几类重要小分子和自由基激发态光解离反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies on the Photodissociation Mechanism of Several Important Molecules and Radicals
  • 作者:刘杨
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:黄旭日
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-05-01
摘要
光解离反应是光化学反应中的重要形式之一,在很多领域发挥着独特的作用。本文采用高水平的完全活化空间自洽场方法(CASSCF)和多参考态二级微扰理论(CASPT2),研究了几类重要小分子和自由基的光解离反应动力学。主要贡献如下:一、以乙烯酮分子为研究对象,建立了体系详细的基态和激发态势能面,并且确定了发生绝热相互作用的势能面的交叉区域,揭示了乙烯酮分子被激发到最低的里得堡态(~1B_1)上以后发生光解离反应的机理。二、以HCNN自由基为研究对象,构建了HCNN的四重激发态(a|~)~4A"的详细势能面,为实验上推测的HCNN的光解离机理提供了有力的支持。三、研究了潜在的星际分子PC_3O的各种双重态异构体的几何结构,能量,光谱及稳定性,找到了四种动力学上最稳定的异构体,为将来实验室和星际探测提供理论指导。
Photodissociation reaction, as one of the most important photochemistry reactions, provides significant theoretical foundation for the study of life and environment sciences. It also plays a special role in many fields, such as new materials, new energy sources, and new technique for information dispatch. In the present paper, high-level quantum chemistry methods are performed to further explore the ground and excited states properties, as well as the photodissociation reaction mechanism of some molecules or radicals, which have attracted considerable attention in the environment, atmospheric process, and interstellar chemistry. It is expected to be informative for the experiment investigations in the future. The main contributions are as follows:
     1. In the present study, an attempt is made to reveal the main mechanism of photodissociation on the lowest-lying Rydberg state ~1B_1 of ketene, referred to as the second singlet excited state S_2, by means of the complete active space self-consistent field (CASSCF) and second-order multiconfigurational perturbation theory methods (CASPT2). The located S_2/S_1/T_1 three-surface intersection plays an important role in the dissociation process. It is shown that the intersection permits an efficient internal conversion from S_2 to S_1 state, but prohibits the intersystem crossing from S_2 to T1 state because of the small spin-orbital coupling interaction. The main photodissociation process could be described as follows: after one photon absorption to the S_2 state, ketene preferentially relaxes to the minimum S_2_C_(2v), and undergoes a transition state S_2_TS with small potential barrier along the Cs-Ι(out-of-plane bent) symmetry, and passes through the S_2/S_1/T_1 intersection to reach S_1 surface, then arrives at the transition state S_1_TS along the minimum energy path. As is well known, S_1→S_0 internal conversion around the Franck-Condon region is expected to be very efficient, and eventually the hot S0 molecule has accumulated enough energy to yield the CH_2 ((a|~)~1A_1) and CO ( X|~~1Σ~+) products. Our conclusion supported the recent experiment findings, and also provides some necessary details for the photodissociaion mechanism. 2. Complete active space self-consistent field (CASSCF) and second-order multiconfigurational perturbation theory methods (CASPT2) have been performed to investigate the quartet excited state (a|~)~4A" potential energy surface of HCNN radical. Two located minima, with respective cis and trans structures, could easily dissociate to CH ((a|~)~4Σ~-) and N_2 ( (X|~)~1Σ_g~+) products with similar barrier of about 16.0 kcal/mol. In addition, four minimum energy crossing points on a surface of intersection between (a|~)~4A" and X (X= (X|~)~2A" and (A|~)~2A') states are located near to the minima. However, the intersystem crossing (a|~)~4A"→X is weak due to the vanishingly small spin-orbit interaction. It further indicates that the direct dissociation on the (a|~)~4A" state is more favored. This information combined with the comparison with isoelectronic HCCO provides an indirect support to recent experimental proposal of photodissociation mechanism of HCNN,i.e., internal conversion to one or both of the (X|~)~2A" and (A|~)~2A' states, instead of intersystem crossing, is involved in the photodissociation mechanism of HCNN radical. 