固态自旋系统中的量子纠缠和量子计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了一维固态自旋系统中的量子纠缠特性,通过不同的判据得到了系统存在热纠缠和基态纠缠的条件。从量子纠缠的本质出发,研究了多体量子系统中基态的临界行为。通过将这些典型的固态自旋体系应用到量子信息处理中,提出了可行的量子计算方案,并且分析了实际环境对量子计算的影响。
     本文以量子纠缠的定义为基础,利用可测量的物理量构造出了有效纠缠判据。通过这些判据,我们研究了一维固态自旋链的纠缠特性,如:任意自旋的海森堡链、混合自旋链和实心玻色子Hubbard链。其中,我们得到了热纠缠存在的临界温度。当体系的物理温度低于此值时,相应的热平衡态就是纠缠的,但随着温度的升高,纠缠就逐渐消失。我们把这些判据与理论判别方法进行了比较,发现这些基于可测物理量的判据给出了纠缠存在的一个充分条件。数值计算的结果表明,在具有大量粒子数的自旋系统中,当温度较低的时候,实验上也能检测到纠缠态。对于多体量子系统,本文重点研究了多体和两体的基态纠缠,找到了全局纠缠与量子相变的联系,并且发现了在实际的固态自旋系统中,两体纠缠要比多体纠缠更容易存在。为了考虑实际环境对量子纠缠的影响,本文通过主方程分析了在真空热库中少量原子的量子态的含时演化过程。当其中只有一个原子处于激发态时,那些原先处于基态的原子对就会产生量子纠缠。纠缠大小随着时间的变化类似于带阻尼的拉比振荡,振幅则受到了原子自发衰减强度的调制。通过精确求解体系的量子态,我们给出了产生纠缠的物理机制。结果表明纠缠存在的主要因素取决于不同原子间激发态和基态的跃迁几率。
     本文还讨论了基于固态自旋的量子计算方案。为了使系统模型更接近实际情况,我们重点考虑了非均匀和非对称的交换作用。其中,我们通过解析求解单量子位态的含时演化,得到了在海森堡XXZ模型中实现量子交换门的物理条件,分析了系统内的量子涨落对量子计算的影响,给出了可操作的实验方案。我们通过半导体量子点中电子自旋耦合的非对称性相互作用,利用单量子位旋转操作,构造出了两量子位控制非门,从而实现了精度较高的量子计算。在固态自旋系统中,人们要想在实验中实现量子信息处理,就需要克服操作距离短的困难。我们提出了以耦合自旋链作为量子计算总线的理论方案,当总线系统一直处于非简并的基态时,我们利用电极控制一些量子位与其产生弱耦合,这样我们就可以在这些量子位上间接得到有效的长程相互作用。在这个基础上,我们就构造出了一组通用量子门,从而实现长程量子计算的目的。
In this thesis, the entanglement properties of one-dimensional solid-state quantum spin systems are investigated. By means of some different entanglement witnesses, the conditions of the existence of thermal and ground-state entanglement are provided. From the origin of quantum entanglement, the quantum criticality of the ground state in many-body quantum systems is studied. Some typical solid-state quantum spin systems have been applied to the quantum information processing. Some feasible schemes of quantum computation are proposed. The effects of the realistic environment are taken into account.
     In the thesis, based on the definition of quantum entanglement, some efficient witnesses can be obtained by some measurable physical qualities. Through these entanglement witnesses, the entanglement properties of one-dimensional solid-state quantum spin chains are investigated. The spin chains include a spin-s Heisenberg chain, mixed-spin chain, and hardcore Boson-Hubbard chain. The critical temperatures for the existence of the thermal entanglement are given. When the physical temperatures of the systems are lower than the critical temperature, the corresponding thermal equilibrium states are entangled. With the increase of the temperatures, the thermal entanglement vanishes gradually. Compared with other theoretical measures, these entanglement witnesses based on measurable qualities can provide one necessary condition for the existence of the entanglement. The numerical calculation shows that the entanglement in rather low temperatures in the solid state systems with a great number of spins can be detected. For the many-body quantum systems, the multipartite and bipartite ground state entanglement is investigated. The relation of global entanglement and quantum phase transition is obtained. In the real solid state spin system, the multipartite entanglement vanishes more rapidly than bipartite entanglement. In regard to the impacts of the environment on the entanglement, the time evolution of a small number of atoms in the vacuum reservoir is analyzed by means of the master equation. If there is only one excited atom in the ensemble, a pair of atoms originally at the ground states can be entangled. The dynamical behavior of the entanglement is similar to the damped Rabi oscillation whose amplitude is tuned by the spontaneous decay. The exact solution of the quantum states can help for the understanding of the physical essence of the entanglement existence. It is seen that the entanglement is dependent mainly on the transition probability between the excited state of one atom and ground state of another one.
