一些分子间相互作用的本质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们选择了几种典型的分子间相互作用体系,围绕分子间相互作用的理论研究方法、分子间相互作用的特征及本质进行了系统的研究。主要内容如下:
     1、采用超分子方法和对称匹配微扰理论SAPT(Symmetry AdaptedPerturbation Theory)研究了XY(ClF,BrCl,BrF)与HF、H_2O和NH_3分子间存在的稳定的氢键和卤键构型复合物的分子间相互作用的特征及其作用本质。结果表明:卤键型复合物比相应的氢键型复合物更稳定。XY与HF、H_2O、和NH_3形成的氢键复合物或卤键型复合物的分子间相互作用能是按照BrCl     2、通过AIM理论和SAPT能量分析说明了依靠两个带正电荷原子Cl和H间的氢键作用形成的二聚体FCl-HX和依靠两个带正电荷原子Cl和Cl间的卤键作用形成的二聚体FCI-CIF相互作用的本质。对于传统氢键FCl-HX(HF、HCl和HBr)复合物和传统卤键复合物FCl-ClF,是诱导能和色散能对总的吸引相互作用能占主导地位。
     3、在MP2/aug-cc-pVDZ水平上对呋喃与一些不同的氢化物分子H_nX(HF、H_2O、NH_3、HCl、H_2S和PH_3)间可能存在的所有复合物进行了全自由度能量梯度优化,通过在相同水平上的频率验证分析发现了两类稳定的分子间相互作用形式:σ_o-氢键型(Ⅰ)和π-氢键型(Ⅱ)。分子间相互作用能的计算结果表明:呋喃和第一行氢化物(HF、H_2O和NH_3)形成的σ_o-型复合物是最稳定的结构。然而,对于呋喃和第二行氢化物(HCl、H_2S和PH_3)形成的π-氢键型复合物是最稳定的结构。能量分解结果显示:σ_o-型复合物的分子间相互作用中,静电作用占主导地位。在π-氢键型复合物的分子间相互作用中,色散能和静电能对复合物的形成过程中起到了关键作用。当X=F,O是静电作用稍占优势,而当X=N,Cl,S,P时是色散作用稍占优势。
     4、在MP2/aug-cc-pVDZ水平上,对噻吩和一些不同的氢化物分子H_nX(HF、H_2O、NH_3、HCl、H_2S和PH_3)分子间相互作用的几何构型、相互作用能、电子特性及相互作用本质等进行了理论研究,通过频率验证分析发现在噻吩与氢化物分子H_nX间只形成了一种X-H…π型氢键相互作用。从噻吩的静电势图说明了只形成了π-氢键型复合物的原因,从理论上很好地解释了相关的实验现象。其次,能量分解结果显示:所有的复合物C_4H_4S-HnX(Ⅱ)和C_4H_4O-H_nX(Ⅱ)相似,也是静电能和色散能对总的吸引相互作用能占主导地位,诱导能对总的吸引相互作用能的贡献较小。当X=F,O是静电作用稍占优势,而当X=N,Cl,S,P时是色散作用稍占优势。
In this paper, a theoretical study on nature and characteristics such as geometries, interaction energies, and electronic properties for some types of intermolecular interactions have been carried out. The main results are as follows:
     (1)The nature of the hydrogen-bonded and halogen-bonded complexes between XY(ClF, BrCl, BrF) and H_nX(HF、H_2O and NH_3) were studied by supermolecular (SM) variational or SAPT (Symmetry Adapted Perturbation Theory) methods. The results display that the halogen-bonded complexes are more stable than the corresponding hydrogen-bonded complexes. The interaction energies of hydrogen-bonded and halogen-bonded complexes between XY(ClF, BrCl, BrF) and H_nX(HF、H_2O and NH_3) increase in the order BrCl < ClF < BrF. This order is correlated to the dipole moment of the XY. On the other hand, the energy decomposition shows that electrostatic and dispersion forces play an important role in the hydrogen-bonded complexes. For the halogen-bonded complex, the main interaction energy comes from the electrostatic energy. In the strongest N-X-type complex XY-NH_3, the induction energy is the most important attractive term, followed by the exchange and electrostatic energy. This domination of the induction and exchange terms is the main feature of the strong and partly covalent bonds.
     (2) The nature of the unusual hydrogen-bonded FCl-HX(HF、HCl和HBr) and halogen-bonded complexes FCl-ClF formed by the interactions between two positively charged atoms of different molecules were studied by Atoms in Molecules (AIM) and SAPT methods. According to the SAPT analysis, induction and the dispersion energy play an important role in determining the equilibrium structure of these special complexes. AIM provides a very sophisticated analysis of the electron desity within a molecular system.
     (3) The nature of for the intermolecular interactions between furan and various hydrides H_nX(HF、H_2O> NH_3、HCl、H_2S and PH_3) were studied at the MP2/aug-cc-pVDZ level. Two types of geometry are observed in these interactions: theσ_o-type geometry (Ⅰ), in which an H-O bond formed between a hydrogen atom of H_nX and the furan oxygen atom; Theπ-type geometry (Ⅱ) is characterized by aπ-H bond formed between a hydrogen atom of H_nX and theπ-electron system of the aromatic ring. The calculated interaction energies show that all of theσ_o-type complexes are more stable than the correspondingπ-type complexes for the first-row hydrides (HF、H_2O and NH_3). However, for the second row hydrides (HCl、H_2S and PH_3), all of theπ-type complexes are more stable than the correspondingσ_o-type complexes. To study the nature of the intermolecular interactions, an energy decomposition analysis was carried out and the results indicate that theσ_o-type complexes are traditional hydrogen-bonded complexes with electrostatic interactions making the primary contribution to complex formation. In the case of theπ-type complexes, the dispersion and electrostatic forces dominate complexation.
     (4) Equilibrium geometries, interaction energies and charge transfer for the intermolecular interactions between the thiophene and various hydrides H_nX(HF、H_2O、NH_3、HCl、H_2S and PH_3) were studied at the MP2/aug-cc-pVDZ level. Only one type of geometry is observed in these interactions: theπ-type geometry (Ⅱ). Although thiophene possesses both aπ-electron system and a non-bonding electron pair (n-pair), the geometries for all of the thiophene-H_nX complexes obtained in this study appear to be determined by theπ-electron system. By contrast, the furan-H_nX complex geometries were determined by both theπ-electron system and the n-pair. Furan and thiophene are both five-membered heteroaromatic rings with different heteroatoms.The molecular electrostatic potential maps of thiophene and furan, which might provide an insight into the disparity between the results obtained for furan and thiophene. When compared to the electrostatic potential of furan, it is apparent that the relatively weak electronegativity of sulfur confers a strong aromatic character on the thiophene ring. The electrostatic potential of the ring sulfur is insufficient to facilitate complex formation at the site of the S atom. The strongest negative electrostatic potential located at theπ-electron density near center of C_4-C_5. According to the SAPT analysis, the dispersion and electrostatic forces dominate theπ-type complexation.
引文
[1] Dougherty D A, Stauffer D A. Acetylcholine binding by a synthetic receptor-implicationsfor biological recognition[J]. Science., 1990,250:1558-1560
    