3. DFT/B3LYP/6-311G(d) and CCSD(T)/6-311G(2d) single-point calculations are carried out for exploring the doublet potential energy surface (PES) of PC_3O, a molecule of potential interest in interstellar chemistry. A total of 29 minima connected by 65 interconversion transition states are located. The structures of the most relevant isomers and transition states are further optimized at the QCISD level followed by CCSD(T) single-point energy calculations. At the CCSD(T)/6-311G(2df)//QCISD/6-311G(d)+ZPVE level, the global minimum is the quasi-linear structure PCCCO 1 (0.0 kcal/mol) with a great kinetic stability of 47.9 kcal/mol, and the cumulenic form features largely in its resonance structures. Moreover, the chainlike isomer OPCCC 3 (64.5) and five-membered-ring species cPCCCO 19 (77.8) possess considerable kinetic stability of about 18.0 kcal/mol. All of these three isomers are very promising candidates for future experimental and astrophysical detection. Additionally, a three-membered-ring isomer CC-cCOP 10 (69.6) has slightly lower kinetic stability of around 15 kcal/mol and also may be experimentally observable. Possible formation mechanisms of the four stable isomers in interstellar space are discussed. The present research is the first attempt to study the isomerization and dissociation mechanisms of PC_nO series. The predicted spectroscopic properties, including harmonic vibrational frequencies, dipole moments and rotational constants for the relevant isomers, are expected to be informative for the identification of PC_3O in laboratory and interstellar medium.
引文
1 J.巴尔特洛甫、J.科伊尔著,宋心琦等译,光化学原理 清华大学出版,1983.
    2 曹瑾,光化学概论,高等教育出版社,1985.
    3 N .J 特罗,现代分子光化学 科学出版社,1987.
    4 P .博雷尔, 光化学入门 科学出版社,1987.
    5 张宝文,程学新,刘颙颙,曹怡,感光化学与光化学, 19,139,2001。
    6 B. O. Roos. The complete active space self-consistent field method and its applications in electronic structure calculations. In K. P. Lawley, editor, Advances in Chemical Physics; Ab Initio Methods in Quantum Chemistry - II, chapter 69, page 399. John Wiley & Sons Ltd., Chichester, England,1987.
    7 B. O. Roos, P.-?. Malmqvist, and L. Gagliardi. Heavy element quantum chemistry – the multiconfigurational approach. In (E. Br¨andas and E. Kryachko), editors, Fundamental World of Quantum Chemistry, page 425. Kluwer Acad. Publ., Dordrecht, Netherlands, 2003.
    8 N.Yamamoto, M.Olivucci, and M.A.Robb, J. Am.Chem.Soc., 1998, 120, 2391.
    9 Q. Cui, and K. Morokuma, J. Chem. Phys. 1997, 107, 4951.
    10 W.H. Fang and R.Z. Liu, J. Am. Chem. Soc. 2000,122, 10886-10894.
    11 X.B. Chen and W.H. Fang, J. Am. Chem. Soc. 2004,126, 8976-8980.
    12 S.H. Li, J. Ma,Y.S. Jiang, Int. J. Quantum Chem. 2000, 78, 153.
    13 S.H. Li, J. Ma,Y.S. Jiang, J. Comput. Chem. 2002, 23, 2370.
    14 F. Bernardi, M.A. Robb, M.Olivucci et al, Chem. Soc. Rev. 1996, 25, 3210.
    15 H. Zewail, et al. Science, 60, 279 (1998); J. Phys. Chem. 2000,104, 5660.
    16 M. Bor, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys) 1927, 84, 457.
    17 唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982.
    18 徐光宪,王德民,量子化学基本原理和从头算法,北京,科学出版社1985.
    19 赵学庄,罗渝然,臧雅茹,万学适,化学反应动力学原理,下册,高等教育出版社 1990.
    20 V. Vallet, Z.G. Lan , S. Mahapatra , A.L. Sobolewski , W. Domcke J. Chem. Phys. 2005,123, 144307.
    21 G. Karlstr?m, R. Lindh, P.-?. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Computational Material Science, 2003, 28, 222.