     In the thesis, some methods of solid spin-based quantum computation are proposed. The anisotropic and asymmetric exchange interactions are considered in the model which is close to the practical conditions. The conditions of the exact swap gate in the anisotropic Heisenberg XXZ model is presented by solving exactly the time evolution of single-qubit states. The effects of the quantum fluctuations in the systems are analyzed. The feasible experimental scheme is provided. Through the asymmetric interaction existing in the model of two coupled electron spins in semiconductor quantum dots and by means of single-qubit rotations, the two-qubit Controlled-NOT gate is constructed. The quantum computation with high accuracy can be implemented. In the experiments of solid-state quantum information processing using quantum spin system, the short distance of operations is regarded as one big obstacle. A scheme based on the quantum spin bus with two coupled chainsis proposed. When the bus is always frozen at the non-degenerate ground state, the effective long-range interaction can be obtained by the electrical control of the weak coupling between some qubits and the bus. Thus, a set of universal quantum logic gates can be set up to realize quantum computation in long distance.
引文
[1] C. W. Helstrom,“Quantum Detection and Estimation Theory”, Mathematics in Science and Engineering, Acadamic Press, New York, 1976
    [2] A. S. Holevo,“Probabilistic and Statistical Aspects of Quantum Theory”, North-Holland Series in Statistics and Probability, 1982
    [3] C. H. Bennett, G. Brassard, S. Breidbart and S. Wiesner,“Quantum cryptography , or unforgeable subway tokens”, Advances in Crytography, Proceedings of Cryto 82, 267, Plenum Press, New York, 1982
    [4] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters,“Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”, Phys. Rev. Lett. 70, 1895(1993)
    [5] R. P. Feymann,“Simulating Physics with Computers”, Int. J. Theor. Phys. 21, 467(1982);
    [6] B. Schumacher,“Quantum coding”, Phys. Rev. A 51, 2738(1995)
    [7] P. W. Shor,“Scheme for reducing decoherence in quantum memory”, Phys. Rev. A 52, 2493(1995)
    [8] A. M. Steane,“Error correcting codes in quantum theory”, Phys. Rev. Lett. 77, 793(1996)
    [9] W. K. Wootters,“Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett. 80, 2245(1998)
    [10] P. W. Shor,“Algorithms for quantum computation: discrete logarithms and factoring”, In proceedings of 35th Annual Symposium on Fundamentals of Computer Science, Los Alamitos, IEEE Press, 1994
    [11] J. S. Bell,“On the problem of hidden variables in quantum mechanics”, Rev. Mod. Phys. 38, 447(1966)
    [12] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt,“Proposed experiment to test Hidden-Variable theories”, Phys. Rev. Lett. 23, 880(1969)
    [13] D. M. Greenberger, M. A. Horne and A. Zeilinger,“in Bell’s Theorem, Quantum Theory and Conceptions of the Universe”, Kluwer Academic, Dordrecht, 1989
    [14] S. Tomonaga,“On the effect of the Field reactions on the interactions of Mesotrons and Nuclear particles”, Prog. Theor. Phys. (Kyoto) 2, 6(1947)
    [15] J. Bardeen, L. N. Cooper and J. R. Schrieffer,“Theory of Superconductivity”, Phys. Rev. 108, 1175(1957)