    [2] Kim K S, Lee S, Kim, G. Molecular cluster bowl to enclose a single electron[J]. J. Am.Chem. Soc., 1997,119: 9329-9330
    
    [3] Lehn J M. Supramoleeular chemistry[J]. Science., 1993,260:1762-1763
    
    [4] Philip D, Stoddart J F. Self-assembly in natural and unnatural systems[J]. Angew. Chem.Int.Ed. Engl., 1996,35:1154-1196
    
    [5] Klemperer W. Intermolecular interactions[J]. Science., 1992,257: 887-888
    
    [6] Geffrey G A, Hydrogen bonding in biological structures[M]. Springe-verlay berlin hoidelberg:NewYork, 1995,1-5
    
    [7] Lehn J M. Supramolecular chemistry-scope and perspectives[J] .Chem. Scr, 1988, 28237-262
    
    [8] Grabowski S J, Sokalski W A, Leszczynski J. Nature of X-H+...-H-Y dihydrogen bondsand X-H...σ interactions[J]. J. Phys. Chem. A., 2004,108:5823-5830
    
    [9] Grabowski S J. High-level ab initio calculations of dihydrogen-bonded complexes[J]. J.Phys. Chem. A., 2000,104:5551-5557
    
    [10] Trudel S, Gilson D F R. High-pressure raman spectroscopic study of the ammonia-boranecomplex. Evidence for the dihydrogen bond[J]. Inorg. Chem., 2003,42:2814-2816
    
    [11] Custelcean R, Jackson J E. Dihydrogen bonding: structures, energetics, and dynamics[J].Chem. Rev., 2001,101:1963-1980
    
    [12] Cubero E, Orozco M, Hobza P, et al. Hydrogen bond versus anti-Hydrogen bond: acomparative analysis based on the electron density topology[J]. J. Phys. Chem. A., 1999,103:6394-6408
    
    [13] Rozas I, Alkorta L Elguero J. Inverse hydrogen bonded complexes[J]. J. Phys. Chem. A.,1997,101:4236-4241
    
    [14] Hobza P, Zdenek V H, Konstantin B, et al. Anti-hydrogen bond between chloroform and fluorobenzene[J]. Chem. Phys. Lett., 1999,299:180-186
    
    [15] Rozas I, Alkorta I, Elguero J. Bifurcated hydrogen bonds: three-centered interactions[J]. J.Phys. Chem. A., 1998,102: 9925-9932
    
    [16] Deakyne C A, Meot-Ner M. Ionic hydrogen bonds in bioenergetics: interaction energies ofacetylcholine with aromatic and polar molecules[J]. J. Am. Chem. Soc, 1999, 121:1546-1552
    
    [17] Meot-Ner M. The ionic hydrogen bond[J]. Chem. Rev., 2005,105:213-217
    
    [18] Hermansson K. Blue-shifting hydrogen bonds[J]. J. Phys.Chem. A., 2002, 106:4695-4702
    
    [19] Wang W, Wong N B, Zheng W, et al. Theoretical study on the blue shifting halogenbond[J]. J. Phys. Chem. A., 2004, 108: 1799-1805
    
    [20] Reimann B, Buchhold K, Vaupel S, et al. Blue-shifting hydrogen bond betweenfluorobenzeneand fluoroform[J]. J. Phys. Chem. A., 2001,105: 5560-5566
    
    [21] Hobza P, Havlas Z. Blue-shifting hydrogen bonds[J]. Chem. Rev., 2000,100:4253-4264
    
    [22] Kovacs A, Szabo A, Nemcsok D, et al. Blue-shifting C-H...X (X = O, halogen) hydrogen bonds in the dimers of formaldehyde derivatives[J]. J. Phys. Chem. A., 2002, 106: 5671-5678
    
    [23] McDowell S A C. Blue-shifting hydrogen bonding in N2...HKrF[J]. J. Chem. Phys., 2003,118:7283-7287
    
    [24] Zierkiewicz W, Michalska D, Havlas Z, et al. Study of the nature of improper blue-shiftinghydrogen bonding and standard hydrogen bonding in the X3CH...OH2 and XH...OH2 complexes (X=F, Cl, Br, I): a correlated ab initio srudy[J]. Chem. Phys. Chem., 2002,3: 511-518
    
    [25] Wang B Q, Li Z R, Wu D, et al. Single-electron hydrogen bonds in the methyl radicalcomplexes H3C...HF and H3C...HCCH: an ab initio study[J]. Chem. Phys. Lett., 2003, 375: 91-95
    