    22 M. Merchány, L. Serrano-Andrés, J. Am. Chem. Soc. 2003,125, 8108.
    1 M. Bor and R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    2 W. J. Hehre, L. Radom and P. v. R. Schleyer, et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc. 1986.
    3 D. A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    4 唐敖庆, 杨忠志, 李前树, 量子化学, 北京, 科学出版社, 1982.
    5 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, 1985.
    6 P. O. Lowdin, Correlation Problem in Many-Electron Quantum Mechanics Adv. Chem. Phys. 1959, 2, 207.
    7 J. A. Pople, R. Seeger and R. Krishnan, Variational Configuration Interaction Methods and Comparison with Perturbation Theory, Int. J. Quant. Chem. Symp. 1977, 11, 149.
    8 J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem. 1992, 96, 135.
    9 R. Krishnan, H. B. Schlegel and J. A. Pople, Derivate Studies in Configuration Interaction Theory, J. Chem. Phys. 1980, 72, 4654.
    10 B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi and H. F.Schaefer, Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach, J. Chem. Phys. 1980, 72, 4652.
    11 E. A. Salter, G. W. Trucks and R. J. Bartlett, Analytic Energy Derivatives in Many-Body Methods I. First Derivatives, J. Chem. Phys. 1989, 90, 1752.
    12 K. Raghavachari and J. A. Pople, Int. J. Quant. Chem. 1981,20, 167.
    13 J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, J. Chem. Phys. 1987, 87, 5968.
    14 J. Cioslowski, A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues, Chem. Phys. Lett. 1994, 219, 151.
    15 H. B. Schlegel, M. A. Robb, MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure, Chem. Phys. Lett. 1982, 93, 43.
    16 R. H. E. Eade and M. A. Robb, Direct Minimization in MCSCF Theory. The Quasi-Newton Method, Chem. Phys. Lett. 1981, 83, 362.
    17 D. Hegarty and M. A. Robb, Application of Unitary Group Methods to Configuration Interaction Calculations, Mol. Phys. 1979, 38, 1795.
    18 P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B, 1964,136, 864.
    19 W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A, 1965, 140, 1133.
    20 J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    21 D.R. Salahub, M.C. Zerner, eds. The Challenge of d and f Electrons ACS: Washington, D.C., 1989.
    22 R.G. Parr, W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    23 J.A. Pople, P.M.W Gill, B.G. Johnson, Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 1992, 199, 557.
    24 B.G.. Johnson, M.J. Frisch, An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys. 1994, 100, 7429.
    25 J.K. Labanowski, J.W. Andzelm, eds. Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    26 K. Fukui, Variational Principles in a Chemical Reaction, Int. J. Quantum. Chem. 1981,15, 633.