    [16] R. B. Laughlin,“Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett. 50, 1395(1983)
    [17] A. Peres,“Separability criterion for density matrices”, Phys. Rev. Lett. 77, 1413(1996)
    [18] S. Hill and W. K. Wootters,“Entanglement of a pair of quantum bits”, Phys. Rev. Lett. 78, 5022(1997)
    [19] G. Vidal and R. F. Werner,“Computable measure of entanglement”, Phys. Rev. A 65, 032314(2002)
    [20] V. Coffman, J. Kundu and W. K. Wootters,“Distributed engtanglement”, Phys. Rev. A 61, 052306(2000)
    [21] B. E .A. Saleh and M. C. Teich,“Fundamentals of Photonics”, Wiley, New York, 1991
    [22] J. I. Cirac and P. Zoller,“Quantum computations with cold trapped atoms”, Phys. Rev .Lett. 74, 4091(1995)
    [23] E. Knill, I. Chuang and R. Laflame,“Effective pure states for bulk quantum computation”, Phys. Rev. A 57, 3348(1995)
    [1] D. P. DiVincenzo and D. Bacon and J. Kempe and G. Burkard and K. B. Whaley,“Universal Quantum Computation with the Exchange Interaction”, Nature(London), 408, 339(2001)
    [2] W. K. Wootters,“Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett. 80, 2245 (1998)
    [3] C. H. Bennett and D. P. DiVincenzo and J. A. Smolin and W. K. Wootters,“Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 3824(1996)
    [4] V. Vedral and M. B. Plenio,“Entanglement measures and purification procedures”, Phys. Rev. A 57, 1619(1998)
    [5] M. C. Arnesen and S. Bose and V. Vedral,“Natural thermal and magnetic entanglement in 1D Heisenberg model”, Phys. Rev. Lett.87, 017901(2001)
    [6] G. L. Kamta and A. F. Starace,“Anisotropy and magnetic field effects on entanglement of a two qubit Heisenberg XX chain”, Phys. Rev. Lett.88, 107901(2002)
    [7] S. Gu and H. Li and Y. Li and H. Lin ,“Entanglement of the Heisenberg chain with the next-nearest-neighbor interaction”,Phys. Rev. A 70,052302(2004)
    [8] V. Subrahmanyam,“Quantum entanglement in antiferromagnets”, Phys. Rev. A 69, 022311(2004)
    [9] X. Wang,“Threshold temperatures for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model”, Phys. Rev. A 66, 044305(2002)
    [10] X. Wang and P. Zanardi ,“Quantum entanglement and Bell inequalities in Heisenberg spin chains”, Phys. Lett. A 301 , 1 (2002)
    [11] M. Lewenstein and B. Kraus and J. I. Cirac and P. Horodecki ,“Optimization of entanglement witnesses”, Phys. Rev. A 62, 052310(2000)
    [12] A. Sanpera and D. Bruss and M. Lewenstein,“Schmidt-number witness and bound entanglement”,Phys. Rev. A 63, 050301(R)( 2001)
    [13] M. R. Dowling and A. C. Doherty and S. D. Bartlett,“Energy as an entanglement witness for quantum many-body systems”,Phys. Rev. A 70, 062113(2004)
    [14] G. Toth,“Entanglement witnesses in spin models”, Phys. Rev. A 71, 010301(R)( 2005)
    [15] K. Maruyama and F. Morikoshi and V. Vedral,“Thermodynamical detection of entanglement by Maxwell’s demons”, Phys. Rev. A 71, 012108(2005)
    [16] C. Lunkes and C. Brukner and V. Vedral,“Equation of state for entanglement in a Fermi gas”, Phys. Rev. A 71, 034309(2005)
    [17] P. Hyllus and O. Guhne and D. Bruss and M. Lewenstein,“Relations between Entanglement Witnesses and Bell Inequalities”, quant-ph/0504079
