不同LED光质对黄瓜和结球甘蓝苗期生长、光合特性及内源激素的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄瓜(Cucumis sativus L.)品种“银胚99”和结球甘蓝(Brassica oleraceaL.var.capitata L.)品种“8398”为试材,以LED-T8灯管精量调制光强和光质作为光源,研究了白光、红光、蓝光和不同配比的红光组合光对2种作物幼苗生长发育、光合、荧光特性、不同器官内源激素水平和叶绿体超微结构的影响。研究结果表明:
     1. LED红光能提高2种作物植株的生物量,并有利于促进结球甘蓝幼苗的伸长生长和叶片扩展;LED蓝光促进黄瓜和结球甘蓝幼苗的加粗生长、干物质积累和壮苗指数,且结球甘蓝幼苗矮化。与白光和单一的红、蓝光相比,LED红蓝组合光对黄瓜和结球甘蓝幼苗的生长发育表现出综合的优势,其中8R/2B下显著提升了2种作物的茎粗、株高、植株干、鲜重、壮苗指数等。
     2. LED蓝光和红蓝组合光均显著提高了黄瓜幼苗叶片的叶绿素及类胡萝卜素含量,红蓝组合光还能延缓叶片叶绿素含量在后期的衰减;红光培养下的黄瓜叶片叶绿素a/b在处理期间一直居高,呈阳生植物的特性。与黄瓜不同,结球甘蓝幼苗叶片光合色素的合成对光质具有选择性。红蓝组合光对结球甘蓝叶片光合色素的合成表现出极高的促进作用;红光有利于叶绿素b和类胡萝卜素的合成,叶绿素a/b值最小,呈阴生植物特性;蓝光下叶绿素a则合成较多,类胡萝卜素合成少,且叶绿素a/b值最大,呈阳生植物特性。
     3.黄瓜和结球甘蓝幼苗在LED红蓝组合光下叶片光系统II反应中心的开放程度较大,且光系统II吸收并能运用于光合作用的光能较多;因此,叶片的光系统II功能良好,光系统II更为健康,其中8R/2B处理下2种作物的Fv/Fm、φPSII、qP和Fv’/Fm’显著高于白光和单一红、蓝光。而LED红光下的黄瓜叶片,蓝光和白光下的结球甘蓝叶片吸收的光能不能用于光合电子传递而以热的形式耗散掉的光能多致使NPQ增高。
     4.在处理前期LED红光可提高结球甘蓝幼苗的净光合速率(PN),而LED蓝光则可显著提高黄瓜幼苗的净光合速率(PN);而在处理后期,红蓝组合光可使2种作物叶片净光合速率(PN)较高,蒸腾失水减少,水分利用效率(WUE)明显提高。此外,蓝光可诱导黄瓜和结球甘蓝叶片气孔的开放,叶片拥有较大的气孔导度(GS)。
     5. LED蓝光和红蓝组合光可显著提高黄瓜茎中及结球甘蓝茎和叶片中的GA3含量,且GA3含量较高可促进植株的株高、茎粗和叶片的纵、横向扩展,并促进结球甘蓝的生物量和干物质积累。LED红光可提高结球甘蓝茎和叶片中IAA含量,且IAA的含量高植株的加粗和伸长及叶片的扩展得到促进;黄瓜则在红蓝组合光8R/2B下茎和叶片中IAA含量较高,且促进植株和地上部生物量的增加。红蓝组合光下2种作物的ABA含量较低,其中8R/2B处理最低;在黄瓜中白光下ABA含量低于红光和蓝光,而在结球甘蓝中红光和蓝光下ABA含量又高于白光。且ABA也同GA3和IAA一起对植株的株高、茎粗,叶片的扩展,生物量及干物质的积累起着调控作用。
     6.白光不利于黄瓜叶片叶绿体的成熟,并使结球甘蓝叶绿体膨大。红光造成叶片叶绿体淀粉粒过分积累,抑制了光合产物从叶片中的输出;而结球甘蓝在红光下叶绿体光合功能面积比例增大,类囊体垛堞紧密。而在红光下红蓝组合光下,黄瓜和结球甘蓝叶片叶绿体组织结构清晰、形状规则,且类囊体垛堞加厚、连续。
Cucumber (Cucumis sativus L.) cultivar “yinpei99” and head cabbage (Brassica oleraceaL.var.capitata L.) cultivar “8398” were selected as materials. LED-T8lamp which can preciselymodulate light intensity and light quality were used as the light source. The experimentexplained effects of white, red, blue, red and blue combination light on growth and development,photosynthesis, fluorescence characteristics, the endogenous hormones levels in differentorgans and chloroplast ultrastructure of the two kinds of crop seedling. The main results are asfollows:
     1. The red LED light can not only improve plant biomass but also be propitious to promotethe elongation growth and leaf expansion of head cabbage seedlings. On the contrary, the blueLED light is beneficial for diameter increment, dry matter accumulation and increasing seedlingindex of cucumber and head cabbage seedlings, meanwhile, head cabbage seedlings weredwarfed. Compared to a single light source, the combination of red and blue LED light showedintegrate advantages on the growth and development of cucumber and head cabbage seedlings,in which the treatment8R/2B significantly improved stem diameter, height, dry and freshweight and seedling index of two kinds of crop.
     2. Under the blue LED light and a combination of red and blue light conditions, thecontent of chlorophyll and carotenoid of cucumber leaves significantly increased. What’s more,a combination of red and blue light can delay the attenuation of the chlorophyll content in thelatter. Under the red LED light treatment, the chlorophylla/b content of cucumber leavescontinuously stayed the highest, which shows the characteristics of the light-demanding plant.Unlike cucumber, the photosynthetic pigment synthesis of head cabbage seedlings leavesindicated selectivity for light qualities. A combination of red and blue light had a stimulatingeffect on photosynthetic pigment synthesis of head cabbage leaves. The red light is conduciveto the synthesis of chlorophyll b and carotenoid, moreover, it can minimize the chlorophylla/bratio, which shows characteristics of shade plants. The two kind crops under the blue lighttreatment appeared the reverse phenomena that more chlorophyll a synthesized, less carotenoidsynthesized and chlorophylla/b ratio reached maximum, which shows the characteristics of thelight-demanding plant.