    [26] Baoshan W, Hua H, Yueshu G. Existence of hydrogen bonding between the hydroxylradical and hydrogen peroxide: OH-H_2O_2[J]. Chem. Phys. Lett., 1999,309:274-278
    
    [27] Franchi P, Lucarini M, Pedrielli P, et al. Nitroxide radicals as hydrogen bondingacceptors: an infrared and EPR study [J]. Chem. Phys. Chem., 2002,3: 789-793
    
    [28] Smith I W M, Ravishankara A R. Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical[J]. J. Phys. Chem. A., 2002,106:4798-4807
    
    [29] Wood G P F, Henry D J, Radom L. Performance of the RB3LYP, RMP2, and UCCSD(T) procedures in calculating radical stabilization energies for NHX radicals[J]. J. Phys. Chem. A., 2003,107: 7985-7995
    
    [30] Li Z R, Wu D, Li Z S, et al. Long range type hydrogen bond in the dimers (HF)_2, (H_2CO_2,and H_2O-HF[J]. J. Phys. Chem. A., 2001,105: 1163-1168
    
    [31] Lutz H D. Structure and strength of hydrogen bonds in inorganic solids[J]. J. Mol. Stru.,2003, 646:227-236
    
    [32] Li R Y, Li Z R, Wu D, et al. Long-range type hydrogen bond in dimers CH2...HF,CH_2O...H_2O, and CH_2O...NH_3[J]. Inter. J. Quan. Chem., 2005,103:157-166
    
    [33] Tarakeshwar P, Choi H S, Lee S J, et al. A theoretical investigation of the nature of the-H interaction in ethene-H_2O, benzene-H_2O, and benzene-(H_2O)_2[J]. J. Chem. Phys., 1999, 111:5838-5850
    
    [34] Tarakeshwar P, Choi H S, Kim K S. Olefinic vs aromatic-H interaction: a theoreticalinvestigation of the nature of interaction of first-row hydrides with ethene and benzene[J]. J. Am. Chem. Soc, 2001, 123: 3323-3331
    
    [35] Li R Y, Li Z R, Wu D, et al. Characteristic of structures and hydrogen bond of dimersC_2HnF-HF (n = 0,1,2)[J]. J. Chem. Phys., 2004,121: 8775-8784
    
    [36] Umeyama H, Morokuma K, Yamabe S. Molecular orbital studies of electron donor-acceptor complexes. 4. Energy decomposition analysis of halo-complexes: ammonia-fluorine, -chlorine, -chlorine fluoride, methanamine-chlorine fluoride, formaldehyde-fluorine, hydrogen fluoride-chlorine fluoride, and fluorine-fluorine[J]. J. Am. Chem. Soc., 1977,99: 330-343
    
    [37] Kollman P, Dearling A, Kochanski E. Ab initio self-consistent field calculations on molecular iodine-ammonia and hydrogen iodide-ammonia. The classic "charge-transfer" interaction, an example of gas-phase proton transfer, and the duality of Lewis acid sites on??hydrogen iodide[J]. J. Phys. Chem., 1982, 86: 1607-1610
    
    [38] Roeggen I, Dahl T. Analysis of electron donor-acceptor complexes: H_3N-F_2, H_3N-Cl_2, andH_3N-ClF[J]. J. Am. Chem. Soc, 1992,114: 511-516
    
    [39] Price S L, Stone A J, Lucas J, et al. The nature of-Cl...CI-intermolecuIar interactions[J].J. Am. Chem. Soc, 1994,116:4910-4918
    
    [40] Legon A C, Lister D G, Thorn J C. Isolation and characterisation of the transient complexH_3N...Cl_2 in the gas phase[J]. J. Chem. Soc. Chem. Commun., 1994,757-759
    
    [41] Desiraju G R. Supramolecular synthons in crystal engineering-a new organic synthesis[J].Angew. Chem., Int. Ed. Engl., 1995,34:2311-2327
    
    [42] Latajka Z, Berski S. Density functional study of the H_3N...Cl_2 system the importance ofHartree-Fock exchange in density functional methods?[J]. J. Mol. Struct. (THEOCHEM).,1996,371:11-16
    
    [43] Lommerse J P M, Stone A J, Taylor R, et al. The nature and geometry of intermolecularinteractions between halogens and oxygen or nitrogen[J]. J. Am. Chem. Soc., 1996,118:3108-3116
    
    [44] Ruiz E, Salahub D R, Vela A. Charge-transfer complexes: stringent tests for widely useddensity functionals[J]. J. Phys. Chem., 1996,100:12265-12276
    
    [45] Bürger H. Gas-phase complexes: possible prereactive gateways for reactions of halogenswith NH_3, H_2O, and H_2S[J], Angew. Chem. Int. Ed. Engl., 1997,36:718-721
    
    [46] Zhang Y, Zhao C Y, You X Z. Systematic theoretical study of structures and bondings ofthe charge transfer complexes of ammonia with HX, XY, and X_2 (X and Y areHalogens)[J]. J. Phys. Chem. A., 1997,101:2879-2885
    
    [47] Alkorta I, Rozas I, Elguero J. Charge-transfer complexes between dihalogen compoundsand electron donors[J]. J. Phys. Chem. A., 1998,102:9278-9285
    
    [48] Amico V, Meille S V, Corradi E, et al. Erfluorocarbon-hydrocarbon self-assembling. 1Dinfinite chain formation driven by nitrogen...iodine interactkms[J]. J. Am. Chem. Soc,1998,120: 8261-8262
    
    [49] Farina A, Meille S V, Messina M T, et al.Resolution of racemic1,2-dibromohexafluoropropane through halogen-bonded supramolecular helices[J].Angew. Chem. Int Ed. Engl., 1999,38:2433-2436
    
    [50] Corradi E, Meille S V, Messina M T, et al. Halogen bonding versus hydrogen bonding indriving self-assembly processes[J]. Angew. Chem. Int Ed., 2000,39: 1782-1786
    