    [18]S. Ghosh and T. F. Rosenbaum and G. Aeppli and S. Coppersmith,“Entangled quantum state of magnetic dipoles”, Nature(London) 425, 48(2003)
    [19] F. D. M. Haldane,“Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Neel state”, Phys. Rev. Lett. 50, 1153(1983)
    [20] R. M. Morra and W. J. L. Buyers and R. L.Armstrong and K. Hirakawa,“Spin dynamics and the Haldane gap in the spin-1 quasi-one-dimensional antiferromagnet CsNiCl3”,Phys. Rev. B 38, 543(1988)
    [21] H. Mutka and C. Payen and P. Molinie,“One-dimensional Heisenberg antiferromagnet with spin S=3/2. Experiments on AgCrP2S6.”, Europhys. Lett. 21, 623(1993)
    [22] G. E. Granroth and M. W. Meisel and M. Chaparala and T. Jolicoeur and B. H. Ward and D. R. Talham,“Experimental evidence of a Haldane gap in an S=2 quasi-linear-chain antiferromagnet”,Phys. Rev. Lett. 77, 1616(1996)
    [23] Q. Jiang and H. Cao and Z. Li,“Thermodynamic properties of the Heisenberg chain with spin S=1”,Phys. Lett. A 221, 415(1996)
    [24] X. Wang and S. Qing and L. Yu,“Haldane gap for the S=2 antiferromagnetic Heisenberg chain revisited”,Phys. Rev. B 60 ,14529(1999)
    [25] C. Brukner and M. Zukowski and A. Zeilinger,“Quantum communication complexity protocol with two entangled qutrits”,Phys. Rev. Lett. 89 197901(2002)
    [26] A. Vaziri and G. Weihs and A. Zeilinger,“Experimental two-photon, three-dimensional entanglement for quantum communication”, Phys. Rev. Lett. 89, 240401(2002)
    [27] H. Bechmann-Pasquinucci and A. Peres ,“Quantum cryptography with 3-state systems”,Phys. Rev. Lett. 85, 3313(2000)
    [28] N. J. Cerf and M. Bourennane and A. Karlsson and N. Gisin,“Security of quantum key distribution using d-level system”,Phys. Rev. Lett. 88, 127902(2002)
    [29] G. Vidal and R. F. Werner,“Computable measure of entanglement”, Phys. Rev. A 65, 032314(2002)
    [30] A. Peres,“Separability criterion for density matrices”, Phys. Rev. Lett.77, 1413(1996)
    [31] M. Horodecki and P. Horodecki and R. Horodecki,“Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A 223, 8(1996)
    [32] T. Eggeling and R. F. Werner,“Separability properties of tripartite states with U U U symmetry”Phys. Rev. A 63, 042111(2001)
    [33] J. Schliemann,“Entanglement in SU(2)-invariant quantum spin systems”, Phys. Rev. A 68, 012309(2003)
    [34] S. Gu, S. Deng, Y. Li and H. Lin,“Entanglement and quantum phase transition in the extended Hubbard model”, Phys. Rev. Lett. 93, 086402(2004).
    [35]C. Lunkes, C. Brukner and V. Vedral,“Natural multiparticle entanglement in a Fermi gas”,Phys. Rev. Lett. 95, 030503(2005).
    [36]C. Brukner, V. Vedral, and A. Zeilinger,“Crucial role of quantum entanglement in bulk properties of solids”,Phys. Rev. A 73, 012110(2006).
    [37] Q. Jiang and Z. Y. Li,“Effective-field renormalization-group study for the transverse Ising model in a quantum-spin system”, Phys. Rev. B 40, 11264(1989).
    [38] W. E. Hatfield,“Quasi-one-dimensional antiferromagnet LiCuVO4”,J. Appl. Phys. 52, 1985(1981).
    [39] P. J. van Koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J. P. Renard, M. Drillon and P. Legoll,“Magnetism of ACu" Bimetallic Chain Compounds Fe, Co, Ni)”,Inorg. Chem. 29, 3325(1990).
    [40] X. Wang and Z. D. Wang,“”Thermal entanglement in ferromagnetic chains,Phys. Rev. A 73, 064302(2006).
