硼掺杂碳纳米管的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最典型的和最具有代表性的纳米材料之一,碳纳米管因其特有的物理、化学性质及其新颖的结构和在未来高科技领域的许多潜在应用价值而倍受人们的关注,成为材料科学领域的研究热点之一。当对碳纳米管进行元素掺杂、原子取代和表面修饰以后,它的功能和应用范围将会得到大幅度拓展。在元素周期表中,硼元素与碳元素相邻,其原子的最外层电子数较后者少一个,使其成为碳纳米管及其其他碳材料的的理想掺杂原子。本论文主要是针对硼掺杂的单壁碳纳米管进行基于第一原理的密度泛函理论研究,探讨硼掺杂对碳纳米管的纳米结构,电学性质以及场发射的影响。
As a new nano material, the carbon nanotubes (CNTs) have rapidly attracted a lot of attention in materials science because of their unique physical, chemical and structure properties, as well as signification potential applications. Element doping is an effective way to improve the electronic structure and properties for CNTs. Having roughly the same atomic radius as C, B atom is a natural choice of the dopant and can be easily incorporated into the carbon network through many different techniques. In this thesis, using first principle calculations, the effects of doping B atoms on the structure and electronic properties for CNTs are explored.
     In the fist part, the formation energy of B-doped zigzag (n, 0) single-walled CNTs and theie stability are investigated. The calculated results show that the geometry and properties of zigzag (n, 0) CNTs only depends on the chiral index n, which is also the number of the hexagon which forms the unit of zigzag. According to their electronic structures, zigzag (n, 0) CNTs can be classified into two types, one is metals (n=3k, k is integer) and another is semiconductors (n≠3k, k is integer). It has been reported by Krasheninikov and Pan that the curves of the formation energy vs. diameter for zigzag (n, 0) CNTs are of sawtooth-like shapes due to adsorption and interstice atoms, and such periodicity is characterized by the lower formation energies of defected tubes with n being a multiple of 3 as compared to their neighboring tubes. However, the reasons why the sawtooth-like shapes appear have not been clarified in detail. In this thsis, we have investigated whether the formation energy curves of zigzag CNTs with B substitutional impurities atoms are of the same shape as those with interstice and adsorption, and try to answer above question.
     During the calculation, the (n, 0) tubes with n = 8-19 were chosen, and three tube units and aΓsampling point in the Brillouin zone were adopted. The configurations of tubes doped with one substitutional B atom are considered. It is found that the formation energy curve for B-doped CNTs exhibits a sawtooth-like feature of periodicity, which is the similar to results for (n, 0) tubes with adsorption and interstice. The periodicity is characterized by the lower formation energies of defected tubes with n being a multiple of 3 as compared to their neighboring tubes, and such variation of sawtooth-like feature becomes gradually weak with increasing tube diameter.
     In order to reveal the mechanism for this periodicity, we have calculated the average cohesive energies per atom of the perfect (n, 0) tubes. It is found that the cohesive energy curve also exhibits a periodic feature, and such periodicity is characterized by small protuberances at n - 9, 12, 15, 18 in cohesive energy curve as compared to their neighboring tubes. That is to say that the slopes at n = 9, 12, 15, 18 in cohesive energy curve of (n, 0) tube varies abruptly compared to those at other n values. For (n, 0) tube, the values of the cohesive energies can be classified into two types. One is from (n, 0) tubes with n being a multiple of 3, and another from those with the other n values. Consequently, this periodic feature results from the bonding structures of perfect (n, 0) tubes with different diameters, rather than the defects (substitutional impurity atom B) in the tubes. For (n, 0) tube, when n is a multiple of 3, p electrons are more delocalized as compared to other tubes. For (n, 0) tube, p electrons are all gradually delocalized with increasing tube diameter, and the p bonding structures gradually approach to those of graphene. For the B-doped (n, 0) tubes, the protuberances is relatively weak at n=3k (k is integer) in cohesive energy curve. Consequently, the formation energy, the difference between the cohesive energy for perfect zigzag tubes and that for defect zigzag tubes, should exhibit the same periodic features as the p bonding structures of perfect zigzag tubes. The formation energy curve of B doped zigzag tubes only enlarges this periodic feature.
     It is well known that there is an impurity level, acceptor level, near the top of the valence band when boron atoms are incorporated into semiconducting nanotubes. Consequently, the nanotubes are transformed from intrinsic semiconductors to P-type semiconductors. It has been reported that the formation of BC_3 nanodomains is preferred in the B-doped CNTs theoretically and experimentally when more boron atoms are incorporated into SWCNTs. Theoretically, for pure C and BC_3 compound nanotubes, the critical strain that will trigger the formation of defects will decrease as the diameter of the defect ring increases, and the barrier energy is reduced with increasing tensile strain. However, previous reports have not considered that there are two configurations in the BC_3 SWCNTs, and the unusual electronic properties of BC_3 SWCNTs have not been decribed clearly. For zigzag SWCNTs, Fuentes et al. have mentioned only one configuration which is the same as BC3_2, and Miyamoto et al. have investgate only one configuration which is the same as BC3_1. They are all not aware of the existence of two kinds of BC_3 configurations. In this thesis, (10, 0) tube is chosen as a typical one to investigation, and calculated results exhibit that both BC3_1 and BC3_2 have striking acceptor states above the top of the valence bands. The reason why the configuration BC_3 prefers to localize in the B-doped CNTs has beenexplained.
     In the second part in this thesis, the field emission properties of B-doped CNTs are investigated using first-principles DFT method. It can be seen from the existing field emission experimental investigations that the field emission properties of B-doped CNTs are very complicated, and up to now there exists two opposing experimental results. Some investigations demonstrate that the doping of boron atom can indeed enhance the electron field emission of CNTs, while other reports indicate that the incorporation of boron atom into the carbon network apparently increases the concentration of electron holes that become electron traps and eventually impedes the electron field emission properties. And these oppositing results exist in theoretical investigations as well. Due to the existence of the opposing results, it is therefore interesting and necessary to understand how the boron atom will affect the field emission properties of CNTs and the intrinsic field emission mechanism.