    [51] Valerio G, Raos G, Meille S V, et al. Halogen bonding in fluoroalkylhalides: a quantumchemical study of increasing fluorine substitution[J]. J. Phys. Chem. A., 2000, 104:1617-1620
    
    [52] Karp fen A. Charge-transfer complexes between NH_3 and the halogens F_2, ClF, and Cl_2: anab initio study on the intermolecular interaction[J]. J. Phys. Chem. A., 2000, 104:6871-6879
    
    [53] Walsh R B, Clifford W, Padgett C W, et al. Crystal engineering through halogen bonding:complexes of nitrogen heterocycles with organic iodides[J]. Cryst. Growth Des., 2001,1:165-175
    
    [54] Metrangolo P, Resnati G. Halogen bonding: a paradigm in supramolecular chemistry[J].Chem.-Eur. J., 2001, 7:2511-2519
    
    [55] Nangia A. Database research in crystal engineering[J]. Cryst. Eng. Comm., 2002, 4:??93-102
    
    [56] Burton D D, Fontana F, Metrangolo P, et al. Halogen bonding driven self-assembly of(E)-1,2-diiodo-1,2-difluoroethene with nitrogen substituted hydrocarbons?[J]. Tetrahedron Lett., 2003,44:645-648
    
    [57] Romaniello P, Lelj F. Halogen bond in (CH_3)_nX (X = N, P, n = 3; X = S, n = 2) and(CH_3)_nXO (X = N, P, n = 3; X = S, n = 2) adducts with CF3I. Structural and energyanalysis including relativistic zero-order regular approximation approach in a densityfunctional theory framework[J]. J. Phys. Chem. A., 2002,106:9114-9119
    
    [58] Wang W, Wong N B, Zheng W, et al. Theoretical study on the blueshifting halogenbond[J]. J.Phys. Chem. A., 2004,108: 1799-1805
    
    [59] Form A, Metrangolo P, Pilati T, et al. Halogen bond distance as a function oftemperature[J]. Crystal Growth & Design, 2004,4:291-295
    
    [60] Lommerse J P M, Stone A J R, Taylor F H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen[J]. J. Am. Chem. Soc., 1996,118: 3108-3116
    
    [61] Popkie H, Kistenmacher H, dementi E. Study of the structure of molecular complexes. IV. The Hartree-Fock potential for the water dimer and its application to the liquid state[J]. J. Chem. Phys., 1973,59:1325-1336
    
    [62] Tennyson J, Van D A A. Quantum dynamics of the van der waals molecule (N_2)_2: an abinitio treatment[J]. J. Chem. Phys., 1982,77: 5664-5681
    
    [63] Graw J F, Yamaguchi Y, Vincent M A. Vibrational frequency shifts in hydrogen-bonded systems: the hydrogen fluoride dimer and trimer[J]. J. Am. Chem. Soc., 1984, 106: 3133-3138
    
    [64] Klein R, Rosmus P, Werner H J. Ab initio calculations of low lying states of the BH+ andAlH+ ions[J]. J. Chem. Phys., 1982,77: 3559-3570
    
    [65] Michael W D, Dykstra C E, Lisy J M. Changes in the electronic structure and vibrational potential of hydrogen fluoride upon dimerization: A well-correlated (HF)_2 potential energy surface[J]. J. Chem. Phys., 1984,81: 5998-6006
    
    [66] Deakyne C A. Unconventional ionic hydrogen bonds. 2. NH+...π complexes of oniumions with olefins and benzene derivatives[J]. J. Am. Chem. Soc, 1985,107:474-479
    
    [67] Schwenke D W, Truhlar D G. Systematic study of basis set superposition errors in thecalculated interaction energy of two HF molecules[J]. J. Chem. Phys., 1985, 82: 2418-2426
    
    [68] Frisch M, Pople J. Molecular orbital study of the dimers (AH_n)_2 formed from ammonia, water, hydrogen fluoride, phosphine, hydrogen sulfide, and hydrogen chloride[J]. J. Phys. Chem., 1985, 89: 3664-3669
    
    [69] Frisch M J, Bene J E D, Binkley J S. Extensive theoretical studies of the hydrogen-bonded complexes (H_2O)_2,(H_2O)_2H~+, (HF)_2, (HF)_2H~+, F_2H~-, and (NH_3)_2[J]. J. Chem. Phys., 1986, 84: 2279-2289
    
    [70] Bene J E D. Basis set and correlation effects on computed hydrogen bond energies of thedimers (AH_n)_2: AH_n=NH_3, OH_2, and FH[J]. J. Chem. Phys., 1987, 86: 2110-2113
    
    [71] Pine A S, Fraser G T. Vibrational, rotational, and tunneling dependence of vibrationalpredissociation in the HF dimer[J]. J. Chem. Phys., 1988, 89: 6636-6643
    
    [72] Bene J E D. Ab initio molecular orbital study of the structures and energies of neutral and??charged bimolecular complexes of water with the hydrides AH_n (A=nitrogen, oxygen, fluorine, phosphorus, sulfur, and chlorine)[J]. J. Phys. Chem., 1988,92:2874-2880
    
    [73] Zhang C Y, David L F, Del J E. Monte carlo studies of hydrogen fluoride clusters: clustersize distributions in hydrogen fluoride vapor[J]. J. Chem. Phys., 1989,91:2489-2497
    
    [74] Bene J E D. An ab initio molecular orbital study of the structures and energies of neutraland charged bimolecular complexes of NH_3 with hydrides AHn (A = N, O, F, P, S, andCl)[J]. J. Comput Chem., 1989,10:603-615
    
    [75] Latajka Z, Ratajcza K H. On the reliability of SCF ab initio calculations of vibrationalfrequencies and intensities of hydrogen-bonded systems[J]. J. Mol. Struct, 1989,194:89-105
    
    [76] Xantheas S S Dunning T H. Ab initio studies of cyclic water clusters (H_2O)_n, n=1-6.I.Optimal structures and vibrational spectra[J]. J. Chem. Phys., 1993,99: 8774-8792
    
    [77] Xu S C, Zhao X S. Theoretical investigation of the reaction of ClONO_2 with H_2O on waterclusters[J]. J. Phys. Chem. A., 1999,103:2100-2106
    
    [78] Chalasinski G, Szczesnia K M M. Origins of structure and energetics of van der waalsclusters from ab Initio calculations[J]. Chem. Rev., 1994,94:1723-1765
    
    [79] acine S C and Davidson E R. Electron correlation contribution to the hydrogen bond in(HF)_2 [J]. J. Phys. Chem, 1993,97:6367-6372.
    