     3. With a combination of red and blue LED light treating, the degree of openness of theblades photosystem II reaction center of cucumber and head cabbage seedlings is bigger than that of other different light treatments, and the energy which photosystem II absorbed, used inphotosynthesis, is more than that of other different light treatments. Therefore, the leavesphotosystem II function well and the photosystem II is healthier. Under8R/2B compound lighttreatment, these parameters Fv/Fm, φPS II, qP and Fv’/Fm’of two kind crops were significantlyhigher than those of treatment with the single light source. The light energy absorbed bycucumber leaves treated with red LED light and head cabbage leaves treated with blue andwhite LED light cannot be used for photosynthetic electron transport instead dissipated in formof heat energy resulting from increasing NPQ.
     4. In the early stage of treatment, the red light can improve the net photosynthetic rate (PN)of head cabbage seedlings, while the blue light can significantly elevate the net photosyntheticrate (PN) of cucumber seedlings. In the later stage, a combination of red and blue light canmake two kind crops leaves elevate net photosynthetic rate (PN), reduce transpiration water lossand significantly improve water use efficiency (WUE). In addition, the blue light inducedstomata opening of cucumber and head cabbage leaves, the leaves had a larger stomataconductance (GS).
     5. The blue LED light and a combination of red and blue LED light can significantlyimprove GA3content of cucumber stems,also in head cabbage stems and leaves. In addition,higher GA3content can promote plant height, stem diameter and leaf vertical and horizontalexpansion, and stimulate the biomass and dry matter accumulation of head cabbage. The redLED light can improve the IAAcontent in the stems and leaves of head cabbage, and the higherIAA content promoted plants bold and elongation and leaf expansion. The IAA content in thestems and leaves of cucumber is higher under compound light8R/2B conditions, which canmake shoot biomass increased. The ABAcontent of two crops is low with a combination of redand blue light treatment, which appears lowest under8R/2B treatment. The ABA content incucumber with white light treatment is lower than that with the red or blue light treatment, theresult in head cabbage shows the same. The ABA associated with GA3and IAA plays aregulatory role on plant height, stem diameter, leaf expansion, biomass and dry matteraccumulation.
     6. The white light was not conducive to cucumber chloroplast mature, but made headcabbage chloroplast enlarged. The red light caused excessive accumulation of chloroplast starchgrains, which inhibited the output of photosynthetic products from the leaves. Under the red light, the chloroplast photosynthetic area proportion of head cabbage was larger, thylakoid bodybattled closely. Under a combination of red and blue light, the chloroplast organization ofcucumber and head cabbage leaves had clear structure, regular shape and thick and continuousthylakoid body battlement.
引文
[1] Banerjee R, Batschauer A. Plant blue-light receptors[J]. Planta,2005,220(3):498-502.
    [2] Lin C, Shalitin D. Cryptochrome structure and signal transduction[J]. Annual Review of Plant Biology,2003,54(1):469-496.
    [3] Batschauer A. Plant cryptochromes: their genes, biochemistry, and physiological roles[J]. Handbook ofPhotosensory Receptors,2005:211-246.
    [4] Briggs W R, Christie J M. Phototropins1and2: versatile plant blue-light receptors[J]. Trends in plantscience,2002,7(5):204-210.
    [5] Celaya R B, Liscum E. Phototropins and Associated Signaling: Providing the Power of Movement inHigher Plants [J]. Photochemistry and photobiology,2005,81(1):73-80.
    [6] Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants[J]. Annu. Rev. Genet.,2004,38:87-117.
    [7] Kircher S, Kozma-Bognar L, Kim L, et al. Light quality–dependent nuclear import of the plantphotoreceptors phytochromeAand B[J]. The Plant Cell Online,1999,11(8):1445-1456.
    [8] Ahmad M, Cashmore A R. HY4gene of A. thaliana encodes a protein with characteristics of ablue-light photoreceptor[J].1993.
    [9] Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date. Fivephyto-chromes, twocryptochromes, one phototropin, and one superchrome[J]. Plant Physiology,2001,125(1):85-88.
    [10]钱善勤,王忠,莫亿伟,等.植物向光性反应的研究进展[J].植物学通报,2004,21(3):263-272.
    [11] Singh A, Selvi M T, Sharma R. Sunlight-induced anthocyanin pigmentation in maize vegetativetissues[J]. Journal of experimental botany,1999,50(339):1619-1625.
    [12]杜爽,高志奎,薛占军,等.红蓝单色光质下茄子叶片的光吸收与光合响应特性[J].河北农业大学学报,2009,32(1).
    [13]杨晓建,刘世琦,张自坤,等.不同LED光源对青蒜苗生长及叶绿素荧光特性的影响[J].中国蔬菜,2011,6:019.
    [14]洪佳华,王铁生.光强,光质对人参光合的影响[J].中国农业气象,1995,16(1):19-22.
    [15]魏胜林.蓝光和红光对菊花生长和开花的影响[J].园艺学报,1998,25(2):203-204.
    [16]闻婧,杨其长,魏灵玲,等.不同红蓝LED组合光源对叶用莴苣光合特性和品质的影响及节能评价[J].园艺学报,2011,38(4):761-769.
    [17]唐永康,郭双生,艾为党,等.不同比例红蓝LED光照对油麦菜生长发育的影响[J].航天医学与医学工程,2010,23(3):206-212.
    [18] D'Onofrio C, Morini S, Bellocchi G. Effect of light quality on somatic embryogenesis of quinceleaves[J]. Plant cell, tissue and organ culture,1998,53(2):91-98.
    [19] Ramalho J C, Marques N C, Semedo J N, et al. Photosynthetic performance and pigment com-positionof leaves from two tropical species is determined by light quality[J]. Plant Biology,2002,4(1):112-120.
    [20] Sing M,Chaturvedi R, Sane P V. Diurnal and seasonal photosynthetic characteristics ofpopulusdeltoides Marsh Leaves[J]. Photosynthetic,1996(18):61-68.
    [21] Lin M J, Hsu B D. Photosynthetic plasticity ofPhalaenopsisin response to different lightenvironments[J]. Journal of plant physiology,2004,161(11):1259-1268.
    [22] QinY H, Zhang S L, SyedA, etal. Regeneration mechanism of Toyonokastrawberry under differentcolor plastic films[J].Plant Science,2005(168):1425-1431.