     We have calculated the geometrical structures and the field emission properties of B-doped capped (5, 5) CNTs, which are then compared with the field emission properties of pristine and N-doped CNTs. We directly substitute one C atom by one B atom in the hexagonal lattice of capped (5, 5) SWCNT, which can lead to five different doping positions of the doped CNTs. From the calculated results of the heat of formation we can see that the B atom is preferentially located at the CNT tip. Due to the lengthened C-B bond, the doping of boron atom will introduce an outward local structural distortion along the radial direction. Upon boron atom substitution, the work function increases dramatically, indicating that the field emission properties of B-doped CNT are impeded due to this substitution. Through analyzing the changes of the electronic structures of the CNT after substitution, we can see that both the HOMO and LUMO of B-doped CNT are lower than those of pristing CNT and the LUMO decreases more significantly. This will lead to lowering the Fermi level, and the shift of the Fermi level to the valence band, which will increase the potential barrier on the surface of the CNT tip and the work function as well. At the same time, the IPs of the B-doped CNT have also been calculated, and we can see that under the applied electric field the IP of the doped CNT is larger than that of pristine CNT. All the calculation results indicate that the field electron emission of B-doped CNTs is impeded. Moreover, the possible field emission mechanism of B-doped CNTs is discussed.
引文
1 H.W.Kroto,J.R.Heath,S.C.O'Brien,R.F.Curl,and R.E.Smally,"C60:Buckminsterfullerene,"Nature 1985,318:162
    2 S.Iijima,"Helical microtubules of graphitic carbon," Nature 1991,354:56.
    3 A.Oberlin and M.Endo,J Cryst Growth 1976,32:335
    4 P.W.Fowler,Chem Soc-Faraday Trans 1990,86:2073
    5 No Hamada,S.I.Sawada and A.Oshiyama,"New one-dimensional conductors - graphitic microtubules",Phys.Rev.Lett.1992,68:1579
    6 Go Overney,W.Zhong,and D.Tomanek,"Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules",Z.Phys.D 1993,27:93
    7 S.lijima and T.Ichihashi,"Single-shell carbon nanotubes of 1-nm diameter",Nature 1993,363:603
    8 D.S.Bethune,C.H.Kiang,M.S.de Vries,G.Gorman,J.Savoy,R.Vazquez,and R.Beyers,"Cobalt-catalysed growthof carbon nanotubes with single-atomic-layer walls",Nature 1993,363:605
    9 J.-y and J.Bernholc,"Atomic structure and doping of microtubules",Phys.Rev.B 1993,47:1708
    10 A.G.Rinzler,J.H.Hafner,P.Nikolaev,L.Lou,S.G.Kim,D.Tomanek,P.Nordlander,D.T.Colbert,and R.E.Smalley,"Unraveling Nanotubes:Field Emission from an Atomic Wire",Science 1995,269:1550
    11 A.Thess,R.Lee,P.Nikolaev,H.J.Dai,P.Petit,J.Robert,C.H.Xu,Y.H.Lee,S.G.Kim,A.G.Rinzler,D.T.Colbert,G.E.Scuseria,D.Tomanek,J.E.Fischer,and R.E.Smalley,"Crystalline ropes of metallic carbon nanotubes," Science 1996,273:483.
    12 W.Z.Li,S.S.Xie,L.X.Qian,et al.Science 1996,274:1701
    13 S.J.Tans,M.H.Devoret,H.Dai,A.Thess,R.E.Smalley,L.J.Geerligs and C.Dekker,"Individual single-wall carbon nanotubes as quantum wires",Nature 1997,386:474
    14 moC.Dillon,K.M.J ones,T.A.Bekkendahl,C.H.Kiang,D.S.Bethune and M.J.Heben,"Storage of hydrogen in single-walled carbon nanotubes",Nature 1997,386:377
    15 Z.F.Ren et al."Synthesis of large arrays of well-aligned carbon nanotubes on glass ", Science 1998,282:1105
    16 B.W.Smith,M.Monthioux,and D.E.Luzzi,"Encapsulated C60 in carbon nanotubes",Nature 1998,396:323
    17 C.Liu,H.T.Cong,F.Li,P.H.Tan,H.M.Cheng,K.Lu and B.L.Zhou,"Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method",Carbon 1999,37:1865
    18 C.Liu,Y.Y.Fan,M.Liu,H.T.Cond,H.M.Cheng and M.S.Dresselhaus,"Hydrogen storage in single-walled carbon nanotubes at room temperature",Science 1999,286:1127
    19 S.Berber,Y.K.Kwon,and D.Tomainek,"Unusually High Thermal Conductivity of Carbon Nanotubes",Phys.Rev.Lett.2000,86:4613
    20 J.Kong,N.R.Franklin,C.W.Zhou,M.G..Chapline,S.Peng,K.J.Cho,H.J.Dai,"Nanotube molecular wires as chemical sensors",Science 2000,287:622
    21 L.C.Qin,X.L.Zhao,K.Hirahara,Y.Miyamoto,Y.Ando,and S.Iijima,"Materials science:The smallest carbon nanotube",Nature 2000,408:50
    22 N.Wang,Z.K.Tang,J.Chen and G.Li,"Materials science:Single-walled 4(?)carbon nanotube arrays",Nature 2000,408:50
    23 L.M.Peng,Z.L.Zhang,Z.Q.Xue,Q.D.Wu,Z.N.Gu,and D.G.Pettifor,"Stability of Carbon Nanotubes:How Small Can They Be?" Phys.Rev.Lett.2000,85:3249
    24 P.C.Collins,M.S.Arnold,and P.Avouris,"Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown",Science 2001,292:706
    25 M.Kociak,A.Yu.Kasumov,S.Gueron,B.Reulet,I.I.Khodos,Yu.B.Gorbatov,V.T.Volkov,L.Vaccarini,and H.Bouchiat,"Superconductivity in Ropes of Single-Wailed Carbon Nanotubes",Phys.Rev.Lett.2001,86:2416
    26 X.Zhao,Y.Liu,S.Inoue,T.Suzuki,R.O.Jones,and Y.Ando,"Smallest Carbon Nanotube Is 3(?)in Diameter",Phys.Rev.Lett.2004,92:125502
    27 T.W.Odom,J.L.Huang,P.Kim,and C.M.Lieber,"Structure and Electronic Properties of Carbon Nanotubes",J.Phys.Chem.B 2000,104:2794
    28 R.Saito,G.Dresselhaus and M.S.Dresselhaus,"Physical Properties of Carbon Nanotubes",Imperial College Press(Lodon)1998.