    [80] Quack M, Suhm M A Potential energy surfaces, quasiadiabatic channels, rovibrationalspectra, and intramolecular dynamics of (HF)_2 and its isotopomers from quantum MonteCarlo calculations[J]. J. Chem. Phys., 1991,95:28-59
    
    [81] Scheiner S. Ab initio studies of hydrogen bonds: the water dimer paradigm[J]. Annu. Rev.Phys. Chem., 1994,45:23-56
    
    [82] Chakravorty S J. The water dimer: Correlation energy calculations[J]. J. Phys. Chem.,1993,97:6373-6383
    
    [83] Tao F M, Klemperer W. Ab initio search for the equilibrium structure of the ammoniadimer[J]. J. Chem. Phys., 1993,99:5976-5982
    
    [84] Xantheas S S, Dunning T H. The structure of the water trimer from ab initiocalculations[J]. J. Chem. Phys., 1993,98: 8037-8040
    
    [85] Tai C J, Jordan K D. Theoretical study of the (H_2O)_6 cluster[J]. Chem. Phys. Lett., 1993,213:181-188
    
    [86]朱维良,蒋华良,陈建忠,等.石杉碱甲-AChE复合物中石杉碱的结构特征-量子化 学研[J].化学学报,1998,56:233-23
    
    [87]朱维良,蒋华良,陈建忠,等.阳离子-π体系相互作用的理论研究-Ⅰ.铵离子-苯复合 物构型及相互作用的密度泛函研究[J].中国科学B,1998,28:404-409
    
    [88] Jordan K D, Tai C. Theoretical study of the (H_2O)_6 cluster[J]. Chem. Phys. Lett., 1993,213:181-188
    
    [89] Gregory J K, Clary D C. Calculations of the tunneling splittings in water dimer and trimerusing diffusion Monte carlo[J]. J. Chem. Phys., 1995,102: 7817-7829
    
    [90]朱维良,蒋华良,陈建忠,等.分子间相互作用的量子化学研究方法[J].化学进展,1999, 11(3):66-69
    
    [91]王双林,王榕树.水分子簇的研究进展[J].化学进展,2001,13(2):81-85
    
    [92] Born M, Oppenheimer J R. Quantum theory of the molecules[J]. Ann. Phys., 1927, 84: 457-484
    
    [93] Hehre W J, Radom L, Schleyer P V R, et al. Ab initio molecular orbital theory[M]. New York: John Wiley Sons Inc, 1986,56-72
    
    [94]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982
    
    [95] Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. Ageneral technique for determining electron correlation energies[J]. J. Chem. Phys., 1987, 87: 5968-5975
    
    [96] Lowdin P O. Correlation problem in many-electrons quantum mechanics[J]. Adv. Chem. Phys., 1959,2:207-322
    
    [97]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985
    
    [98] Young D C. Computational chemistry: a practical guide for applying techniques to real-world problems[M]. John Wiley & Sons Inc, 2001
    
    [99]王一波,陶福明,潘毓刚.氢键的精确从头计算方法及其用于HF、H2O和NH3分子 间氢键研究[J].中国科学B辑,1995,25(10):1016-1025
    
    [100] Moller C, Plesset M S. Note on an approximation treatment for many-electron systems[J].Phys. Rev., 1934,46:618-623.
    
    [101] Head-Gordon M, Pople J A, Frich M J. Theory and application of MP2[J]. Chem. Phys.Lett.,1988,153: 503-508
    
    [102] Pople J A, Binkley J S, Seeger R. Theoretical models incorporating electron correlation[J].Int J. Quant Chem. Symp., 1976,10:1-19
    
    [103] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. B., 1964, 136:864-871
    
    [104] Kohn W, Sham L J. Self-consistent equations including exchange and correlationeffects[J]. Phys. Rev. A., 1965,140: 1133-1138
    
    [105] Parr R G, Yang W. Density-functional theory of atoms and molecuIes[M]. New York:Oxford University Press, 1989
    
    [106] Labanowski J K, Andzelm J. Density functional methods in chemistry[M]. New York:Springer Verlag, 1991
    
    [107] Ziegler T. Approximate density functional theory as a practical tool in molecularenergetics and dynamics[J]. Chem. Rev., 1991,91:651-667
    
    [108] Johnson B G., Gill P M W, Pople J A. Performance of a family of density-functionalmethods[J]. J. Chem. Phys., 1993,98: 5612-5612
    
    [109] Siegbahn P E M. New methods in computational quantum mechanics[J]. Adv. Chem.Phys., 1996,93:333-387
    
    [110] Becke, A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J] J.Chem. Phys., 1993,98: 5648-5652
    
    [111] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formulainto a functional of the electron density[J]. Physical Review B, 1988,37: 785-789
    
    [112] Ditchfield R, Hehre W J, Pople J A. Self consistent molecular orbital methods, Ⅸ: anextended Gaussian-type basis for molecular orbital studies of organic molecules[J]. JChem Phys., 1971, 54: 724-728
    
    [113] Hay, P J. Gaussian basis sets for molecular calculations-representation of 3d orbitals intransition-metal atoms[J] J. Chem. Phys., 1977,66:4377-4384
    
    [114] Mcgrath, M P, Radom L. Extension of Gaussian-1(G1) theory to bromine-containing??molecules[J] J. Chem. Phys., 1991,94: 511-516
    