    [23] Khattak A M, Pearson S. Spectral filters and temperature effects on the growth and development ofchrysanthemums under low light integral[J]. Plant growth regulation,2006,49(1):61-68.
    [24]许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响[J].中国农学通报,2007,23(1):96-100.
    [25]郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理[J].应用生态学报,2008,19(7):1619-1624.
    [26] Sharkey T D, Ogawa T, Zeiger E, et al. Stomatal responses to light[J]. Stomatal function,1987:195-208.
    [27] Zeiger E, Iino M, Ogawa T. THE BLUE LIGHT RESPONSE OF STOMATA: PULSE KINETICSAND SOME MECHANISTIC IMPLICATIONS*[J]. Photochemistry and Photobiology,1985,42(6):759-763.
    [28] Talbott L D, Zeiger E. Sugar and organic acid accumulation in guard cells of Vicia faba in response tored and blue light[J]. Plant Physiology,1993,102(4):1163-1169.
    [29] Frechilla S, Zhu J, TalbottlLD,et al. Stomata fromnpql, a zeaxanthin-lessArabidopsismutant, lack aspecific response to blue light[J].Plant&Cell Physiology,1999,40:949-954
    [30] Roelfsema M R G, Hedrich R. In the light of stomatal opening: new insights into ‘the Watergate’[J].New Phytologist,2005,167(3):665-691.
    [31] Vavasseur A, Raghavendra A S. Guard cell metabolism and CO2sensing[J]. New Phytologist,2005,165(3):665-682.
    [32] Shimazaki K, Doi M, Assmann S M, et al. Light regulation of stomatal movement[J]. Annu. Rev. PlantBiol.,2007,58:219-247.
    [33]倪纪恒,陈学好,陈春宏,等.补充不同光质对温室黄瓜生长发育,光合和前期产量的影响[J].中国农业科学,2009,42(7):2615-2623.
    [34]李雯琳,郁继华,张国斌,等. LED光源不同光质对叶用莴苣幼苗叶片气体参数和叶绿素荧光参数的影响[J].甘肃农业大学学报,2010,45(1):47-51.
    [35]常涛涛,刘晓英,徐志刚,等.不同光谱能量分布对番茄幼苗生长发育的影响[J].中国农业科学,2010,43(8):1748-1756.
    [36]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369-375
    [37]江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,33(2):338-343.
    [38] S b A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birchplantlets in vitro[J]. Plant Cell, Tissue and Organ Culture,1995,41(2):177-185.
    [39]蒲高斌,刘世琦,刘磊,等.不同光质对番茄幼苗生长和生理特性的影响[J].园艺学报,2005,32(3):420-425.
    [40]史宏志,韩锦峰,官春云,等.红光和蓝光对烟叶生长,碳氮代谢和品质的影响[J].作物学报,1999,25(02):215-220.
    [41]魏星,顾清,戴艳娇,等.不同光质对菊花组培苗生长的影响[J].中国农学通报,2008,24(12).
    [42] Bondada B R, Syvertsen J P. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrusleaves of different nitrogen status[J]. Tree physiology,2003,23(8):553-559.
    [43]刘晓英,徐志刚,常涛涛,等.不同光质LED弱光对樱桃番茄植株形态和光合性能的影响[J].西北植物学报,2010(004):725-732.
    [44] Eskins K, Beremand P D. Light‐quality and irradiance‐level control of light‐harvesting complex ofphotosystem2in maize mesophyll cells. Evidence for a low fluence‐rate threshold in blue‐lightreduction of mRNAand protein[J]. PhysiologiaPlantarum,1990,78(3):435-440.
    [45]陈冬兰.光对若干光合碳代谢酶类的激活与调节[J].植物生理学通讯,1982,5:000.
    [46] Ziegler, H., Zeigler, I. The influence of light on the NADP+-dependent glyceraldehyde3-phosphatedehydrogenase[J].Planta1965,65:369–380.
    [47]吴光耀,钟筱波,吴相钰.双磷酸核酮糖羧化酶和果糖双磷酸酯酶合成的光调节[J].植物学报,1987,29(4):388-396.
    [48]王建国.试论茶树色光栽培[J].茶叶通讯,1987,2:001.
    [49]吴登如,赵毓橘.表油菜素内酯对绿豆上胚轴内源IAA及其氧化酶的影响[J].植物生理与分子生物学学报,1991,4.
    [50] Tanaka M, Takamura T, Watanabe H, et al. In vitro growth of Cymbidium plantlets cultured undersuperbright red and blue light-emitting diodes (LEDs)[J]. Journal of Horticultural Science andBiotechnology,1998,73.
    [51] Fujiwara K, Kozai T.15. Physical microenvironment and its effects[J]. Automation and Enviro-nmental Control in Plant Tissue Culture,1995:319.
    [52] Nhut D T, Takamura T, Watanabe H, et al. Responses of strawberry plantlets cultured in vitro undersuperbright red and blue light-emitting diodes (LEDs)[J]. Plant cell, tissue and organ culture,2003,73(1):43-52.
    [53]苏娜娜,邬奇,崔瑾.LED光质补光对黄瓜幼苗生长和光合特性的影响[J]中国蔬菜,2012,V1(24):48-54.
    [54] Miyashita Y, Kimura T, Kitaya Y, et al. Effects of red light on the growth and morphology of potatoplantlets in vitro: using light emitting diodes (LEDS) as a light source for micropropagation[C]//IIIInternational Symposium onArtificial Lighting in Horticulture418.1994:169-176.
    [55]张欢,徐志刚,崔瑾,等.不同光质对萝卜芽苗菜生长和营养品质的影响[J].中国蔬菜,2009,10:28-32.
    [56] Kim H H, Wheeler R M, Sager J C, et al. Light-emitting diodes as an illumination source for plants: Areview of research at Kennedy Space Center[J]. Habitation,2004,10(2):71-78.
    [57]王小菁,潘瑞炽.红光,远红光,钙及IAA对绿豆下胚轴切段伸长的影响[J].植物生理学通讯,1990(5):13-16.
    [58] Hahn E J, Kozai T, Paek KY. Blue and red light-emitting diodes with or without sucrose and ventilationaffects in vitro growth of Rehmanniaglutinoseplantlets[J]. J Plant Biol,2000,43:247-250.
