductors, Physics Today 58,17 (2005).
    [133]S. O. Valenzuela, and M. Tinkham, Direct electronic measurement of the spin Hall effect, Nature 442,176 (2006).
    [134]T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Room-Temperature Reversible Spin Hall Effect, Phys. Rev. Lett.98,156601 (2007).
    [135]T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta and K. Takanashi, Nature Materials 7,125 (2008).
    [136]H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, Coherence Control of Hall Charge and Spin Currents, Phys. Rev. Lett.96,246601 (2006).
    [137]X. D. Cui, S. Q. Shen, J. Li, Y. Ji, W. K. Ge, and F. C. Zhang, Observation of electric current induced by optically injected spin current, Appl. Phys. Lett. 90,242115 (2007).
    [138]E. I. Rashba, Spin currents in thermodynamic equilibrium:The challenge of discerning transport currents, Phys. Rev. B 68,241315(R) (2003).
    [139]P. Q. Jin, Y. Q. Li and F. C. Zhang, SU(2)x U(1) unified theory for charge, orbit and spin currents, J. Phys. A:Math and Gen 39,7115 (2005).
    [140]J. R. Shi, P. Zhang, D. Xiao, and Q. Niu, Proper Definition of Spin Current in Spin-Orbit Coupled Systems, Phys. Rev. Lett.96,076604 (2006).
    [141]Q. F. Sun, and X. C. Xie, Definition of the spin current:The angular spin current and its physical consequences, Phys. Rev. B 72,245305 (2005).
    [142]Y. Wang, K. Xia, Z. B. Su, and Z. S. Ma, Consistency in Formulation of Spin Current and Torque Associated with a Variance of Angular Momentum, Phys. Rev. Lett.96,066601 (2006).
    [143]R. Shen, Y. Chen, Z. D. Wang, and D. Y. Xing, Conservation of spin currents in spin-orbit-coupled systems, Phys. Rev. B 74,125313 (2006).
    [144]Y. Li, and R. B. Tao, Current in a spin-orbit-coupling system, Phys. Rev. B 75,075319 (2007).
    [145]H. T. Yang, and C. S. Liu, Description of spin transport and precession in spin-orbit coupling systems and general equation of continuity, Phys. Rev. B 75,085314 (2007).
    [146]J. Wang, B. G Wang, W. Ren, and H. Guo, Conservation of spin cur-rent:Model including self-consistent spin-spin interaction, Phys. Rev. B 74, 155307 (2006).
    [147]I.V. Tokatly, Equilibrium Spin Currents:Non-Abelian Gauge Invariance and Color Diamagnetism in Condensed Matter, Phys. Rev. Lett.101,106601 (2008).
    [148]J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas, Phys. Rev. B 67,033104 (2003).
    [149]J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Suppression of the per-sistent spin Hall current by defect scattering, Phys. Rev. B 70,041303(R) (2004).
    [150]S. Murakami, Absence of vertex correction for the spin Hall effect in p-type semiconductors, Phys. Rev. B 69,241202(R) (2004).
    [151]R. Raimondi, and P. Schwab, Spin-Hall effect in a disordered two-dimensional electron system, Phys. Rev. B 71,033311 (2005).
    [152]Ol'ga V. Dimitrova, Spin-Hall conductivity in a two-dimensional Rashba electron gas, Phys. Rev. B 71,245327 (2005).
    [153]E. I. Rashba, Sum rules for spin Hall conductivity cancellation, Phys. Rev. B,70,201309(R) (2004).
    [154]C. Grimaldi, E. Cappelluti, and F. Marsiglio, Off-Fermi surface cancellation effects in spin-Hall conductivity of a two-dimensional Rashba electron gas, Phys. Rev. B 73,081303(R) (2006).
    [155]P. L. Krotkov, and S. Das Sarma, Intrinsic spin Hall conductivity in a generalized Rashba model, Phys. Rev. B 73,195307 (2006).
    [156]K. Nomura, J. Sinova, T. Jungwirth, Q. Niu, and A. H. MacDonald, Non-vanishing spin Hall currents in disordered spin-orbit coupling systems, Phys. Rev. B 71,041304 (2005).