    29 A.M.Rao,E.Richter,S.Bandow,B.Chase,P.C.Eklund,K.W.Williams,M.Menon,K.R. Subbaswamy,A.Thess,R.E.Smalley,G.Dresselhaus,and M.S.Dresselhaus,Science 1997,275:187
    30 M.S.Dresselhaus,R.A.Jishi,G..Dresselhaus,D.Inomata,K.Nakao,and R.Saito,Molecular Materials 1994,4:27
    31 T.H.Henning and F.Salama,"Carbon in the universe," Science 1998,282:2204
    32 V.H.Crespi,"Relations between global and local topology in multiple nanotube junctions",Phys.Rev.B 1998,58:12671
    33 W.A.de Heer,A.Chatelain,and D.Ugarte,"A carbon nanotube field-emission electron source",Science 1995,270:1179.
    34 L.A.Chernozatonskii,Y.V.Gulyaev,Z.J.Kosakovskaja,N.I.Sinitsyn,G.V.Torgashov,Y.E Zakharchenko,E.A.Fedorov,and V.P.Val'chuk,"Electron field emission from Nanofilament carbon films",Chem.Phys.Lett.1995,233:63.
    35 樊志琴,张兵临,“碳纳米管冷阴极场发射的研究进展”,信息工程大学学报2007,3:72。
    36 H.Dai,E.W.Wong,and C.M.Lieber,"Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes",Science 1996,272:523.
    37 Y.H.Huang,M.Okada,K.Tanaka,and T.Yamabe,"Estimation of superconducting transition temperature in metallic carbon nanotubes",Phys.Rev.B 1996,53:5129
    38 y.Murakami,T.Shibata,K.Okuyama,T.Arai,H.Suematsu,and Y.Yoshida,"Structural,magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds",J.Phys.Chem.Solids 1993,54:1861.
    39 J.Cao,Q.Wang,and H.Dai,"Electromechanical Properties of Metallic,Quasimetallic,and Semiconducting Carbon Nanotubes under Stretching",Phys.Rev.Lett.2003,90:157601
    40 M.R.Falvo,G.J.Clary,R.M.Taylor,V.Chi,F.P.Brooks Jr,S.Washburn,and R.Superfine,"Bending and buckling of carbon nanotubes under large strain",Nature 1997,389:582
    41 W.Yi,L.Lu,D.L.Zhang,Z.W.Pan,and S.S.Xie,"Linear specific heat of carbon nanotubes",Phys.Rev.B 1999,59:9015.
    42 P.Ball,"Roll up for the revolution",Nature 2001,414:142
    43 R.H.Baughman,"Muscles Made from Metal",Science 2003,300:268
    44 R.H.Baughman,A.A.Zakhidov,and Walt A.de Heer,Carbon Nanotubes—the Route Toward Applications",Science 2002,297:787
    45 H.D.Wagner,O.Lourie,Y.Feldman,and R.Tenne,"Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix",Appl.Phys.Lett.1998,72:188
    46 P.M.Ajayan and O.Zhou,"Carbon Nanotubes",Ed by M.S.Dresselhaus,Ph.Avouris (Springer,2001)
    47 C.M.Niu,E.K.Sichel,R.Hoch,D.Moy,and H.Tennent,"High power electrochemical capacitors based on carbon nanotube electrodes",Appi.Phys.Lett.i997,70:1480
    48 J.Kong,N.R.Franklin,C.Zhou,M.G.Chapline,S.Peng,K.Cho,and H.Dai,"Nanotube molecular wires as chemical sensors",Science 2000,287:622
    49 W.Li,C.Liang,J.Qiu,W.Zhou,H.Hart,Z.Wei,G.Sun,Q.Xin,"Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell",Carbon 2002,40:791
    50 A.C.Dillon,M.Heben,"Hydrogen storage using,carbon adsorbents:past,present and future",J.Appl.Phys.A 2001,72:133.
    51 C.Joumet,W.K.Maser,P.Bernier,A.Loiseau,M.L.dela Chapelle,S.Lefrant,P.Deniard,R.Lec,and J.F.Fischer,"Large-scale production of single-walled carbon nanotubes by the electric-arc technique," Nature 1997,388:756
    52 M.Lin,J.P.Y.Tan,C.Boothroyd,K.P.Lob,E.S.Tok,and Y.L.Foo,"Direct observation of single-walled carbon nanotube growth at the atomic scale," Nano Lett.2006,6:449.
    53 H.M.Cheng,F.Li,G.Su,H.Y.Pan,L.L.He,X.Sun,and M.S.Dresselhaus,"Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Appl.Phys.Lett.1998,72:3282.
    54 H.M.Cheng,F.Li,S.D.M.Brown,M.A.Pimenta,A.Marucci,G.Dresselhaus,and M.S.Dresselhaus,"Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons," Chem.Phys.Lett.1998,289:602.