    [59]顾振新,李式军.弱光照射和无机营养供给对冷藏绿芦笋品质变化的影响[J].南京农业大学学报,2001,24(4):84-88.
    [60] Whitelam GC,Hallida KJ.Light and plant development[M]. Blackwell Pub Press,2007.
    [61] Lichtenthaler H K, Buschmann C, D ll M, et al. Photosynthetic activity, chloroplast ultrastructure, andleaf characteristics of high-light and low-light plants and of sun and shade leaves[J]. PhotosynthesisResearch,1981,2(2):115-141.
    [62]倪德祥,张丕方,陈刚,等.光质对康乃馨试管苗生长发育的影响[J].园艺学报,1985,12(3):197-202.
    [63]王维荣,陈松,欧阳光察,等.光质对黄瓜种子萌发过程中过氧化物酶活性及蛋白含量的影响[J].上海农业学报,1991,7(4):17-20.
    [64]张长芹,张禾,张能义,等.不同光质对露珠杜鹃生长发育和光合作用的影响[J].云南植物研究,1993,15(4):392-394.
    [65]赵德修,邢建民.光质,光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报(ISSN0257-4829),1999,25(2):127-132.
    [66] Schuerger A C, Brown C S, Stryjewski E C. Anatomical features of pepper plants (Capsicum annuumL.) grown under red light-emitting diodes supplemented with blue or far-red light[J]. Annals of Botany,1997,79(3):273-282.
    [67]李韶山,潘瑞炽.蓝光对水稻幼苗生长效应的研究[J].中国水稻科学,1994,8(2):115-118.
    [68]戴艳娇,王琼丽,张欢,等.不同光谱的LEDs对蝴蝶兰组培苗生长的影响[J].江苏农业科学,2010,5:227-231.
    [69]岳静,潘远智,鲜小林,等.光质和B9对杜鹃花观赏性状及生理特性的影响[J].林业科学,2013,9(1):77-84.
    [70] Moon H K, Park S Y, Kim Y W, et al. Growth of Tsuru-rindo (Tripterospermumjaponicum) culturedinvitro under various sources of light-emitting diode (LED) irradiation[J]. Journal of Plant Biology,2006,49(2):174-179.
    [71]徐凯,郭延平,张上隆,等.不同光质对丰香草莓生长发育的影响[J].果树学报,2006,23(6):818-824.
    [72]石镇源,唐敏,杨红飞,等. LED不同光质对虎雪兰组培苗生理生化特性影响的研究'[J].云南农业大学学报:自然科学版,2012,27(6):863-869.
    [73]徐茂军,朱睦元,顾青.发芽大豆中异黄酮积累的光诱导作用研究[J].中国粮油学报,2003,18(1):74-77.
    [74]张欢,徐志刚,崔瑾,等.不同光谱能量分布对菊花试管苗增殖及生根的影响[J].园艺学报,2010,37(10):1629-1636.
    [75] Feng-Luan T, Ning-Zhen H, Zhi-Min H, et al.自然光照下补照不同光质光对马蹄莲光合速率及生长的影响[J].植物生理学通讯,2007,43(5):879.
    [76]杜洪涛,刘世琦,张珍.光质对彩色甜椒幼苗生长及酶活性影响[J].华北农学报,2005,20(2):45-48.
    [77]崔瑾,马志虎,徐志刚,等.不同光质补光对黄瓜,辣椒和番茄幼苗生长及生理特性的影响[J].园艺学报,2009,36(5):663-670.
    [78] Folta K M. Green light stimulates early stem elongation, antagonizing light-mediated growthinhibition[J]. Plant Physiology,2004,135(3):1407-1416.
    [79]沈红香,沈漫,程继鸿,等.不同光质补光处理对郁金香生长和开花的影响[J].北京农学院学报,2007,22(1):16-18.
    [80] Mark U, Saile M M, Tevine M. Effects of solar UV-B radiation on growth, flowering and yield ofCentral and Southern European maize cultivars[J]. PhotochemPhotobiol,1996,64:457-462.
    [81]王英利,王勋陵,岳明. UV-B及红光对大棚番茄品质的影响[J].西北植物学报,2000,20(4):590-595.
    [82] Went F W. The physiology of Cacti[J]. Pp56-62in Benson, L. The Cacti of the United States,1982.
    [83] Steeves T A, Sussex I M. Patterns in plant development[M]. Cambridge: Cambridge University Press,1989.
    [84] Went F W. Auxin, the plant growth-hormone[J]. The Botanical Review,1935,1(5):162-182.
    [85] Ludwig-Müller J. Indole-3-butyric acid in plant growth and development[J]. Plant Growth Regulation,2000,32(2-3):219-230.
    [86] NormanlyJ,Sovin J P,Cohen J D. Auxin metabolism in plant hormones: Biosynthesis, signaltransduction,action![A]. In:DaviesPJ (ed) Plant hormones:biosynthesis, signal transduction, action[M].Dordrecht:Kluwer Academic Publisher,2004:36-62.
    [87] Rashotte A M, Poupart J, Waddell C S, et al. Transport of the two natural auxins, indole-3-butyric acidand indole-3-acetic acid, inArabidopsis[J]. Plant physiology,2003,133(2):761-772.
    [88] Woodward A W, Bartel B. Auxin: regulation, action, and interaction[J]. Annals of botany,2005,95(5):707-735.
    [89] Ljung K, Hull A K, Celenza J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots[J].The Plant Cell Online,2005,17(4):1090-1104.
    [90] Ljung K, stin A, Lioussanne L, et al. Developmental regulation of indole-3-acetic acid turnover inScots pine seedlings[J]. Plant Physiology,2001,125(1):464-475.
    [91] Morris D A, Friml J, Zazimalova E. The transport of auxins.In:Davies PJ (ed) Planthormones:biosynthesis,signaltransduction,action[M].Dordrecht:Kluwer AcademicPublisher,2004:437-470.
    [92] R i ka K, imá ková M, Duclercq J, et al. Cytokinin regulates root meristem activity via modulationof the polar auxintransport[J]. Proceedings of the National Academy of Sciences,2009,106(11):4284-4289.
    [93] Friml J, Palme K. Polar auxin transport–old questions and new concepts?[J]. Plant molecular biology,2002,49(3-4):273-284.