    [115] Curtiss, L A, Mcgrath M P, Blauddeau J P, at el. Extension of Gaussian-2 Theory tomolecules containing 3rd-row atoms Ga-Kr[J] J. Chem. Phys., 1995,103:6104-6113
    
    [116] Moszynski R, Jeziorski B, Ratkiewicz A, et al. Many-body perturbation theory of electrostatic interactions between molecules: comparison with full configuration interaction for fourelectron dimers[J]. J. Chem. Phys., 1993,99: 8856-8869
    
    [117] Sinnokrot M O, Sherrill C D. Substituent effects in Pi-Pi interactions: sandwich andT-shaped configurations[J]. J. Am. Chem. Soc., 2004,126:7690-7697
    
    [118] Bukowski R, Cencek W, Jankowski P, et al. SAPT2002: an ab initio program formany-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies[M]. Sequential and Parallel Versions, 2003
    
    [119] Williams H L, Szalewicz K, Jeziorski B, et al. Symmetry-adapted perturbation theorycalculation of the Ar-H2 intermolecular potential energy surface[J]. J. Chem. Phys., 1993, 98: 1279-1292
    
    [120] Bukowski R, Szalewicz K, Chabalowski C F. Ab initio interaction potentials for simulations of dimethylnitramine solutions in supercritical carbon dioxide with cosolvents[J]. J. Phys. Chem. A., 1999,103:7322-7340
    
    [121] Milet A, Moszynski R, Wormer P E S, et al. Hydrogen bonding in water clusters; pair and many-body interactions from symmetry-adapted perturbation theory[J]. J. Phys. Chem. A., 1999,103:6811-6819
    
    [122] Kim D, Hu S, Tarakeshwar P, et al. Cation-pi interactions: a theoretical investigation of metallic, and organic cations with alkanes, arenes and heteroarenes[J]. J. Phys. Chem. A., 2003,107: 1228-1238
    
    [123] Boys S F, Bernardi F. Some procedures with reduced errors[J]. Mol. Phys., 1970, 19:553-566
    
    [124] Lowdin P O. Physical interpretation by means of density matrices, natural spin-orbitals, and the convergence problem in the method of configurational interaction[J]. Phys. Rev., 1955,97:1474-1489
    
    [125] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bondorbital donor-acceptor view point[J]. Chem. Rev., 1988,88:899-926
    
    [126] Jensen F. Introduction to computational chemistry[M]. JOHN WILEY & SONS, 1999
    
    [127] Almlof J, Taylor P R. Atomic natural orbital basis sets for LCAO calculations[J]. Adv.Quantum. Chem., 1991,22: 301-308
    
    [128] Reed A E, Weinhold F J. The ab initio calculation of the vibrational-rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H_2Ne as examples[J]. Chem. Phys., 1982,77:4061-4072
    
    [129] Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J]. J. Chem. Phys.,1985, 83: 735-746
    
    [130] Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure[J]. J. Mol. Struct. (Theochem)., 1988,169:41-50
    
    [131] Hehre W J, Radom L, Scheyer P V R, et al. Ab initio molecular orbital theory[M]. John Willey & Sons, 1986
    
    [132]辛厚文.分子拓扑学[M].安徽:中国科技大学出版社,1991
    
    [133] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964,136: 864-871
    
    [134] Bader R F W. Atom in moleculars[M]. A quantum theory oxford unv, Press: Oxford, 1990
    
    [135] Bader R F W, Gough K M, Laidig K E, et al. Properties of atoms in molecules: additivityand transferability of group polarizabilities[J]. Mol. Phys., 1992,75: 1167-1189
    
    [136] Colbourn E A. Computer simulation of defects and reactions at oxides surfaces[J]. Surf.Sci.Rep., 1992,15:281-319
    
    [137] Pacchioni G. Dose the electronegativity scale apply to ionic crystals as to molecules? A theoretical study of the bonding character in molecular and crystalline alkaline-earth oxides based on dipole moments[J]. Chem. Phys., 1995,199:155-162
    
    [138] Bader R F W, Macdaougall P J, Hlan C D. Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity[J]. J. Am. Chem. Soc., 1984,106: 1594-1605
    
    [139] Bader R F W, Gillespie R J, Macdaougall P J. A physical basis for the VSEPR model ofmolecular geometry[J]. J. Am. Chem. Soc, 1988,110: 7329-7336
    
    [140] Bader R F W, Beddall, P M. A virial field relationship for molecular charge distributionsand a spatial partitioning of molecular properties[J]. J. Chem. Phys. 1972,56,3320-3329
    
    [141] Desiraju, G R, Steiner T. The weak hydrogen bond In structural chemistry andbiology[M]. Oxford University Press: New York, USA, 1997.
    
    [142] Nishio M, Hirota M, Umezawa, Y. The CH-Interaction; Wiley-VCH[M]. New York,1998.
    
    [143] Schemer S Ed. Molecular Interactions: From van der Waals to Strong Bound ComplexesWiley[M] Chichester, 1997.
    
    [144] Jeffrey J A. Saenger, W. Hydrogen Bonding in Biological Structures[M]. Springer-Verlag:Berlin, 1991.
    
    [145] Liantonio R, Metrangolo P, Meyer F, et al. Metric engineering of supramolecularBorromean rings[J] Chem. Commun. 2006,1819-1821
    
    [146] Auffinger P, Hays, F A, Westhof, E, et al. Halogen bonds in biological molecules[J]PNAS. 2004,101(48):16789-16794
    
    [147] Voth A R, Hays F A, Ho P S. Directing macromolecular conformation through halogenbonds[J] PNAS. 2007,104(15): 6188 - 6193.
    
    [148] Bertani R, Metrangolo P?Moiana A. et al. Supramolecular Route to fluorinated Coatings: Self-assembly between poly(4. vinylpyridines) and haloperfluorocarbons[J]. Adv Mater., 2002,14:1197-1201.
    