    55 P.Nikolaev,M.J.Bronikowski,R.K.Bradley,F.Rohmund,D.T.Colbert,K.A.Smith,and R.E.Samlley,"Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide," Chem.Phys.Lett.1999,313:91.
    56 M.Yudasaka,R.Kikuchi,T.Matsui,Y.Ohki,S.Yoshimura,and E.Ota,"Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition," Appl.Phys.Lett.1995,67:2477.
    57 D.S.Bethune,C.H.Kiang,M.S.de Vries,G.Gorman,R.Savoy,J.Vazquez,and R.Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature (London)1993,363:605.
    58 y.Shimizu,T.Sasaki,T.Kodaira,K.Kawaguchi,K.Terashima,and N.Koshizaki,"Fabrication of carbon nanotube assemblies on Ni-Mo substrates mimics law of natural forest growth," Chem.Phys.Lett.2003,370:774.
    59 Y.Saito,Y.Tani,and A.Kasuya,"Diameters of Single-Wail Carbon Nanotubes Depending on Helium Gas Pressure in an Arc Discharge," J.Phys.Chem.B,2000,104:2495.
    60 R.T.K.Baker,J.J.Chludzinski,N.S.Dudash,and A.J.Simoens,"The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum,"Carbon 1983,21:463.
    61 Y.Wang,Z.Zhang,H.Liu,X.Xu,G.Pan,Z.Guo,Y.Liu,X.Hart,G.Lan,Spectrochim.Acta.A,2002,58:2089.
    62 S.Seraphin and D.Zhou,"Single-walled carbon nanotubes produced at high yield by mixed catalysts," Appl.Phys.Lett.1994,64:2087.
    63 C.J.I_ge,S.C.tyu,H.W.Kim,J.W.Park,H.M.Jung,and J.Park,"Carbon nanotubes produced by tungsten-based catalyst using vapor phase deposition method," Chem.Phys.Lett.2002,361:469.
    64 W.J.Jong,S.H.Lai,K.H.H ong,H.N.Lin,and H.C.Shih,"The Effect of Catalysis on the Formation of 1-D Carbon Nanostructured Materials," Diamond Relat.Mater.2002,11:1019.
    65 C.H.Kiang,W.A.Goddard,R.Beyers.J.R.Salem,and D.S.Bethune,"Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles," J.Phys.Chem.Solids 1996,57:35.
    66 T.GUO,P.Nikolaev,A.Thess,D.T.Colbert,and R.E.Samlley,"Catalytic growth of singlewailed nanotubes by laser vaporization," Chem.Phys.Lett.1995,243:49.
    67 Y.M.Li,W.Kim,Y.G.Zhang,M.Rolandi,D.W.Wang,and H.J.Dai,"Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes"J.Phys.Chem.B,2001,105:11424.
    68 L.B.Avdeeva,T.V.Reshetenko,Z.R.Ismagilov,and V.A.Likholobov,Appl.Catal.A 2002,228:53.
    69 B.C.tiu,S.H.Tang,Z.L.Yu,B.L.Zhang,T.Chen,and S.Y.Zhang,"Catalytic growth of single- walled carbonnanotubes with a narrow distribution of diameters over Fe nanoparticles prepared in sim by the reduction of LaFeO_3," Chem.Phys.Lett.2002,357:297.
    70 X.Biase,J.C.Charlier,A.DeVita,R.Car."Theory of composite BxCyNz nanotube heterojunctions.",Appl.Phys.Lett.1997,70:197
    71 J.T.Hu,O.Y.Min,P.D.Yang,C.M.Lieber,"Controlled growth and electrical properties of heterojunctions of carbon nanorubes and silicon nanowires",Nature 1999,399:48
    72 S.J.Tans,C.Dekker,"Molecular transistors - Potential modulations along carbon nanotubes",Nature 2000,404:834
    73 J.A.Robinson,E.S.Snow,S.C.Badescu,T.L.Reinecke,F.K.Perkins,"Role of Defects in Single-walled Carbon Nanotube Chemical Sensors",Nano Lett 2006,6:1747
    74 R.D.Antonov,A.T.Johnson,"Subband Population in a Single-Wall Carbon Nanotube Diode",Phys.Rev.Lett.1999,83:3274
    75 Z.Zhou,X.P.Gao,J.Yah,and D.Y.Song,"Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations",carbon 2006,44:939
    76 J.J.Zhao,B.Wen,Z.Zhou,Z.F.Chert,P.von Rague Schleyer,"Reduced Li diffusion barriers in composite BC3 nanotubes",Chem.Phys.Lett 2005,415:323
    77 po Redlich,J.Loeffler,P.M.Ajayan,J.Bill,F.Aldinger,and M.Riihle,"B-C-N nanotubes and boron doping of carbon nanotubes",Chem.Phys.Lett.1996,260:465
    78 R.Sen,B.C.Satishkumar,A.Govindaraj,K.R.Harikumar,G.Raina,J.P.Zhang,A.K.Chettham,and C.N.R.Rao,"B-C-N,C-N and B-N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts",Chem.Phys.Lett.1998,287:671
    79 J.Yu,X.D.Bai,J.Ahn,S.F.Yoon,and E.G.Wang,"Highly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition",Chem.Phys.Lett.2000,323:529
    80 W.Q.Han,Y.Bando,K.Kurashima,and T.Sato,"Boron-doped carbon nanotubes prepared through a substitution reaction",Chem.Phys.Lett.1999,299:368
    81 y.Mjyamoto,A.Rubio,S.G.Louie,and M.L.Cohen,"Electronic properties of tubule forms of hexagonal BC3",Phys.Rev.B,1994,50:18360
    82 D.L.Carroll,P.Redlich,X.Blase,J.-C.Charlier,S.Curran,P.M.Ajayan,S.Roth,and M. Riihle,"Effects of Nanodomain formation on the electronic structure of doped carbon nanotubes",Phys.Rev.Lett.1998,81:2332