    [94]李运合,孙光明,吴蓓.植物生长素的极性运输载体研究进展[J].西北植物学报,2009,29(8):1714-1722.
    [95]谈心,马欣荣.赤霉素生物合成途径及其相关研究进展[J].2008,14(1):048-052.
    [96]温小杰,张学勇,郝晨阳,等.植物激素信号传导途泾研究进展[J].中国农业科技导报,2010,12(6):10-17.
    [97] Gray W M, Kepinski S, Rouse D, et al. Auxin regulates SCFTIR1-dependent degradation of AUX/IAAproteins[J]. Nature,2001,414(6861):271-276.
    [98] Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling inan F-box mutant[J]. Science Signaling,2003,299(5614):1896.
    [99] Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu. Rev. Plant Biol.,2008,59:225-251.
    [100]任菲,张荣佳,陈强,等. ABA和SA对于提高植物抗旱及抗盐性的研究进展[J].生物技术通报,2012,3:002.
    [101]郝格格,孙忠富,张录强,等.脱落酸在植物逆境胁迫研究中的进展[J].中国农学通报,2009,25(18):212-215.
    [102] Hagenbeek D, Quatrano R S, Rock C D. Trivalent ions activate abscisic acid-inducible promotersthrough anABI1-dependent pathway in rice protoplasts[J]. Plant physiology,2000,123(4):1553-1560.
    [103] Jia W, Zhang J, Liang J. Initiation and regulation of water deficit‐induced abscisic acidaccumulation in maize leaves and roots: cellular volume and water relations[J]. Journal of experimentalbotany,2001,52(355):295-300.
    [104] Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acidsignaling inArabidopsis guard cells[J]. Science Signaling,2001,292(5524):2070.
    [105] Xiong L, Lee B, Ishitani M, et al. FIERY1encoding an inositol polyphosphate1-phosphatase is anegative regulator of abscisic acid and stress signaling in Arabidopsis[J]. Science Signaling,2001,15(15):1971.
    [106] Zhang S Q, Outlaw W H, Aghoram K. Relationship between changes in the guard cell abscisic‐acidcontent and other stress‐related physiological parameters in intact plants[J]. Journal of experimentalbotany,2001,52(355):301-308.
    [107] Tardieu F, Simonneau T. Variability among species of stomatal control under fluctuating soil waterstatus and evaporative demand: modellingisohydric and anisohydricbehaviours[J]. Journal ofExperimental Botany,1998,49(Special Issue):419-432.
    [108] Li J, Wang X Q, Watson M B, et al. Regulation of abscisic acid-induced stomatal closure and anionchannels by guard cell AAPK kinase[J]. Science Signaling,2000,287(5451):300.
    [109] Jacob T, Ritchie S, Assmann S M, et al. Abscisic acid signal transduction in guard cells is mediatedby phospholipase D activity[J]. Proceedings of the National Academy of Sciences,1999,96(21):12192-12197.
    [110] Steudle E. Water uptake by roots: effects of water deficit[J]. Journal of Experimental Botany,2000,51(350):1531-1542.
    [111] Morillon R, Chrispeels M J. The role of ABA and the transpiration stream in the regulation of theosmotic water permeability of leaf cells[J]. Proceedings of the National Academy of Sciences,2001,98(24):14138-14143.
    [112]房凯.植物激素生理作用与检测技术的研究现状及进展[J].安徽农学通报,2010,16(008):35-36.
    [113]李再峰,罗富英,钟云芳.植物细胞分裂素混剂对香蕉生产的效果研究[J].中国南方果树,2004,2.
    [114]李再峰,罗富英,余伟雄,等.新植物细胞分裂素混剂对杨桃果实经济性状的影响研究[J].林业实用技术,2005(7):9-10.
    [115] Alonso J M, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stressresponses inArabidopsis[J]. Science,1999,284(5423):2148-2152.
    [116] Hellmann H, Estelle M. Plant development: regulation by protein degradation[J]. Science,2002,297(5582):793-797.
    [117] Liu Q, Zhang Y C, Wang C Y, et al. Expression analysis of phytohormone-regulated microRNAs inrice, implying their regulation roles in plant hormone signaling[J]. FEBS letters,2009,583(4):723-728.
    [118] Liu Q, Chen Y Q. Insights into the mechanism of plant development: interactions of miRNAspathway with phytohormoneresponse[J]. Biochemical and biophysical research communications,2009,384(1):1-5.
    [119] Galoch E, Czaplewska J, Burkacka-aukajtys E, et al. Induction and stimulation of in vitro floweringof Pharbitis nil by cytokinin and gibberellin[J]. Plant growth regulation,2002,37(3):199-205.
    [120] Moons A, Prinsen E, Bauw G, et al. Antagonistic effects of abscisic acid and jasmonates on saltstress-inducible transcripts in rice roots[J]. The Plant Cell Online,1997,9(12):2243-2259.
    [121] Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response[J].Nature,2003,421(6924):740-743.
    [122] Frigerio M, Alabadí D, Pérez-Gómez J, et al. Transcriptional regulation of gibberellin metabolismgenes by auxin signaling inArabidopsis[J]. Plant Physiology,2006,142(2):553-563.
    [123]李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999,16(4):398-404.
    [124]陈娴,刘世琦,孟凡鲁,等.不同光质对韭菜生长及光合特性的影响[J].中国蔬菜,2012,(8):45-50.
    [125] Behringer F J, Davies P J. Indole-3-acetic acid levels after phytochrome-mediated changes in thestem elongation rate of dark-and light-grownPisumseedlings[J]. Planta,1992,188(1):85-92.
    [126]张峰,廖祥儒.补充光照对植物幼苗生长的影响[J].安徽农业科学,2008,36(8):3116-3117.
    [127]周国泉,徐一清,付顺华,等.温室植物生产用人工光源研究进展[J].浙江林学院学报,2008,25(6):798-802.
    [128] Jackson S D, James P E, Carrera E, et al. Regulation of transcript levels of a potato gibberellin20-oxidase gene by light and phytochromeB[J]. Plant physiology,2000,124(1):423-430.
    [129] Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes[J]. Trends inplant science,2000,5(12):523-530.
    [130] Jackson S D, James P, Prat S, et al. Phytochrome B affects the levels of a graft-transmissible signalinvolved in tuberization[J]. Plant Physiology,1998,117(1):29-32.