    [41] R. L. Carlin,“Magnetochemistry”, (Springer-Verlag, Berlin, 1986).
    [42] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev,“Entanglement in quantum critical phenomena”,Phys. Rev. Lett. 90, 227902(2003).
    [43] M. Popp, F. Verstraete, M. A. Martin-Delgado and J. I. Cirac,“Localizable entanglement”,Phys. Rev. A 71,042306(2005).
    [44] L. F. Santos,“Entanglement in quantum computers described by XXZ model with defects”,Phys. Rev. A 67, 062306(2003).
    [45] V. Subrahmanyam,“Entanglement dynamics and quantum-state transfer in spin chains”,Phys. Rev. A 69, 034304(2004).
    [46] S. Gu, G. Tian and H. Lin,“Ground-state entanglement in the XXZ model”,Phys. Rev. A 71, 052322(2005).
    [47] G. Jaeger,A. V. Sergienko, B. E. A. Saleh and M. C. Teich,“Entanglement, mixedness and spin-flip symmetry in multi-qubit system”,Phys. Rev. A 68, 022318(2003).
    [48] G. K. Brennen and S. S. Bulloc,“Stability of global entanglement in thermal states of spin chains”,Phys. Rev. A 70,052303(2004).
    [49] J. Endrejat and H. Buttner,“Characterization of entanglement of more than two qubits with Bell inequality and global entanglement”, Phys. Rev. A 71, 012305(2005).
    [50] L. Amico, A. Osterloh F. Plastina R. Fazio and G. M. Palma,“Dynamics of entanglement in one-dimensional spin systems”, Phys. Rev. A 69,022304(2004).
    [51] B. Q. Jin and V. E. Korepin,“Localizable entanglement in antiferromagnetic spin chains”, Phys. Rev. A 69, 062314(2004)
    [52] T. J. Osborne and M. A. Nielsen,“Entanglement in a simple quantum phase transition”, Phys. Rev. A 66, 032110(2002).
    [53] H. S. Eisenberg, G. Khoury, G. Durkin, C. Simon and D. Bouwmeester,“Quantum entanglement of a large number of photons”, Phys. Rev. Lett. 93,193901(2004).
    [54] H. Fan, V. Korepin and V. Roychowdhury,“Entanglement in a Valance-bond solid state”, Phys. Rev. Lett. 93,227203(2004).
    [55] W. Dur, L. Hartmann, M. Hein, M. Lewenstein and H. J. Briegel,“Entanglement in spin chains and lattices with long-range Ising-type interactions”,Phys. Rev. Lett. 94, 097203(2005).
    [56] L. A. Wu, M. S. Sarandy and D. A. Lidar,“Quantum phase transitions and bipartite entanglement”, Phys. Rev. Lett. 93, 250404(2004).
    [57] R. Somma, G. Ortiz, H. Barnum, E. Knill and L. Viola,“Nature and measeure of entanglement in quantum phase transitions”,Phys. Rev. A 70,042311(2004).
    [58] T. C. Wei, D. Das, S. Mukhopadyay, S. Vishveshwara, and P. M. Goldbart,“Global entanglement and quantum criticality in spin chains”,Phys. Rev. A 71, 060305(R)(2005)
    [59] D. Larsson and H. Johannesson,“Entanglement scaling in one-dimensional Hubbard model at criticality”, Phys. Rev. Lett. 95,196406(2005).
    [60] D. Larsson and H. Johannesson,“Single-site entanglement of fermions at a quantum phase transition”, Phys. Rev. A 73,042320(2006).
    [61] N. Lambert, C. Emary and T. Brandes,“Entanglement and the phase transition in single-mode superradiance”, Phys. Rev. Lett. 92,073602(2004).
    [62] F. Hebert, G. G. Batrouni, R. T. Scalettar, G. Schmid, M. Troyer and A. Dorneich,“Quantum phase transitions in two-dimensional hardcore boson model”, Phys. Rev. B 65,014513(2001).
    [63] D. Meyer and N. Wallach,“A characterization of global entanglement”, J. Math. Phys. 43, 4273(2002).