    83 Y.Liu,and H.Guo,"Current distribution in B- and N-doped carbon nanotubes",Phys.Rev.B 2004,69:115401
    84 G.G.Fuentes,P.E.Borrowiak,M.Knupfer M,T.Pichler,J.Fink,L.Wirtz,and A.Rubio,"Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes",Phys.Rev.B 2004,69:245403
    85 j.Kotakoski,A.V.Krasheninnikov,Y.Ma,A.S.Foster,K.Nordlund,and R.M.Nieminen,"B and N ion implantation into carbon nanotubes:Insight from atomistic simulations",Phys.Rev.B 2005,71:205408
    86 X.Guo,J.B.Liao,and J.J.Zhao,"Mechanical behaviour of BC3 compound and pure carbon nanotubes with topological defects",Nanotectmology 2007,18:105705
    87 J.C.Charlier,M.Terrones,M.Baxendale,V.Meunier,T.Zacharia,N.L.Rupesinghe,W.K.Hsu,N.Grobert,H.Terrones,and G.A.J.Amaratunga,"Enhanced electron field emission in B-doped carbon nanotubes",Nano Lett.2002,2:1191
    88 G.Zhang,W.Duan,and B.Gu,"Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes",Appl.Phys.Lett.2002,80:2589
    89 H.S.Ahn,K.R.Lee,D.Y.Kim,and S.Han,"Field emission of doped capped carbon nanotubes",Appl.Phys.Lett.2006,88:093122
    1 R.M.Dreizler,F.K.U.Gross,"Density Functional Theory",Springer-Vertag,Berlin 1990.
    2 M.Born,K.Huang,"Dynamical Theory of Crystal Lattices",Oxford Universities Press,Oxford 1954.
    3 M.Levy,"Electron densities in search of Hamiltonians",Phys.Rev.A 1982,26:1200.
    4 J.C.Slater,"Wave Functions in a Periodic Potential",Phys.Rev.1937,51:846.
    5 V.Fock,Z.Phys.1930,61:209.
    6 冯端,金国钧,“能聚态物理学(上卷)”,高等教育出版社,北京2003
    7 K.Capelle,"A bird's-eye view of density-functional theory",Braz.J.Phys.2006,36:1318
    8 W.Kohn,A.D.Becke,and R.G.Parr,"Density Functional Theory of Electronic Structure",J.Phys.Chem.1996,100:12974
    9 W.Kohn,"Nobel Lecture." Electronic structure of matter—wave functions and density functionals",1999,71:1253.
    10 p.Hohenberg,and W.Kohn,"Inhomogeneous electron gas," Phys.Rev.B 1964,136:864.
    11 W.Kohn and L.Sham,"Self-consistent equations including exchange and correlation effects," Phys.Rev.A 1965,140:1133.
    12 D.C.Langreth and J.P.Perdew,"Theory of nonuniform electronic systems.I.Analysis of the gradient approximation and a generalization that works," Phys.Rev.B 1980,21:5469.
    13 J.P.Perdew,"Generalized gradient approximations for exchange and correlation:A look backward and forward," Physica B 1991,172:1.
    14 R.M.Martin,"Electronic Structure:Basic Theory and Practical Methods",Cambridge University Press,New York 2004.
    15 J.p.Perdew,K.Burke,and M.Ernzerhof,"Generalized Gradient Approximation Made Simple",Phys.Rev.Lett.1996,77:3865.
    16 C.Filippi,C.J.Umrigar,and M.Taut,"Comparison of exact and approximate density functionals for an exactly soluble model",J.Chem.Phys.1994,100:1290.
    17 X.Xu,W.A.Goddard Ⅲ,"The X3LYP extended density functional for accurate descriptions of nonbond interactions,spin states,and thermochemical properties",Proc.Nati.Acad.Sci.USA 2004,101:2673.
    18 M.Luders,A.Ernst,W.M.Temmerman,Z.Szotek,and P.J.Durham,“Ab initio angle-resolved photoemission in multiple-scattering formulation”,J.Phys.:Cond.Mat.2001,13:8587
    19 R.Stowasser,and R.Hoffmann,“What Do the Kohn-Sham Orbitals and Eigenvalues Mean?”,J.Am.Chem.Soc.1999,121:3414.
    20 J.Muskat,A.Wander,and N.M.Harrison,“On the prediction of band gaps from hybrid functional theory”,Chem.Phys.Lett.2001,342:397.
    21 黄美纯,“密度泛函理论的若干进展,”物理学进展,2000,20:199.
    22 R.Prasad,R.Benedek,A.J.Kropf,C.S.Johnson,A.D.Robertson,P.G.Bruce,and M.M.Thackeray,“Divalent-dopant criterion for the suppression of Jahn-Teller distortion in Mn oxides:First-principles calculations and x-ray absorption spectroscopy measurements for Co in LiMnO_2”,Phys.Rev.B 2003,68:012101.
    23 S.K.Mishra,and G.Ceder,“Structural stability of lithium manganese oxides”,Phys.Rev.B 1999,59:6120
    24 G.Ceder et al.,Nature 392(1998)694
    25 E.Deiss,A.Wokaun,J.-L.Barras,C.Daul,and P.Dufek,J.Electrochem.Soc.144(1997)A1560
    26 李正中,”固体物理”,高等教育出版社,北京2002.
    27 J.C.Slater,“An Augmented Plane Wave Method for the Periodic Potential Problem”,Phys.Rev.1953,92:603.
    28 R.Car and M.Parrinello,“Unified approach for molecular dynamics and density-functional theory,” Phys.Rev.Lett.1985,55:2471.