    [131] Nan R, Carman J G, Salisbury F B. Water stress, CO2 and photoperiod influencehormone levels in wheat[J]. Journal of plant physiology,2002,159(3):307-312.
    [132] Rinne P, Saarelainen A, Junttila O. Growth cessation and bud dormancy in relation to ABA level inseedlings and coppice shoots of Betulapubescens as affected by a short photoperiod, water stress andchilling[J]. PhysiologiaPlantarum,1994,90(3):451-458.
    [133] Markarov A M. Causes of flowering of long-day potato species under short-day and cold-nightconditions[J]. Russian journal of plant physiology,2002,49(4):465-469.
    [134] Zeevaart JAD. Abscisic acid metabolism and its regulantion [A]. In: Hooykaas PJJ, Hall MAK andLibbenga R, eds, Biochemistry and Molecular Biology of Plant Hormones [C]. Elsevier,1999,189-207.
    [135]徐平珍,刘涛,杨莹,等.脱落酸在植物花发育过程中的作用[J].云南植物研究,2007,29(2):215-222.
    [136] Zhao S, Li G, Zheng G. Effect of red light on root generation and level of endogenous ABAin ColeusCutting[J]. ActaBotanicaSinica,1993.
    [137] Kraepiel Y, Rousselin P, Sotta B, et al. Analysis of phytochrome‐and ABA‐deficient mutantssuggests that ABA degradation is controlled by light in Nicotianaplumbaginifolia[J]. The Plant Journal,1994,6(5):665-672.
    [138] Fellner M, Zhang R, Pharis R P, et al. Reduced de‐etiolation of hypocotyl growth in a tomatomutant is associated with hypersensitivity to, and high endogenous levels of, abscisicacid[J]. Journal ofexperimental botany,2001,52(357):725-738.
    [139] Welling A, Moritz T, Palva E T, et al. Independent activation of cold acclimation by low temperatureand short photoperiod in hybrid aspen[J]. Plant Physiology,2002,129(4):1633-1641.
    [140] Vothknecht U C, Westhoff P. Biogenesis and origin of thylakoid membranes[J].BiochimicaetBiophysicaActa (BBA)-Molecular Cell Research,2001,1541(1):91-101.
    [141]巫继拓.光和光合作用[J].生物学通报,1989(8):11-12.
    [142]王伟.光敏色素信号传导研究的一项重要结果[J].生命科学,1997,9(2):55-57.
    [143] Neuhaus G, Bowler C, Kern R, et al. Calcium/calmodulin-dependent and-independent phytochromesignal transduction pathways[J]. Cell,1993,73(5):937-952.
    [144] Bowler C, Neuhaus G, Yamagata H, et al. Cyclic GMP and calcium mediatephytochromephototransduction[J]. Cell,1994,77(1):73-81.
    [145] Milivojevi D, Eskins K. Effect of light quality (blue, red) and fluence rate on the synthesis ofpigments and pigment‐proteins in maize and black pine mesophyll chloroplasts[J].PhysiologiaPlantarum,1990,80(4):624-628.
    [146] Vlasova M P, Drozdova I S, Viskresenskaya N P. Changes in fine structure of the chloroplasts in peaplants greening under blue and red light[J]. FiziolRast,1971,18:5-11.
    [147] Vlasova M P, Drozdova I S, Voskresenskaya N P. Modification of chloroplast fine structure in peaplants greening under blue and red light[J]. Plant Physiol, Moscov,1971,18:5-11.
    [148]廖祥懦,张蕾,镣景智,等.光在植物生长发育中的作用[J].河北大学学报(自然科学版),2001,21(3):341-346.
    [149]高荣孚,张鸿明.植物光调控的研究进展[J].北京林业大学学报,2002,24(5):236-243.
    [150] Schuerger AC, Brown C S, Stryjewski E C. Anatomical features of pepper plants (Capsicum annuumL.) grown under red light-emitting diodes supplemented with blue or far-red light[J]. Annals of Botany,1997,79(3):273-282.
    [151]唐大为,张国斌,张帆,等. LED光源不同光质对黄瓜幼苗生长及生理生化特性的影响[J].甘肃农业大学学报,2011,46(001):44-48.
    [152]刘媛,李胜,马绍英,等.不同光质对葡萄试管苗离体培养生长发育的影响[J].园艺学报,2009,36(8):1105-1112.
    [153]许莉,尉辉,齐连东,等.不同光质对叶用莴苣生长和品质的影响[J].中国果菜,2010(006):19-22.
    [154]车生泉,盛月英.光质对小苍兰茎尖试管培养的影响[J].园艺学报,1997,24(3):269-273.
    [155]陈伟,蒋卫,梁贵林,等.光质对烤烟生长发育,主要经济性状和品质特征的影响[J].生态环境学报ISTIC,2011,20(12).
    [156]柯学,李军营,李向阳,等.不同光质对烟草叶片生长及光合作用的影响[J].植物生理学报,2011,47(5):512-520.
    [157]王绍辉,孔云,陈青君,等.不同光质补光对日光温室黄瓜产量与品质的影响[J].中国生态农业学报,2006,14(4):119-121.
    [158]吴家森,胡君艳,周启忠,等. LED灯补光对萝卜生长及光合特性的影响[J].北方园艺,2009(10):30-33.
    [159]王婷. LED光源不同光质对不结球白菜生理生化特性及叶绿体超微结构的影响[D].甘肃农业大学,2011.
    [160]邹琦.物生理生化实验指导[M].(1995):35.
    [161]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [162]储钟稀,童哲,冯丽洁,等.不同光质对黄瓜叶片光合特性的影响[J].植物学报,1999,41(8):867-870.
    [163]刘清丽,李合生.光质对农垦58S黄化苗形态建成、色素、蛋白质含量的影响[J].华中农业大学学报,1994,13(6):636-640.
    [164]王悦琳,宗晓娟,李德全.转玉米ZmMPK7基因烟草响应高盐胁迫的光合特性和抗氧化酶系统分析[J].核农学报,2010,24(5):1086-1092.
    [165]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换,叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报,2004,30(2):153-160.
    [166]姜亦巍,胡洽,吴国胜,等.甜(辣)椒耐低温弱光品种筛选方法初探[J].华北农学报,1996,11(4):39-42.