    [157]K. Nomura, J. Sinova, T. Jungwirth, and A. H. MacDonald, Dependence of the intrinsic spin-Hall effect on spin-orbit interaction character, Phys. Rev. B 72,165316 (2005).
    [158]P. Wang, and Y. Q. Li, The influence of inelastic relaxation time on intrin-sic spin Hall effects in a disordered two-dimensional electron gas, J. Phys.: Condens. Matter 20,215206 (2008).
    [159]J. Inoue, T. Kato, Y. Ishikawa, H. Itoh, G. E. W. Bauer, and L. W. Molenkamp, Vertex Corrections to the Anomalous Hall Effect in Spin-Polarized Two-Dimensional Electron Gases with a Rashba Spin-Orbit In-teraction, Phys. Rev. Lett.97,046604 (2006).
    [160]P. Wang, Y. Q. Li, and X. A. Zhao, Nonvanishing spin Hall currents in the presence of magnetic impurities, Phys. Rev. B,75,075326 (2007).
    [161]C. P. Moca, and D. C. Marinescu, Spin-Hall conductivity of a spin-polarized two-dimensional electron gas with Rashba spin-orbit interaction and mag-netic impurities, New J. Phys.9,343 (2007).
    [162]C. Gorini, P. Schwab, M. Dzierzawa, and R. Raimondi, Spin polarizations and spin Hall currents in a two-dimensional electron gas with magnetic im-purities, Phys. Rev. B 78,125327 (2008).
    [163]S. Zhang, and Z. Yang, Intrinsic Spin and Orbital Angular Momentum Hall Effect, Phys. Rev. Lett.94,066602 (2005).
    [164]C. N. Yang, and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev.96,191 (1954).
    [165]B. A. Bernevig, and S. C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett 96,106802 (2006).
    [166]D. Culcer, J. Sinova, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald, and Q. Niu, Semiclassical Spin Transport in Spin-Orbit-Coupled Bands, Phys. Rev. Lett.93,046602 (2004).
    [167]S. Q. Shen, Spin Transverse Force on Spin Current in an Electric Field, Phys. Rev. Lett.95,187203 (2005).
    [168]Yuan Li, and You-Quan Li, Spin relaxation of two-dimensional electrons with a hierarchy of spin-orbit couplings, J. Phys.:Condens. Matter 19, 346231 (2007).
    [169]J. Schliemann, J. C. Egues, and D. Loss, Nonballistic Spin-Field-Effect Transistor, Phys. Rev. Lett.90,146801 (2003)
    [170]M.-H. Liu, K.-W. Chen, S.-H. Chen, and C.-R. Chang, Persistent spin helix in Rashba-Dresselhaus two-dimensional electron systems, Phys. Rev. B 74, 235322 (2006).
    [171]B. A. Bernevig, J. Orenstein, and S. C. Zhang, Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System, Phys. Rev. Lett.97, 236601 (2006).
    [172]E. G. Mishchenko, and B. I. Halperin, Transport equations for a two-dimensional electron gas with spin-orbit interaction, Phys. Rev. B 68,045317 (2003).
    [173]E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Spin Current and Polarization in Impure Two-Dimensional Electron Systems with Spin-Orbit Coupling, Phys. Rev. Lett.93,226602 (2004).
    [174]A. A. Burkov, A. S. Nunez and A. H. MacDonald, Theory of spin-charge-coupled transport in a two-dimensional electron gas with Rashba spin-orbit interactions, Phys. Rev. B 70,155308 (2004).
    [175]I. Adagideli, and G. E. W. Bauer, Intrinsic Spin Hall Edges, Phys. Rev. Lett.95,256602 (2005).
    [176]O. Bleibaum, Spin diffusion equations for systems with Rashba spin-orbit interaction in an electric field, Phys. Rev. B 73,035322 (2006).
    [177]V. V. Bryksin and P. Kleinert, Coupled spin-charge drift-diffusion equations for the Rashba model subject to an in-plane electric field, Phys. Rev. B 76, 075340 (2007).
    [178]J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate Control of Spin-Orbit Interaction in an Inverted Ino.53Gao.47As/In0.52Al0.48As Heterostruc-ture, Phys. Rev. Lett.78,1335 (1997).