    27 K. Fukui, A. Tachibana, K. Yamashita, Toward Chemodynamics, Int. J. Quantum. Chem. 1981, 15, 621.
    28 B. Wang, H. Hou, Y. Gu, J. Phys. Chem. A, 1999, 103, 8021.
    29 J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys. Chem. 1992, 96,135.
    30 P. E .M .Siegbahn, J. Almlbf, A .Heiberg, B.O. Roos, J Chem. Phys. 1981, 74, 2384.
    31 J. J. W. McDouall, M.A. Robb, Chem. Phys. Lett. 1986,132, 319.
    32 J.J.W. McDouall, M.A. Robb, Chem. Phys. Lett. 1987,142,131.
    33 F. Bernardi, M. Olivucci, J. J.W. McDouall, M.A.Robb, J. Chem. Phys. 1988, 89, 6365.
    34 B.O. Roos, Adv. Chem. Phys., 1987, 69, 399-446.
    35 F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. 1996, 25, 321.
    36 H.J.Werner, W.Meyer, J. Chem. Phys. 1981, 74, 5794.
    37 H.J.Werner, W.Meyer, J. Chem. Phys. 1981, 74, 5802.
    38 R.N.Diffenderfer, D.R.Yarkony, J. Phys. Chem. 1982, 86, 5098.
    39 K.K.Docken, J.Hinze, J. Chem. Phys. 1972, 57, 4928.
    40 H.J.Werner, W.Meyer, J. Chem. Phys. 1980, 73, 2342.
    41 F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. 1996, 25, 321.
    42 N. Yamamoto, M. Olivucci, P. Celani, F. Bernardi, M.A. Robb, J. Am.Chem. Soc. 1998,120, 2391.
    43 N. Ismail, L. Blancafort, M. Olivucci, B. Kohler, M.A. Robb, J. Am. Chem. Soc. 2002, 124, 6818..
    44 L. Blancafort, D. Gonzalez, M.Olivucci, M.A. Robb, J. Am. Chem. Soc.2002, 124, 6398.
    45 H. Kang, K.T. Lee, B. Jung, Y.J. Ko, S.K. Kim, J. Am. Chem. Soc. 2002, 124, 12958-12959.
    46 V. Neumann, E. Wigner, Phys. Z. 1929, 30, 467.
    47 F.Z. Hund, Physik, 1927, 40,742.
    48 M.A. Robb, M. Garavelli, M. Olivucci, F. Bernardi, A Computational Strategy for Organic Photochemistry Lecture material, 1998.