    [167]王国莉,郭振飞.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J].中国水稻科学,2005,19(4):381-383.
    [168]马博英,金松恒,徐礼根,等.低温对三种暖季型草坪草叶绿素荧光特性的影响[J].中国草地,2006.
    [169]赵琦,张世煌,唐泉钦,等.玉米中单14号及亲本叶绿体的组分和功能比较[J].作物学报,1996,22(6):705-711.
    [170]高绍森,朱延妹,冯辉.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究[J].辽宁农业科学,2005(3)31-32.
    [171]彭金光,孙玉宏,师瑞红,等.西瓜幼苗10℃和15℃低温处理下相关生理指标的比较分析[J].武汉植物学研究,2006,24(5):441-445.
    [172]滑杰,池祥武,池士江.弱光对日光温室番茄光合特性的影响[J].河北北方学院学报(自然科学版),2006,22(4):29-32.
    [173]杨小春.低温弱光对西葫芦幼苗叶绿素荧光参数的影响[J].甘肃农业科技,2006(12):10-12.
    [174]马彦霞,郁继华,张国斌,李雯琳,曹刚.谷胱甘肽对自毒作用下辣椒叶片光合特性的影响[J].核农学报,2012,26(2):396-402.
    [175] Haldimann P, Fracheboud Y, Stamp P. Photosynthetic performance and resistance to photoinhibitionof Zea mays L. leaves grown at sub‐optimal temperature[J]. Plant, Cell&Environment,1996,19(1):85-92.
    [176] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosyntheticelectron transport and quenching of chlorophyll fluorescence[J]. BiochimicaetBiophysicaActa(BBA)-General Subjects,1989,990(1):87-92.
    [177] Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stressphysiology[J]. Photosynthesis Research,1990,25(3):147-150.
    [178] Jin E S, Yokthongwattana K, Polle J E W, et al. Role of the reversible xanthophyll cycle in thephotosystem II damage and repair cycle in Dunaliellasalina[J]. Plant physiology,2003,132(1):352-364.
    [179]颉建明,郁继华,黄高宝,颉敏华.持续低温弱光及之后光强对辣椒光抑制的影响[J].农业工程学报,2008,24(5):231-234.
    [180]李伟,眭晓蕾,王绍辉,等.黄瓜幼苗不同叶位叶片光合特性对弱光的响应[J].中国农业科学,2008,41(11):3698-3707.
    [181]林碧英,张瑜,林义章,等.不同C02浓度对豇豆光合特性和若干生理生化指标的影响[J].植物营养与肥料学报,2010,2011717(4):964-969.
    [182]张瑞华,徐坤,董灿兴.光质对生姜叶片光合特性的影响[J].中国农业科学,2008,41(11):3722-3727.
    [183] Ball J T. A model predicting stomatal conductance and its contribution to the control ofphotosynthesis under different environmental conditions[C]//Prog. Photosynthesis Res. Proc. Int.Congress7th, Providence.10-15Aug1986. Vol4. Kluwer, Boston.1987:221-224.
    [184] Inada K. Action spectra for photosynthesis in higher plants[J]. Plant and Cell Physiology,1976,17(2):355-365.
    [185]吴庆东.滤光处理对茶树光合效率及光合产物分配的影响[J].茶叶科学,1987,7(1):29-34.
    [186] Lee S H, Tewari R K, Hahn E J, Park K Y. Photon flux density and light quality induce changes ingrowth,stomatal development, photosynthesis and transpiration of WithaniaSomnifera(L.) Dunal[J].Plantlets. Plant Cell, Tissue and Organ Culture,2007,90(2):141-151.
    [187]罗亚勇,赵学勇,黄迎新,等.植物水分利用效率及其测定方法研究进展[J].中国沙漠,2009,29(4):648-655.
    [188]刘长利,下文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响[J].中国沙漠,2006,26(1):142-145.
    [189]宋维民,周海燕,贾荣弃,等.土壤逐渐干旱对4种荒漠植物光合作用和海藻糖含量的影响[J].中国沙漠,2008,28(3):449-454.
    [190] Woodward F I. Stomatal numbers are sensitive to increases in CO2from pre-industrial levels [J].Nature,1987,327:617-618.
    [191] Bazzaz F A.The response of natural ecosystems to rising global CO2levels [J].Annual Review ofEcology and Systematics,1990,21:167-196.
    [192] Lake J A, Quick W P, Beerling D J, et al. Plant development Signals From mature to new leaves [J].Nature.2001,411: l54.
    [193] Nemhauser J L, Hong F, Chory J. Different plant hormones regulate similar processes throughlargely nonoverlapping transcriptional responses[J]. Cell,2006,126(3):467-475.
    [194] Seki M, Satou M, Sakurai T, et al. RIKEN Arabidopsis full‐length (RAFL) cDNA and itsapplications for expression profiling under abiotic stress conditions[J]. Journal of Experimental Botany,2004,55(395):213-223.
    [195] Stepanova A N, Hoyt J M, Hamilton AA, et al. A link between ethylene and auxin uncovered by thecharacterization of two root-specific ethylene-insensitive mutants in Arabidopsis[J]. The Plant CellOnline,2005,17(8):2230-2242.
    [196] Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plantdevelopment[J]. Nature Reviews Genetics,2009,10(5):305-317.
    [197]苏小玲.不同光质对葡萄试管苗生长及内源激素含量变化的影响[D].甘肃农业大学,2009.
    [198] Leonid V. Kurepin, R. J. Neil Emery, Richard P. Pharis, etal. Uncoupling light quality from lightirradiance effects inHelianthus annuus shoots: putative roles for planthormones in leaf and internodegrowth[J]. Journal of Experimental Botany,2007,58(8):2145-2157.
    [199] Eloise F, John J R, William T J,et al. Plant hormones in arbuscularmycorrhizal symbioses: anemerging role for gibberellins[J].Annals of Botany,2013,4:1-11.
    [200] Rademacher W. Inhibition of gibberellin production in the fungi Gibberellafujikuroi andSphacelomamanihoticola by plant growth retardants[J]. Plant physiology,1992,100(2):625-629.
    [201] Du S, Uno H, Yamamoto F. Roles of auxin and gibberellin in gravityinducedtension wood formationinAesculusturbinataseedlings[J]. IAWAJournal,2004,25:337-347.