    [64] G. Brennen,“An observable measure of. entanglement for pure states of multi-qubit. systems”, Quantum Inf. Comput. 3,619(2003).
    [65] J. I. Garcia-Ripoll, P. Zoller and J. I. Cirac,“Quantum information processing with cold atoms and trapped ions”,J. Phys. B 38, s567(2005).
    [66] A. K. Ekert,“Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett. 67, 661(1991).
    [67] C. Brukner, J. W. Pan, C. Simon, G. Weihs and A. Zeilinger,“Probabilistic instantaneous quantum computation”, Phys. Rev. A 67, 034304(2002).
    [68] M. A. Nielsen and I. L. Chuang,“Quantum Computation and Quantum Information”(Cambridge University Press, Cambridge, 2000).
    [69] M. B. Plenio and S. F. Huelga,“Entangled light from white noise”, Phys. Rev. Lett. 88,197901(2002).
    [70] X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song,“Noise-assisted preparation of entangled atoms”, Phys. Rev. A 68, 052304(2003).
    [71] A. Beige, S. Bose, D. Braun, S. F. Huelga, P. L. Knight, M. B. Plenio and V. Vedral,“Cold atoms in optical lattices as qubits for a quantum computer”, J. Mod. Opt. 47, 2583(2000).
    [72] P. Horodecki,“interaction-free interaction: entangling evolution coming from the possibility of detection”,Phys. Rev. A 63, 022108(2001).
    [73] L. Zhou, X. X. Yi, H. S. Song and Y. Q. Guo,“Entanglement of two atoms through different couplings and thermal noise”, J. Opt. B 6, 378(2004).
    [74] X. Wang, K. Molmer,“Pairwise entanglement in symmetric multi-qubit systems”, Eur. Phys. J. D18, 385(2002).
    [75]D. Leibfried, R. Blatt, C. Monroe and D. Wineland,“Quantum dynamics of single trapped atoms”,Rev. Mod. Phys. 75, 281(2003).
    [76] A. Vukics, J. Janszky and P. Domokos,“Cavity cooling of atoms: a quantum statistical treatment”, J. Phys. B 38, 1453(2005).
    [77] P. Stelmachovic and V. Buzek,“Quantum-information approach to the Ising model: entanglement in chains of qubits”, Phys. Rev. A 70, 032313(2004).
    [78] M. Ziman and V. Buzek,“All(qubit) decoherences: complete characterization and physical implementation”,Phys. Rev. A 72, 022110(2005).
    [79] V. Buzek,“Dynamics of an excited two-level atom in the presence of N-1 unexcited atoms in the free space”, Phys. Rev. A 39, 2232(1989).
    [80] R. H. Lehmberg,“Radiation from an N-atom system. I. General formalism”, Phys. Rev. A 2, 883(1970).
    [81] R. H. Lehmberg,“Radiation from an N-atom system. II. Spontaneous emission from a pair of atoms”, Phys. Rev. A 2, 889(1970).
    [82] Z. Ficek and R. Tanas,“Entangled states and collective nonclassical effects in two-. atom systems”, Phys. Rep. 372, 369(2002).
    [1] A. Ekert and R. Jozsa,“Quantum computation and Shor’s factoring algorithm”Rev. Mod. Phys. 68, 733(1996).
    [2] A. Steane,“Quantum computing”Rep. Prog. Phys. 61, 117(1998).
    [3] C. H. Bennett and D. P. DiVincenzo,“Quantum information and computation”, Nature(London) 404, 247(2000).
    [4] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble,“Measurement of conditional phase shifts for quantum logic”, Phys. Rev. Lett. 75, 4710(1995).
    [5] T. Sleator and H. Weinfurter,“Realizable universal quantum logic gates”, Phys. Rev. Lett. 74, 4087(1995).
    [6] J. I. Cirac and P. Zoller,“Quantum computations with cold trapped atoms”, Phys. Rev. Lett. 74, 4091(1995).
    [7] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland,“Demonstration of a fundamental quantum logic gate”Phys. Rev. Lett. 75, 4714(1995).