    [149] Sarma J A R P, Allen F H, Hoy V J, et al. Design of an shgactive crystal, 4-iodo 4-nitrobiphenyl: The role of supramolecularsynthons[J]. Chem Commun., 1997(1): 101-102.
    
    [150] Thallapally P. K., Desiraju G. R., Bagieu-Beucher M, et al. 1,3-dibromo-2,4,-trinitrobenzene(DBTNG): Crystal Engineering and Perfect Polar Alignment ofTwo-dimensional Hyperpolarizable Chromophores[J]. Chem Commun., 2002(6):1052-1053.
    
    [151] Nguyen H L, Horton P N, Hursthouse M B, et al. Halogen Bonding: A new Interaction forliquid crystal formation[J]. J Am Chem Soc, 2004,126(1): 16-17.
    
    [152] Legon, AC. Prereactive complexes of dihalogens XY with lewis bases B in the gas phase: A systematic case for the halogen analogue B...XY of the hydrogen Bond B...HX[J].??Angew Chem Int Ed.,1999,38(18): 2686-2714.
    
    [153] Legon A C, Jennifer M. A, Thumwood, et al. The Interaction of Water and Dibromine in the Gas Phase: An Investigation of the Complex H_2O...Br_2 by Rotational Spectroscopy and Ab Initio Calculations[J]. Chem Eur J, 2002,8(4). 940-950.
    
    [154] Legon A C. Electron"Donor-acceptor"Complexes B...CIF and the Existence ofthe"Chlorine" Bond [J]. Chem Eur J, 1998, 4(10): 1890-1897.
    
    [155] Cooke S A, Cotti G, Evans C M, et al. Pre-reactive Complexes in Mixtures of WaterVapour with Halogens: Characterization of H_2OCIF and H_2OF_2 by a Combination ofRotational Spectroscopy and Ab Initio Ca lculations[J]. Chem Eur J, 2001, 7(11): 2 295-2305
    
    [156] Dumas J M, Gomel L, Guerin M. Molecular Interactions Involving Organic Halides[M].New York: John Wiley&Sons Ltd.1983.985-1020.
    
    [157] Corradi E, Meille S V, Messina M T, et al. Halogen Bonding Versus Hydrogen Bondingin Driving Self-assembly Processes[J]. Angew Chem Int Ed. 2000,39 (10): 1782-1786.
    
    [158] Messinam T, Metrangolo P, Panzeri W. Intermolecular recognition between oxygen-donors and perfluorocarbon iodine acceptors: The shortest O...I non-covalent bond[J]. Tetrahedron, 2001,57:8543-8550.
    
    [159] Metrangolo P, Neukirch H, Pilati T, et al. Halogen bonding based recognition processes: aworld parallel to hydrogen bonding[J]. Acc. Chem Res, 2005,38:386-395
    
    [160] Brinck, T, Murray J S, Politzer P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions[J]. Int J. Quantum Chemistry. Quantum Biol. Symp. 1992,19:57-64
    
    [161] Clark T, Hennemann M, Murray J. S, et al. Halogen bonding: the σ-hole [J]. J. Mol.Mod. 2007,13:291-296
    
    [162] Politzer P, Lane P, Concha M C, et al. An overview of halogen bonding[J]. J. Mol. Mod.2007,13:305-311
    
    [163] Politzer P, Murray J S, Lane P, et al. Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors[J] J. Mol. Mod. 2007, 13: 643-650
    
    [164] Politzer P, Murray J S, Lane P, et al. A noteworthy feature of bond dissociation/formationreactions[J]. Int. J. Quantum Chem. 2007,107:2153-2157.
    
    [165] Murray, J.S. Lane, P. Politzer, P. A predicted new type of directional noncovalentinteraction[J]. Int. J. Quantum Chem., 2007,12:2286-2292.
    
    [166] Reed A E, Weinbold F, Curtiss, L A. Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H_2O, NH_3, N_2, O_2, F_2, CO, and CO_2 with HF, H_2O, and NH_3 [J] J. Chem.Phys. 1986, 84: 5687-5705
    
    [167] Lommerse J P M, Stone A J, Taylor R, et al. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen[J]. J. Am. Chem. Soc. 1996, 118: 3108-3116
    
    [168] Valerio G, Raos. G, Meille S, et al.Halogen Bonding in Fluoroalkylhalides: A Quantum Chemical Study of Increasing Fluorine Substitution[J]. J. Phys. Chem. A., 2000, 104(8): 1617-1620
    
    [169] Zou J W, Jiang Y J, Guo M. Ab Initio study of the complexes of halogen-containing molecules RX(X=Cl. Br, I) and NH_3: Towards understanding the nature of halogen??bonding and the rlectron-accepting propensities of covalently bonded halogen atoms[J]. Chem Eur J., 2005,11(2): 740-751
    
    [170] Dunning T H, Jr J. Gaussian basis sets for use in correlated molecular calculations.I. Theatoms boron through neon and hydrogen[J]. J Chem Phys., 1989,90:1007-1023
    
    [171] Hobza P. Havlas Z. Counterpoise-corrected potential energy surfaces of simple H-bondedsystems[J] Theor. Chem. Acc. 1998, 99: 372-377
    
    [172] Simon, S. Duran, M. Dannenberg, J J. Effect of Basis Set Superposition Error on the Water Dimer Surface Calculated at Hartree-Fock, M(?)ller-Plesset, and Density Functional Theory Levels.[J] J. Phys. Chem. A., 1999,103(11): 1640-1643.
    