    29 D.E.Ellis,Int.J.Quant.Chem.Symp.1968,2:35.
    30 D.R.Hamann,M.Schluter,and C.Chiang,“Norm-conserving pseudopotentials,” Phys.Rev.Lett.1979,43:1494.
    31 D.Vanderbilt,“Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys.Rev.B 1990,41:7892.
    32 成会明,”纳米碳管:制备、结构、物性及应用”,化学工业出版社,2002年
    33 陈贤祥,”单壁碳纳米管和氧化锌纳米线的场发射特性研究(硕士学位论文)”,合肥工业大学,2004年
    34 y.Cheng and O.Zhou,"Electron field emission from carbon nanotubes",C.R.Physique 2003,4:1021
    1 So Iijima,"Helical microtubules of graphitic carbon," Nature 1991,354:56.
    2 M.M.J.Treacy,T.W.Ebbsen,J.M.Gibson,"Exceptionally high Young's modulus observed for individual carbon nanotubes",Nature 1996,381:678
    3 M.R.Falvo,G.J.Clary,R.M.Taylor,V.Chi,F.P.Brooks,S.Washburn,and R.Superfine,"Bending and buckling of carbon nanotubes under large strain",Nature 1997,389:582
    4 E.W.Wong,P.E.Sheehan,C.M.Lieber,"Nanobeam Mechanics:Elasticity,Strength,and Toughness of Nanorods and Nanotubes",Science 1997,277:1971
    5 R.Saito,G.Dresselhaus and M.S.Dresselhaus,"Physical Properties of Carbon Nanotubes",Imperial College Press(Lodon)1998
    6 H.Dai,"Carbon nanotubes:opportunities and challenges".Surf Sci,2002,500:218
    7 A.J.Lu,B.C.Pan,"Nature of Single Vacancy in Achiral Carbon Nanotubes",Phys.Rev.Lett.2004,92:105504-1
    8 M.W.Zhao,Y.Y.Xia,J.P.Lewis,and R.Zhang,"First-principles calculations for nitrogen-containing single-walled carbon nanotubes",J.App.Phys.2003,94:2398
    9 P.E.Lammert,V.H.Crespi,and A.Rubio,"Stochastic Heterostructures and Diodium in B/N-Doped Carbon Nanotubes",Phys.Rev.Lett.2001,87:136402-1
    10 R.Czerw,M.Terrones,J.C.Charlier,X.Blase,B.Foley,R.Kamalakaran,N.Grobert,H.Terrones,D.Tekleab,P.M.Ajayan,W.Blau,M.Ruhle,and D.L.Carroll,"Identification of electron donor states in N-doped carbon nanotubes",Nano Lett 2001,1:457
    11 M.Terrones,P.M.Ajayan,F.Banhart,X.Blase,D.L.Carroll,J.C.Charlier,et al."N-doping and coalescence of carbon nanotubes:synthesis and electronic properties",Appl.Phys.A 2002,74:355.
    12 C.C.Kaun,B.Larade,H.Mehrez,J.Taylor,and H.Guo,"Current-voltage characteristics of carbon nanotubes with substitutional nitrogen",Phys.Rev.B 2002,65:205416-1
    13 J.Y and J.Bernholc,"Atomic structure and doping of microtubules",Phys.Rev.B 1993,47:1708
    14 Ao Rubio,J.L.Corkill,and M.L.Cohen,"Theory of graphitic boron nitride nanotubes",Phys.Rev.B 1994,49:5081
    15 A.Loiseau,F.Willaime,N.Demoncy,G.Hug,H.Pascard,"Boron Nitride Nanotubes with Reduced Number of Layers Synthesized by Arc Discharge",Phys.Rev.Lett.1996,76:4737
    16 D.Goldberg,Y.Bando,W.Han,K.Kurashima,and T.Sato,"Single-walled B-doped carbon,B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction",Chem.Phys.Lett.1999,308:337
    17 D.Goldberg,W.Han,Y.Bando,L.B.K.Kurashima,and T.Sato,"Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction",J.Appl.Phys.1999,86:2364
    18 Y.Liu,and H.Guo,"Current distribution in B- and N-doped carbon nanotubes",Phys.Rev.B 2004,69:115401-1
    19 p.Redlich,J.Loeffler,P.M.Ajayan,et al."B-C-N nanotubes and boron doping of carbon nanotubes." Chem.Phys.Lett.1996,260:465
    20 R.Sen,B.C.Satishkumar,A.Govindaraj,et al."B-C-N,C-N and B-N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts." Chem.Phys.Lett.1998,287:671
    21 J.Yu,X.D.Bai,J.Ahn,et al."Highly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition." Chem.Phys.Lett.2000,323:529
    22 Wo Han,Y.Bando,K.Kurashima,"Boron-doped carbon nanotubes prepared through a substitution reaction." Chem.Phys.Lett.1999,299:368
    23 E.J.Mele,and J.J.Ritsko,"Electronic excitations in boron-doped graphite." Phys.Rev.B 1981,24:1000
    24 J.J.Zhao,B.Wen,Z.Zhou,et al."Reduced Li diffusion barriers in composite BC3nanotubes." Chem.Phys.Lett.2005,415:323
    25 Y.Mjyamoto,A.Rubio,S.G.Louie,et al."Electronic properties of tubule forms of hexagonal BC3." Phys.Rev.B 1994,50:18360
    26 D.L.Carroll,P.Redlich,X.Blase,et al."Effects of Nanodomain formation on the electronic structure of doped carbon nanotubes." Phys.Rev.Lett.1998,81:2332
    27 G.G.Fuentes,P.E.Borrowiak,M.Knupfer,et al."Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes." Phys.Rev.B 2004,69:245403-1
    28 X.Guo,J.B.Biao,J.J.Zhao,"Mechanical behaviour of BC3 compound and pure carbon nanotubes with topological defects." Nanotechnology 2007,18:105705-1