    [202]梁芳,郑成淑,曹后男,等.赤霉素对仙客来生长与开花的影响[J].北方园艺,2006,(4):113-114.
    [203]刘玮,宁淑香,崔成日,等.赤霉素对分蘖洋葱生长发育影响研究[J].东北农业大学学报,2011,42(7):83-86.
    [204] Davies P J. Plant hormones physiology, biochemistry and molecular biology[M]. Dordrecht: Kluwer,1995.
    [205]郭子彪,盖钧镒.内源激素IAA、ABA对大豆萌发子叶胚性愈伤组织诱导及其分化的调控[J].大豆科学,1997,16(3):194-198.
    [206] Noh B, Murphy AS, Spalding E P. Multidrug resistance–like genes of Arabidopsis required for auxintransport and auxin-mediated development[J]. The Plant Cell Online,2001,13(11):2441-2454.
    [207] Paponov I A, Teale W D, Trebar M, et al. The PIN auxin efflux facilitators: evolutionary andfunctional perspectives[J]. Trends in plant science,2005,10(4):170-177.
    [208]卢爱华,王永飞,马三梅,等.植物生长素与体细胞胚发生[J].植物生理学通讯,2008,44(3):578-580.
    [209]刘振华,于延冲,向凤宁.生长素响应因子与植物的生长发育[J].遗传,2011,33(12):1335-1346.
    [210]王秀红,史向远,吴先军,等.内源激素对水稻不同外植体培养力的影响[J].中国农业科学,2004,37(12):1819-1823.
    [211] Thimann K V. Hormones and the analysis of growth[J]. Plant Physiology,1938,13(3):437.
    [212]齐连东.光质对菠菜生理特性及其品质的影响[D].山东农业大学,2007.
    [213] Iino M. Inhibitory action of red light on the growth of themaize mesocotyl: evaluation of theauxinhypothesis[J].Planta,1982,156:388-395.
    [214] Amritphale D, Singh B, Gutch A. Inhibition of red light-induced seed germination by indole-3-aceticacid in Hygrophilaaauriculata[J]. Plant Growth Regul,1992,11:203-208.
    [215] Joanne C,Dongying W. Weaving the Complex Web of Signal Transduction[J]. Plant Physiology,2001,125:77–80.
    [216] Benková E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a commonmodule for plant organ formation[J]. Cell,2003,115(5):591-602.
    [217] Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development[J].Plant Physiology,2003,131(3):1327-1339.
    [218] Scarpella E, Marcos D, Friml J, et al. Control of leaf vascular patterning by polar auxintransport[J].Genes&Development,2006,20(8):1015-1027.
    [219] FreyA, Audran C, Marin E, et al. Engineering seed dormancy by the modification of zeaxanthinepoxidase gene expression [J].PlantMol Biol,1999,39:1267-1274.
    [220] Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity[J].Annu Rev Plant Mol Plant Physiol,2000,51:463-499.
    [221] Sharp RE, LeNoble ME, Else MA, et al. Endogenous ABAmaintains shoot growth in tomatoindependently of effects on plant water balance: evidence for an interaction with ethylene [J].ExpBot,2000,51:1575-1584.
    [222] Taylor I B, Burbidge A, Thompson AJ. Control of abscisic acid synthesis[J]. Journal of ExperimentalBotany,2000,51(350):1563-1574.
    [223] Xiong LM, Zhu JK. Regulation of abscisic acid biosynthesis [J]. Plant Physiol,2003,133:29-36.
    [224] Finkelstein RR, Gampala SS, Rock CD, Abscisic acid signaling in seeds and seedlings [J].Plant Cell,2002,14: S15-S45.
    [225]刘良式.植物分子遗传学[M].科学出版社,2003.
    [226] Dong J Z, Perras M R, Abrams S R, et al. Gene expression patterns, and uptake and fate of fed ABAin white spruce somatic embryo tissues2[J]. Journal of experimental botany,1997,48(2):277-287.
    [227] Pliego-Alfaro F, Monsalud M J R, Litz R E, et al. Effect of abscisic acid, osmolarity and partialdesiccation on the development of recalcitrant mango somatic embryos[J]. Plant cell, tissue and organculture,1996,44(1):63-70.
    [228] Akula A, Akula C, Bateson M. Betaine a novel candidate for rapid induction of somaticembryogenesis in tea (Camellia sinensis (L.) O. Kuntze)[J]. Plant Growth Regulation,2000,30(3):241-246.
    [229]赵毓橘,陈季楚.植物生长调节剂生理基础与检测方法[M].北京:化学工业出版社,2002,53-65.
    [230]张汝民.绿豆幼苗脱黄化初期质体发育生理生化机制的研究[D].北京林业大学,2005.
    [231]张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,2:96-100.
    [232]艾希珍,郭延奎,马兴庄,等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004,37(2):268-273.
    [233]沈文云,马德华.弱光处理对黄瓜叶绿体超微结构的影响[J].园艺学报,1995,22(4):397-398.
    [234]张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性,光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,2004,28(2):143-149.
    [235]邓丽娜.光调控下叶绿体发育的变化[D].北京林业大学,2007.
    [236]邱瑾,钟然,韩闯,等.水仙生长过程中叶片光合性能与叶绿体超微结构的变化倡[J].中国生态农业学报,2007,15(2).
    [237]韩善华,张红,顾素芳,等.沙冬青淀粉粒及其与叶绿体发育的关系[J].西北植物学报,2001,21(1):107-111.
    [238] Carmona R,Vergara J J,Lahaye M,et al. Light quality affects morphology and polysaccharide yieldand composition of Gelidium sesquipedale(Rhodophyceae)[J]. Journal of Applied Phycology,1998,10:323-331.
    [239] Leong TY,Goodchild D J,Anderson J M. Effect of light quality on the composition,function,andstructure of photosynthetic thylakoid membranes of Asplenium australasicum(Sm)Hook[J]. PlantPhysiology,1985,78:561-567.
    [240]时向东,焦枫,范豪杰,等.烤烟叶片发育过程中栅栏细胞超微结构的变化[J].烟草科技,2010,(5):46-54.
    [241]许守民,苗以农,姜艳秋,等.大豆不同生殖生长时期不同冠层光合活性差异与叶片结构关系的探讨[J].作物学报,1992,18(03):191-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700