    [8] D. Cory, A. Fahmy and T. Havel,“Ensemble quantum computing by NMR spectroscopy”, Proc. Natl. Acad. Sci. USA 94, 1634(1997).
    [9] N. A. Gershenfeld and I. L. Chuang,“Bulk Spin-Resonance Quantum Computation”, Science 275, 350(1997).
    [10] A. Shnirman, G. Schon and Z. Hermon,“Quantum manipulations of small Josephson junctions”, Phys. Rev. Lett. 79, 2371(1997).
    [11] D. Loss and D. P. DiVincenzo,“Quantum computation with quantum dots”, Phys. Rev. A 57, 120(1998).
    [12] G. Burkard and D. P. DiVincenzo,“Coupled quantum dots as quantum gates”, Phys. Rev. B 59, 2070(1999).
    [13] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small,“Quantum information processing using quantum dot spins and cavity QED”, Phys. Rev. Lett. 83, 4204(1999).
    [14] N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer and D. G. Steel,“Coherent optical control of the quantum state of a single quantum dot”, Science 282, 1473(1998).
    [15] B. E. Kane,“A silicon-based nuclear spin quantum computer”, Nature(London) 393, 133(1998).
    [16] V. Privman, I. D. Vagner and G. Kventsel,“Quantum Computation in Quantum-Hall Systems”, Phys. Lett. A 239, 141(1998).
    [17] Y. Tokura, W. G. van der Wiel, T. Obata and S. Tarucha,“Coherent single electron spin control in a slanting Zeeman field”, Phys. Rev. Lett. 96, 047202(2006).
    [18] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard,“Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots”, Science 309, 2180(2005).
    [19] W. G. van der Wiel, S. De Franceschi, J. L. Elzerman, T. Fujisawa, S. Tarucha and L. P. Kouwenhoven,“Electron transport through double quantum dots”, Rev. Mod. Phys. 75, 1(2003).
    [20] M. A. Nielsen and I. L. Chuang,“Quantum Computation and Quantum Information”(Cambridge University Press, Cambridge, UK, 2000).
    [21] X. Hu, R. de Sousa and S. Das Sarma,“Interplay between Zeeman coupling and swap action in spin-based quantum computer models: error correction in inhomogeneous magnetic fields”, Phys. Rev. Lett. 86, 918(2001).
    [22] G. Burkard and D. Loss,“Cancellation of spin-orbit effects in quantum gates based on the exchange coupling in quantum dots”, Phys. Rev. Lett. 88, 047903(2002).
    [23] K. V. Kavokin,“Anisotropic exchange interaction of localized conduction-band electrons in semiconductors”, Phys. Rev. B 64, 075305(2001).
    [24] X. Hu and S. Das Sarma,“Spin-swap gate in the presence of qubit inhomogeneity in a double quantum dot”, Phys. Rev. A 68, 052310(2003).
    [25] G. Vidal and R. Tarrach,“Robustness of entanglement”, Phys. Rev. A 59, 141(1999).
    [26] S. Bandyopadhyay,“Entangling capacities of noisy two-qubit Hamiltonians”, Phys. Rev. A 70, 010301(R)(2004).
    [27] J. F. Poyatos and J. I. Cirac,“Complete characterization of a quantum process: The two-bit quantum gate”, Phys. Rev. Lett. 78, 390(1997).
    [28] R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. P. DiVincenzo,“Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures”, Phys. Rev. A 62, 012306(2000).
    [29] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen,“Driven coherent oscillations of a single electron spin in a quantum dot”, Nature 442, 766(2006).
    [30] T. Aono,“Two impurity kondo problem under Aharonov-Bohm and Aharonov-Casher”, Phys. Rev. B 76, 073304(2007).
    [31] L. P. Gor'kov and P. L. Krotkov,“Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors”, Phys. Rev. B 68, 155206(2003).
    [32] K. V. Kavokin,“Symmetry of anisotropic exchange interactions in semiconductor nanostructure”, Phys. Rev. B 69,075302(2004).