    29 B.Delley,"An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules",J.Chem.Phys.1990,92:508
    30 B.Delley,"From molecules to solids with the Dmol3 approach",J.Chem.Phys.2000,113:7756
    31 N.Matsuzawa,J.Seto,and D.A.Dixon,"Density Functional Theory Predictions of Second-Order Hyperpolarizabilities of Metallocenes",J.Phys.Chem.A 1997,101:9391
    32 J.P.Perdew,K.Burke,M.Emzerhof,"Generalized Gradient Approximation Made Simple",Phys.Rev.Lett.1996,77:3865
    33 H.S.Kang,and S.Jeong,"Nitrogen doping and chirality of carbon nanotubes",Phys.Rev.B 2004,70:234411-1
    34 A.H.Nevidomskyy,C.Csanyi,M.C.Payne,"Chemically Active Substitutional Nitrogen Impurity in Carbon Nanotubes",Phys.Rev.Lett 2003,91:105502-1
    35 B.Akdim,X.F.Duan,and R.Pachter,"The effects of 02 adsorbates on fiels emission properties of single-wall carbon nanotubes:a density functional theory study",Nano Lett.2003,3:1209
    36 L.B.da Silva,S.B.Fagan,and R.Mota,"Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules",Nano Lett.2004,4:65
    37 P.V.Avramov,K.N.Kudin,and G.E.Scuseria,"Single wall carbon nanotubes density of states:comparison of experiment and theory",Chem.Phys.Lett.2003,370:597
    38 A.V.Krasheninnikov,K.Nordlund,P.O.Lehtinen,et al."Adsorption and migration of carbon adatoms on zigzag carbon nanotubes." Carbon,2004,42:1021
    39 B.C.Pan,W.S.Yang,and J.L.Yang,"Formation energies of topological defects in carbon nanotubes." Phys.Rev.B 2000,62:12652
    40 S.S.Yu,W.T.Zheng,Q.B.Wen,et al."Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first principle calculations." IEEE T Nanotechnology,2006,5:595
    41 SoSo Yu,Q.Bo Wen,W.T.Zheng,et al."Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations." Nanotechnology,2007,18:165702-1
    42 N.Hamada,S.I.Sawada,and A.Oshiyama,"New one-dimensional conductors:graphitic microtubules." Phys.Rev.Lett.1992,68:1579
    43 L.G.Bulusheva,A.V.Okotrub,D.A.Romanov,et al."Electronic structure of(n,O)zigzag carbon nanotubes:cluster and crystal approach." J Phys.Chem.A,1998,102:97
    1 Z.F.Ren,Z.P.Huang,J.W.Xu,J.H.Wang,P.Bush,M.P.Siegal,and P.N.Provencio,Synthesis of large arrays of well-aligned carbon nanotubes on glass,Science 1998,282:1105.
    2 W.B.Choi,Y.H.Lee,N.S.Lee,J.H.Kang,S.H.Park,H.Y.Kim,D.S.Chung,S.M.Lee,S.Y.Chung,and J.M.Kim,Carbon-nanotubes for full-color field-emission displays,Jpn.J.Appl.Phys.2000,39:2560.
    3 G.Zhou and W H Duan,Field emission in doped nanotubes,J.Nanosci Nanotechno.2005,5:1421.
    4 D.Golberg,Y.Bando,L.Bourgeois,K.Kurashima,and T.Sato,Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles,Carbon 2000,38:2017.
    5 R.Czerw,M.Terrones,J.C.Charlier,X.Blase,B.Foley,R.Kamalakaran,N.Grobert,H.Terrones,D.Tekleab,P.M.Ajayan,W.Blau,M.Ruble,and D.L.Carroll,Identification of electron donor states in N-doped carbon nanotubes,Nano Lett.2001,1:457.
    6 S.Y.Kim,J.Lee,C.W.Na,J.Park,K.Seo,and B.Kim,N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition,Chem.Phys.Lett.2005,413:300.
    7 J.Liu,S.Webster,and D.L.Carroll,Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition,Appl.Phys.Lett.2006,88:213119.
    8 W.Han,Y.Bando,K.Kurashima,and T.Sato,Boron-doped carbon nanotubes prepared through a substitution reaction,Chem.Phys.Lett.1999,299:368.
    9 L.H.Chan,K.H.Hong,D.Q.Xiao,W.J.Hsieh,S.H.Lai,H.C.Shih,T.C.Lin,F.S.Shieu,K.J.Chen,and H.C.Cheng,Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes,Appl.Phys.Lett.2003,82:4334.
    10 M.Doytcheva,M.Kaiser,M.A.Verheijen,M.R.Reyes,M.Terrones,and N.de Jonge,Electron emission from individual nitrogen-doped multi-walled carbon nanotubes,Chem.Phys.Lett.2004,396:126.
    11 S.K.Srivastava,V.D.Vankar,D.V.S.Rao,and V.Kumar,Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process,Thin Solid Films 2006,515:1851.
    12 R.B.Sharma,D.J.Late,D.S.Joag,A.Govindaraj,and C.N.R.Rao,Field emission properties of boron and nitrogen doped carbon nanotubes,Chem.Phys.Lett.2006,428:102.
    13 X.Wang,Y.Liu,D.Zhu,L Zhang,H.Ma,N.Yao,and B.Zhang,Controllable growth,structure,and low field emission of well-aligned CNx nanotubes,J.Phys.Chem.B 2002,106:2186.
    14 J.C.Charlier,M.Terrones,M.Baxendale,V.Meunier,T.Zacharia,N.L.Rupesinghe,W.K.Hsu,N.Grobert,H.Terrones,and G.A.J.Amaratunga,Enhanced electron field emission in B-doped carbon nanotubes,Nano Lett.2002,2:1191.