    [179]E. Schrodinger, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.24,418 (1930).
    [180]K. Huang, On the Zitterbewegung of the Dirac Electron, Am. J. Phys,20, 479 (1952).
    [181]J. Schliemann, D. Loss, and R. M. Westervelt, Zitterbewegung of Electronic Wave Packets in Ⅲ-Ⅴ Zinc-Blende Semiconductor Quantum Wells, Phys. Rev. Lett.94,206801 (2005).
    [182]E. Recami and G. Salesi, Kinematics and hydrodynamics of spinning par-ticles, Phys. Rev. A 57,98 (1998).
    [183]M. S. Green, Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena, J. Chem. Phys.20,1281 (1952).
    [184]M. S. Green, Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. Ⅱ. Irreversible Processes in Fluids, J. Chem. Phys.22,398 (1954).
    [185]R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn.12,570, (1957).
    [186]J. I. Ohe, M. Yamamoto, T. Ohtsuki and J. Nitta, Mesoscopic Stern-Gerlach spin filter by nonuniform spin-orbit interaction, Phys. Rev. B 72, 041308(R) (2005).
    [187]L. Y. Wang, C. S. Tang, and C. S. Chu, dc spin current generation in a Rashba-type quantum channel, Phys. Rev. B 73,085304, (2006).
    [188]P. W. Brouwer, J. N. H. J. Cremers, and B. I. Halperin, Weak localization and conductance fluctuations of a chaotic quantum dot with tunable spin-orbit coupling, Phys. Rev. B,65,081302(R) (2002).
    [189]G. D. Mahan, Many-Particle Physics, Plenum Press, New York,1990.
    [190]J. M. Luttinger, Theory of Thermal Transport Coefficients, Phys. Rev.135, A1505 (1964).
    [191]E. I. Rashba, Spin currents, spin populations, and dielectric function of noncentrosymmetric semiconductors, Phys. Rev. B 70,161201 (R) (2004).
    [192]S. Murakami, N. Nagaosa, and S. C. Zhang, SU(2) non-Abelian holonomy and dissipationless spin current in semiconductors, Phys. Rev. B 69,235206 (2004).
    [193]Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan, and D. C. Tsui Observation of a v= 1/2 fractional quantum Hall state in a double-layer electron system, Phys. Rev. Lett.68,1379 (1992).
    [194]S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Many-body integer quantum Hall effect:Evidence for new phase transitions, Phys. Rev. Lett.72,728 (1994).
    [195]I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K.W. West, Resonantly Enhanced Tunneling in a Double Layer Quantum Hall Ferromagnet, Phys. Rev. Lett.84,5808 (2000).
    [196]E. Tutuc, M. Shayegan, and D. A. Huse, Counterflow Measurements in Strongly Correlated GaAs Hole Bilayers:Evidence for Electron-Hole Pairing, Phys. Rev. Lett.93,036802 (2004).
    [197]M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K.W.West, Vanishing Hall Resistance at High Magnetic Field in a Double-Layer Two-Dimensional, Elec-tron System, Phys. Rev. Lett.93,036801 (2004).
    [198]I. B. Spielman, L. A. Tracy, J. P. Eisenstein, L. N. Pfeiffer, and K.W. West, Spin Transition in Strongly Correlated Bilayer Two-Dimensional Electron Systems, Phys. Rev. Lett.94,076803 (2005).
    [199]R. Fitzgerald, Two Realization Schemes Raise Hopes for Superconducting Quantum Bits, Phys. Today 55,14 (2002).
    [200]J. Q. You, and F. Nori, Superconducting Circuits and Quantum Informa-tion, Phys. Today 58,42 (2005).
    [201]A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quan-tum Field Theory in Statistical Physics, Dover, New York,1975.
    [202]H. Haug, and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer-Verlag, Berlin,1996.
    [203]S. Q. Shen, Spin Hall effect and Berry phase in two-dimensional electron gas, Phys. Rev. B 70,081311(R) (2004).
    [204]R. E. Prange, Tunneling from a Many-Particle Point of View, Phys. Rev. 131,1083 (1963).