    49 E. Teller, J. Phys.Chem. 1937, 41, 109.
    50 G. Herzberg, H.C. Longuet-Higgins, Discuss.Faraday Soc. 1963, 35, 77.
    51 E.Teler, Isr. J. Chem. 1969, 7, 277.
    52 K. K. Rohatgi-Makherjee 著,丁革,孙万林,盛六四等译,光化学基础, 北京,科学出版社,1991.
    53 D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 1993, 98, 1358.
    54 R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
    55 T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007.
    56 K. A. Peterson, D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 1994, 100, 7410.
    57 A. Wilson, T. van Mourik and T. H. Dunning Jr., J. Mol. Struct. (Theochem) 1997, 388, 339.
    58 K. Fukui, Variational Principles in a Chemical Reaction, Int. J. Quantum.Chem. 1981, 15, 633.
    59 K. Fukui, A. Tachibana and K. Yamashita, Toward Chemodynamics, Int. J. Quantum. Chem. 1981, 15, 621.
    1 J. M. Hollis, R. D. Suenram, F. J. Lovas, and L. E. Snyder, Astron. Astrophys. 1983, 126, 393.
    2 H. E. Matthews and T. J. Sears, Astrophys. J. 1986, 300, 766.
    3 W. D. Allen and H. F. Schaefer III, J. Chem. Phys. 1987, 87, 7076.
    4 P. G. Szalay, A. G. Császár, and L. Nemes, J. Chem. Phys. 1996,105, 1034.
    5 S. Yamabe, and K. Morokuma, J. Am. Chem. Soc. 1978, 100, 7551.
    6 W. D. Allen and H. F. Schaefer III, J. Chem. Phys. 1986, 84, 2212.
    7 W. D. Allen and H. F. Schaefer III, J. Chem. Phys. 1988, 89, 329.
    8 I.-C. Chen, W. H. Green, Jr., and C. B. Moore, J. Chem. Phys. 1988, 89, 314.
    9 I.-C. Chen and C. B. Moore, J. Phys. Chem. 1990, 94, 269.
    10 S. K. Kim, Y. S. Choi, C. D. Pibel, Q. K. Zheng, and C. B. Moore, J.Chem. Phys. 1991, 94, 1954.
    11 I. G. Moreno, E. R. Lovejoy, and C. B. Moore, J. Chem. Phys. 1994, 100, 8902.
    12 S. K. Kim, E. R. Lovejoy, and C. B. Moore, J. Chem. Phys. 1995, 102, 3202.
    13 Q. Cui and K. Morokuma, J. Chem. Phys. 1997, 107, 4951.
    14 D. R. Yarkony, J. Phys. Chem. A,1999, 103, 6658.
    15 K. M. Forsythe, S. K. Gray, S. J. Klippenstein, and G. E. Hall, J. Chem. Phys. 2001, 115, 2134.
    16 J. P. Cole and G. G. Balint-Kurti, J. Chem. Phys. 2003, 119, 6003.
    17 M. N. R. Ashfold, A. D. Couch, R. N. Dixon, and B. Tutcher, J. Phys. Chem. 1988, 92, 5327.
    18 O. Berg and G. E. Ewing, J. Phys. Chem. 1991, 95, 2908.
    19 X. Liu, S. G. Westre, J. D. Getty, and P. B. Kelly, Chem. Phys. Lett. 1992, 188, 42.
    20 M. Castillejo, M. Martin, R. de Nalda, and M. Oujja, Chem. Phys. Lett. 1995, 237, 367.
    21 G. P. Glass, S. S. Kumaran, and J. V. Michael, J. Phys. Chem. A. 2000, 104, 8360.
    22 S. Y. Chiang, M. Bahou, Y. J. Wu, and Y. P. Lee, J. Chem. Phys. 2002, 117, 4306.
    23 S. L. Wang, Y. J. Shi, S. Dénommée, B. Simard, and Y. P. Lee, J. Chem. Phys. 2003,119, 7772.
    24 E. J. Feltham, R. H. Qadiri, E. E. H. Cottrill, P. A. Cook, J. P. Cole, G. G. Balint-Kurti, and M. N. R. Ashfold, J. Chem. Phys. 2003,119, 6017.
    25 J. Liu, F.Y. Wang, H. Wang, B. Jiang, and X. M. Yang, J. Chem. Phys. 2005, 122, 104309.
    26 C. Fockenberg, J. Phys. Chem. A. 2005, 109, 7140.
    27 G. Karlstr?m, R. Lindh, P.-?. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Computational Material Science, 2003, 28, 222.
    28 J. E. Del Bene, J. Am. Chem. Soc. 1972, 94, 3713.
    1. G. Herzberg, D.N. Travis, Can. J. Phys. 1964, 42,1658.
    2. N. Basco, K.K. Yee, Chem. Commun. (Cambridge) 1968, 3,150.
    3. J.F. Ogilvie, Can. J. Chem. 1968, 46, 2472.
    4. H.W. Kroto, T.F. Morgan, H.H. Sheena, Trans. Faraday. Soc. 1970, 66, 2237.
    5. C.P. Fenimore, 13th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, p.373. 1971.
    6. M.R. Berman, M.C. Lin J. Phys. Chem. 1983, 87, 3933.
    7. J.A. Miller, C.T. Bowman Prog. Energy. Combust. Sci. 1989, 15, 287.
    8. L.J. Medhurst, N.L. Garland, H.H. Nelson, J. Phys. Chem. 1993, 97, 12275.
    9. D. Fulle and H. Hippler, J. Chem. Phys. 1996,105, 5423.
    10. S.D. Le Picard, A. Canosa, B.R. Rowe, R.A. Brownsword, and I.W.M. Smith, J. Chem. Soc. Faraday. Trans. 1998, 94, 2889.