    15 L.H.Chan,K.H.Hong,D.Q.Xiao,W.J.Hsieh,S.H.Lai,H.C.Shih,T.C.Lin,F.S.Shieu,K.J.Chen,and H.C.Cheng,Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes,Appl.Phys.Lett.2003,82:4334.
    16 G.Zhang,W.Duan,and B.Gu,Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes,Appl.Phys.Lett.2002,80:2589.
    17 H.S.Ahn,K.R.Lee,D.Y.Kim,and S.Han,Field emission of doped capped carbon nanotubes,Appl.Phys.Lett.2006,88:093122.
    18 A.Buldum and J.P.Lu,Electron field emission properties of closed carbon nanotubes,Phys.Rev.Lett.2003,91:236801.
    19 C.Kim,B.Kim,S.M.Lee,C.Jo,and Y.H.Lee,Electronic structures of capped carbon nanotubes under electric fields,Phys.Rev.B 2002,65:165418.
    20 J.Luo,L.M.Peng,Z.Q.Xue,and J.L.Wu,Density-functional-theory calculations of charged single-walled carbon nanotubes,Phys.Rev.B 2002,66:115415.
    21 G.Zhou and Y.Kawazoe,Localized valence states characteristics and work function of single-walled carbon nanotubes:a first-principles study,Phys.Rev.B 2002,65:155422.
    22 A.Maiti,J.Andzelm,N.Tanpipat,and P.yon Allmen,Effect of adsorbates on field emission from carbon nanotubes,Phys.Rev.Lett.2001,87:155502.
    23 B.Delley,An all-electron numerical method for solving the local density functional for polyatomic molecules,J.Chem.Phys.1990,92:508.
    24 B.Delley,From molecules to solids with the DMol~3 approach,J.Chem.Phys.2000,113: 7756.
    25 J.p.Perdew and Y.Wang,Accurate and simple analytic representation of the electron-gas correlation energy,Phys.Rev.B 1992,45:13244.
    26 J.P.Perdew,K.Burke,and M.Ernzerhof,Generalized gradient approximation made simple,Phys.Rev.Lett.1996,77:3865.
    27 M.Khazaei,A.A.Farajian,and Y.Kawazoe,Field emission patterns from first-principles electronic structures:application to pristine and Cesium-doped carbon nanotubes,Phys.Rev.Lett.2005,95:177602.
    28 M.Grujicic,G.Cao,and B.Gersten,Enhancement of field emission in carbon nanotubes through adsorption of polar molecules,Appl.Surf.Sci.2003,206:167.
    29 A.Mayer,N.M.Miskovsky,and P.H.Culter,Theoretical comparison between field emission from single-wall and multi-wall carbon nanotubes,Phys.Rev.B 2002,65:155420.
    30 S.D.Liang,N.Y.Huang,S.Z.Deng,and N.S.Xu,Chiral and quantum size effects of single-wall carbon nanotubes on field emission,Appl.Phys.Lett.2004,85:813.
    31 B.Akdim,X.Duan,and R.Pachter,The effects of O_2 adsorbates on field emission properties of single-wall carbon nanotubes:a density functional theory study,Nano Lett.2003,3:1209.
    32 X.Duan,B.Akdim,and R.Pachter,A theoretical study of Cs adsorption at tips of single-wall carbon nanotubes:field emission properties,Appl.Surf.Sci.2005,243:11.
    33 M.Terrones et al.,New direction in nanotube science,Materialstoday 2004,7:30.
    34 R.J.Baierle,S.B.Fagan,R.Mota,A.J.R.da Silva,and A.Fazzio,Electronic and structural properties of silicon-doped carbon nanotubes,Phys.Rev.B 2001,64:085413.
    35 A.Gali,Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes,Phys.Rev.B 2006,73:245415.
    36 O.Groning,O.M.Kuttel,C.Emmenegger,P.Groning,and L.Schlapbach,Field emission properties of carbon nanotubes,J.Vac.Sci.Technol.B 2000,18:665.
    37 S.Suzuki,C.Bower,Y.Watanabe,and O.Zhou,Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles,Appl.Phys.Lett.2000,76:4007.
    38 R.Gao,Z.Pan,and Z.Wang,Work function at the tips of multiwalled carbon nanotubes, Appl.Phys.Lett.2001,78:1757.
    39 M.Doytcheva,M.Kaiser,M.A.Verheijen,M.R.Reyes,M.Terrones,and N.de Jonge,Electron emission from individual nitrogen-doped multi-walled carbon nanotubes,Chem.Phys.Lett.2004,396:126.
    40 A.Gohel,K.C.Chin,Y.W.Zhu,C.H.Sow,and A.T.S.Wee,Field emission properties of N_2 and Ar plasma-treated multi-wall carbon nanotubes,Carbon 2005,43:2530.
    41 C.Kim,B.Kim,S.M.Lee,C.Jo,and Y.H.Lee,Effect of electric field on the electronic structures of carbon nanotubes,Appl.Phys.Lett.2001,79:1187.
    42 R.E.Haufler,L.S.Wang,L.P.F.Chibante,C.Jin,J.Conceicao,Y.Chai,and R.E.Smalley,Fullerene triplet state production and theory:R2PI probes of C_(60)and C_(70)in a supersonic beam,Chem.Phys.Lett.1991,179:449.
    43 V.N.Popov,Carbon nanotubes:properties and application,Mat.Sci.Eng.R 2004,43:61.
    44 乔靓,《碳纳米管场发射性质的第一原理研究》(博士学位论文),吉林大学,2007年.
    45 M.Shiraishi and M.Ata,Work function of carbon nanotubes,Carbon 2001,39:1913.
    46 Do Lovall,Mo Buss,E.Graugnard,R.P.Andres,and R.Reifenberger,Electron emission and structural characterization of a rope of single-walled carbon nanotubes,Phys.Rev.B 2000,61:5683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700