    [205]A. Zawadowski, General Theory of Tunneling in Oxide Diodes, Phys. Rev. 163,341 (1967).
    [206]C. Caroli, R. Combescot, D. Lederer, P. Nozieres and D. Saint-James, Com-ment on a recent theory of tunneling without the transfer-Hamiltonian for-malism, Phys. Rev. B 12,3977 (1975).
    [207]D. Loss, and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57,120 (1998).
    [208]J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent Manip-ulation of Coupled Electron Spins in Semiconductor Quantum Dots, Science 309,2180 (2005).
    [209]M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, Nature 432,81 (2004).
    [210]J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp, L. M. Vandersypen, and L. P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot, Nature 430,431 (2004).
    [211]G. Burkard, D. Loss, and D. P. DiVincenzo, Coupled quantum dots as quan-tum gates, Phys. Rev. B 59,2070 (1999).
    [212]A. V. Khaetskii, D. Loss, and L. Glazman, Electron Spin Decoherence in Quantum Dots due to Interaction with Nuclei, Phys. Rev. Lett.88,186802 (2002).
    [213]W. A. Coish, and D. Loss, Hyperfine interaction in a quantum dot:Non-Markovian electron spin dynamics, Phys. Rev. B 70,195340 (2004).
    [214]A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G. Tischler, A. Shabaev, Al. L. Efros, D. Park, D. Gershoni, V. L. Korenev, and I. A. Merkulov, Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots, Phys. Rev. Lett.94,047402 (2005).
    [215]P. Simon, and D. Loss, Nuclear Spin Ferromagnetic Phase Transition in an Interacting Two Dimensional Electron Gas, Phys. Rev. Lett.98,156401 (2007).
    [216]A. Auerbach, Interacting electrons and quantum magnetism, Springer, Berlin,1994.
    [217]N. Nagaosa, Quantum Field Theory in Condensed Matter Physics, Springer, Berlin,1999.
    [218]W. A. Coish, and D. Loss, Singlet-triplet decoherence due to nuclear spins in a double quantum dot, Phys. Rev. B 72,125337 (2005).
    [219]A. Romito, and Y. Gefen, Decoherence of Rabi oscillations of electronic spin states in a double quantum dot, Phys. Rev. B 76,195318 (2007).
    [220]W. Yang, and R. B. Liu, Decoherence of coupled electron spins via nuclear spin dynamics in quantum dots, Phys. Rev. B 77,085302 (2008).
    [221]Y. Y. Wang, and M. W. Wu, Control of spin coherence in semiconductor double quantum dots, Phys. Rev. B 77,125323 (2008).
    [222]S. Yu, Y. Zhu, and Y. Yeo, Hyperfine-interaction-induced decoherence and deterministic teleportation of electrons in a quantum-dot nanostructure, Phys. Rev. A 77,062338 (2008).
    [223]M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S. Tarucha, and D. G. Austing Dissociation of Vertical Semiconductor Diatomic Artificial Molecules, Phys. Rev. Lett.87,066801 (2001).
    [224]K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System, Science 297,1313 (2002).
    [225]E. A. Laird, J. R. Petta, A. C. Johnson, C. M. Marcus, A. Yacoby, M. P. Hanson, and A. C. Gossard, Effect of Exchange Interaction on Spin Dephas-ing in a Double Quantum Dot, Phys. Rev. Lett.97,056801 (2006).
    [226]N. Mason, M. J. Biercuk, and C. M. Marcus, Local Gate Control of a Carbon Nanotube Double Quantum Dot, Science 303,655 (2004).
    [227]R. Hanson, and G. Burkard, Universal Set of Quantum Gates for Double-Dot Spin Qubits with Fixed Interdot Coupling, Phys. Rev. Lett.98,050502 (2007).
    [228]E. Cota, R. Aguado, and G. Platero, ac-Driven Double Quantum Dots as Spin Pumps and Spin Filters, Phys. Rev. Lett.94,107202 (2005).
    [229]C. N. Yang, and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev.96,191 (1954).
    [230]J. Frohlich, and U. Studer, Gauge invariance and current algebra in non-relativistic many-body theory, Rev. Mod. Phys.65,733 (1993).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700