    11. M.R Manaa, D.R Yarkony, J. Chem. Phys. 1991, 95, 1808.
    12. M.R Manaa, D.R Yarkony, Chem. Phys. Lett. 1992, 188, 352.
    13. J.M.L. Martin, P.R. Taylor, Chem. Phys. Lett. 1993, 209, 143.
    14. T. Seideman, S.P. Walch, J. Chem. Phys. 1994, 101, 3656.
    15. Q. Cui, K. Morokuma, Theor. Chem. Acc. 1999, 102, 127.
    16. L.V. Moskaleva, W.S. Xia, M.C. Lin, Chem. Phys. Lett. 2000, 331, 269.
    17. T. Takayanagi, Chem. Phys. Lett. 2003, 368, 393.
    18. C. Thomson, J. Chem. Phys. 1973, 58, 841.
    19. E.P. Clifford, P.G. Wenthold, W.C. Lineberger, G.A. Petersson, K.M. Broadus, S.R Kass, S. Kato, C.H. DePuy, V.M. Bierbaum, and G.B. Ellison, J. Phys. Chem. A, 1998,102, 7100
    20. P.E. Fleming, Chem. Phys. Lett. 2000, 321, 129.
    21. C. Puzzarini, A. Gambi, J. Chem. Phys. 2005, 122, 064316.
    22. A.E. Faulhaber, J.R. Gascooke, A.A. Hoops, and D.M. Neumark, J. Chem. Phys. 2006, 124, 204303.
    23. C.H. Hu, H.F. Schaefer, Z. Hou, K.D. Bayes, J. Am. Chem. Soc. 1993, 115, 6904.
    24. P.G. Szalay, G. Fogarasi, L. Nemes, Chem. Phys. Lett. 1996, 263, 91.
    25. D. Yarkony, J. Phys. Chem. 1996, 100, 17 439.
    26. D.H. Mordaunt, D.L. Osborn, H. Choi, R.T. Bise, D.M. Neumark, J. Chem. Phys. 1996, 105, 6078.
    27. D.L. Osborn, D.H. Mordaunt, H. Choi, R.T. Bise, D.M. Neumark, C.M. Rohlfing, J. Chem. Phys. 1997, 106, 10087.
    28. G. Karlstr?m, R. Lindh, P.-?. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Comput. Mater. Sci. 2003, 28, 222.
    29. L. De Vico, M. Olivucci, R. Lindh, J. Comp. Theor. Chem. 2005, 1,1029.
    30. K. Andersson, P.- ?. Malmqvist, B.O. Roos, A.J. Sadlej, and K. Wolinski, J. Phys. Chem. 1990, 94, 5483.
    31. B.A. Hess, C.M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett. 1996, 251, 365.
    1. R.I. Kaiser, Chem. Rev. 2002, 102, 1309.
    2. G. Winnewisser, C. Kramer, Space Science Reviews,1999, 90, 181.
    3. A. Largo, C. Barrientos, X. Lopez, J.M. Ugalde, J. Phys. Chem. 1994, 98, 3985.
    4. E. del Rio, C. Barrientos, A. Largo, J. Phys. Chem. 1996, 100, 585.
    5. C.G. Zhan, S. Iwata, J. Chem. Phys. 1997, 107, 7323.
    6. G. Pascoli, H. Lavendy, J. Phys. Chem. A, 1999, 103, 3518.
    7. G.L. Li, Z.C. Tang, J. Phys. Chem. A, 2003, 107, 5317.
    8 T.J. Millar, Astron. Astrophys. 1991, 242, 241.
    9. Y. Sumiyoshi, H. Takada, Y. Endo, Chemical Physics Letters, 2004, 387, 116.
     10. M.C. McCarthy, A.L. Cooksy, S. Mohamed, V.D. Gordon, P. Thaddeus, The Astrophysical Journal Supplement Series, 2003,144, 287.
    11. G.T. Yu, Y.H. Ding, X.R. Huang, G.H. Chen, A.C. Tang, J. Phys. Chem. A 2004,108, 10723.
    12. M. Nakajima, Y. Yoneda, Y. Sumiyoshi, Y. Endo, J. Chem. Phys. 2004, 120, 2662.
    13 C.T. Pedersen, E. Fanghanel, R. Flammang, J. Chem. Soc. Perkin. Trans. 2001, 2, 356.
    14. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson.,W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, revision A.9; Gaussian, Inc.; Pittsburgh, PA, 1998.
    15. G. Karlstr?m, R. Lindh, P.-?. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, Computational Material Science, 2003, 28, 222.
    16. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
    17. G.T. Yu, Y.H. Ding, X.R. Huang, C.C. Sun, J. Phys. Chem. A, 2005, 109, 1594.
    18. Y.H. Ding, J.L. Liu, X.R. Huang, Z.S. Li, C.C. Sun, J. Chem. Phys. 2001, 114, 5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700