    [33] S. C. Badescu, Y. B. Lyanda-Geller, and T. L.Reinecke,“Asymmetric exchange between electron spins in coupled semiconductor quantum dots”, Phys. Rev. B 72, 161304(R) (2005).
    [34] G. Dresselhaus,“Spin-orbit coupling effects in Zinc Blende structure”, Phys. Rev. 100,580(1955).
    [35] L. S. Levitov and E. I. Rashba,“Dynamical spin-electric coupling in a quantum dot”, Phys. Rev. B 67, 115324(2001).
    [36] I.Dzyaloshinskii,“The relation between ferroelectricity and Dzyaloshinskii-Moriya interaction”, Phys. Chem. Solids 4, 241(1958).
    [37] T. Moriya,“Anisotropic superexchange interaction and weak ferromagnetism”, Phys. Rev. 120, 91(1960).
    [38] N. E. Bonesteel, D. Stepanenko, and D. P. DiVincenz,“Anisotropic spin exchange in pulsed quantum gates”, Phys. Rev. Lett. 87, 207901(2001).
    [39] L. A. Wu and D. A. Lidar,“Universal quantum logic from Zeeman and anisotropic exchange interactions”, Phys. Rev. A 66, 062314(2002).
    [40] D. Stepanenko, N. E. Bonesteel, D. P. DiVincenzo, G. Burkard, and D. Loss,“Spin-orbit coupling and time-reversal symmetry in quantum gates”, Phys. Rev. B 68, 115306(2003).
    [41] D. Stepanenko and N. E. Bonesteel,“Universal quantum computation through control of spin-orbit coupling”, Phys. Rev.Lett. 93, 140501(2004).
    [42] D. Loss and E. V. Sukhorukov,“Probing entanglement and Nonlocality of electrons in double-dot via transport and noise”, Phys. Rev. Lett. 84, 1035 (2000)
    [43] S. C. Benjamin,“Simple pulses for universal quantum computation with a Heisenberg ABAB chain”, Phys. Rev. A 64,054303(2001).
    [44] D. A. Lidar and L. A. Wu,“Reducing constraints on quantum computer design by encoded selective recoupling”, Phys. Rev.Lett. 88, 017905(2002)
    [45] J. Levy,“Universal quantum computation with spin-1/2 pairs and Heisenberg exchange”, Phys. Rev. Lett. 89,147902(2002).
    [46] P. W. Shor,“Scheme for reducing decoherence in quantum computer memory”, Phys. Rev. A 52,2493(1995).
    [47] D. Gottesman,“Theory of fault-tolerant quantum computation”, Phys. Rev. A 57,127(1998).
    [48] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley,“Theory of decoherence-free fault-tolerant universal quantum computation”, Phys. Rev. A 63, 042307(2001).
    [49] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, and N. Margolus,“Elementary gates for quantum computation”, Phys. Rev. A 52, 3457(1995).
    [50] X. Hu and S. Das Sarma,“Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule”, Phys. Rev. A 61, 062301(2000).
    [51] F. Meier, J. Levy and D. Loss,“Quantum computing with spin cluster qubits”, Phys. Rev. Lett. 90, 047901(2003).
    [52] K. M. Svore, B. M. Terhal and D. P. DiVincenzo,“Local fault-tolerant quantum computation”, Phys. Rev. A 72, 022317(2005).
    [53] M. Friesen, A. Biswas, X. Hu, and D. Lidar,“Efficient multiqubit entanglement via a spin bus”, Phys. Rev. Lett. 98, 230503(2007).
    [54] E. Dagotto and T. M. Rice,“Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials”, Science 271, 618(1996).
    [55] A. Ferreira, J. M. B. Lopes dos Santos,“Analytical results on long distance entanglement mediated by gapped spin chains”, arxiv:quant-ph/0708.0320v1(2007).
    [56] S. R. White, R. M. Noack and D. J. Scalapino,“Resonating valence bond theory of coupled Heisenberg chains”, Phys. Rev. Lett. 73, 886(1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700