    [173] Karpfen, A. Charge-transfer complexes between NH_3 and the Halogens F_2, ClF, and Cl_2: An ab Initio study on the intermolecular interaction[J]. J. Phys. Chem. A., 2000, 104: 6871-6879
    
    [174] Jeziorski B, Moszynski R, Szalewicz K. Perturbation theory approach to intermolecularpotential energy surfaces of van der waals complexes[J]. Chem. Rev. 1994, 94: 1887-1930
    
    [175] Jeziorski B, Moszynski R, Ratkiewicz A, et al. In methods and techniques in computational chemistry[M]. METECC-94. Clementi, E. Ed. Vol. B. Medium Sized Systems, STEF: Cagliari, 1993,79-129
    
    [176] Bandyopadhyay I, Lee H M, Kim K S. Phenol vs water molecule interacting with various molecules: σ-type, re-type, and χ-type hydrogen bonds,interaction energies, and their energy components[J]. J. Phys. Chem. A., 2005,109:1720-1728
    
    [177] Ringer A L, Figgs M S, Sinnokrot, M O, et al. Aliphatic C-H/π Interactions: Methane-Benzene, Methane-Phenol, and Methane-Indole Complexes[J]. J. Phys. Chem. A., 2006,110:10822-10828
    
    [178] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bondorbital donor-acceptor view point[J]. Chem. Rev., 1988,88: 899-926
    
    [179] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 Gaussian Inc: Pittsburgh: PA,2003
    
    [180] Bloemink H I, Evans C M, Holloway J. H, et al. Is the gas-phase complex of ammonia and chlorine monofluoride H3N...ClF or [H3NC1]~+...F~-? Evidence from rotational spectroscopy[J] Chem. Phys. Letters., 1996,248,260-268
    
    [181] Nair K P R, Hoeft J, Tiemann E. Microwave spectrum, quadrupole hyperfine interaction, and electric dipole moment of the BrF molecule[J]. J. Mol. Spectrosc, 1979,78,506-513
    
    [182] Nair KPR, Hoeft J, Tiemann E. Electric dipole moment of BrCl[J]. Chem. Phys. Lett,1978,58:153-156
    
    [183] Abricant B F, Muenter J S. Molecular beam zeeman effect and dipole moment sign ofClF[J]. J. Chem. Phys., 1977,66: 5274-5277
    
    [184] Brutschy B, Hobza P. Van der Waals Molecules Ⅲ: Introduction[J]. Chem. Rev., 2000,100(11): 3861-3862
    
    [185] Norbert M. Search for a realistic view of hydrophobic effects[J]. Acc. Chem. Res.; 1990,23: 23-28
    
    [186] Brutschy B.The Structure of Microsolvated Benzene Derivatives and the Role of AromaticSubstituents[J]. Chem. Rev., 2000, 100(11): 3891-3920
    
    [187] Suh S B, Kim J C, Choi Y, et al. Nature of One-Dimensional Short Hydrogen Bonding: Bond Distances, Bond Energies, and Solvent Effects[J]. J. Am. Chem. Soc; 2004, 126(7):??2186-2193
    
    [187] No K T, Nam K Y, Scheraga, H A. Stability of Like and Oppositely Charged Organic IonPairs in Aqueous Solution[J] J. Am. Chem. Soc; 1997, 119(52): 12917-12922
    
    [188] Leonard S S, Jr D L W. Solute structuring in aqueous lanthanum(Ⅲ) chloridesolutions[J] J. Am. Chem. Soc.; 1975,97(9): 2365-2368.
    
    [189] Redko, M Y. Huang, R H. Jackson, J E, et al. Barium Azacryptand Sodide, the First Alkalide with an Alkaline Earth Cation, Also Contains a Novel Dimer, (Na_2)~(2-)[J] J. Am.Chem. Soc; 2003,125(8) 2259-2263
    
    [190] Cao J, Stephane B, Georges W Ab initio and crystal structure analysis of like-charged ionpairs[J] J. Am. Chem. Soc.; 1991,113(25): 9610-9614.
    
    [191] Buisine E, Villiers K, Egan T. J, et al. Solvent-Induced Effects: Self-Association ofPositively Charged Systems[J] J. Am. Chem. Soc; 2006,128(37): 12122-12128
    
    [192] Chopra D, Cameron T S, Ferrara J D, et al. Pointers toward the Occurrence of C-F…F-C Interaction: Experimental Charge Density Analysis of 1-(4-Fluorophenyl)-3,6,6-trimethyl-2-phenyl-1,5,6,7-tetrahydro-4H-indol-4-one and 1-(4-Fluorophenyl)-6-methoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline[J] J. Phys. Chem. A.; 2006; 110(35): 10465-10477.
    
    [193] Wang F F, Hou J H, Li Z R et al. Unusual halogen-bonded complex FBr~+…~+BrF and hydrogen-bonded complex FBr~+…~+HF formed by interactions between two positively charged atoms of different polar molecules[J] J. Chem. Phys.2007,126,144301-144305
    
    [194] Carroll M T, Chang C, Bader R F W. Prediction of the structures of hydrogen-bonded complexes using the laplacian of the charge density[J]. Mol. Phys., 1988,63: 387-405
    
    [195] Tang T H, Hu W J, Yan D Y, et al. A quantum chemical study on selected π-typehydrogen bonded systems[J]. J. Mol. Struct (THEOCHEM)., 1990,207:319-326
    
    [196] Popelier P L A. Characterization of a dihydrogen bond on the basis of the electrondensity[J]. J.Phys. Chem. A., 1998,102:1873-1978.
    
    [197] Koch U, Popelier P L A. Characterization of C-H-O hydrogen bonds on the basis of thecharge density[J]. J. Phys. Chem., 1995,99: 9747-975
    
    [198] Tachikawa H. Dynamics of ionization processes of the ethylene-HF complex: a directab-initio dynamics study[J]. Phys. Chem. Chem. Phys., 2000,2: 839-847
    
    [199] Kim K S, Tarakeshwar P J, Lee Y. Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies[J]. Chem. Rev., 2000, 100: 4145-4186
    
    [200] Bai H, Ault B S. Infrared matrix isolation investigation of the molecular complexes of chlorine monofluoride with benzene and its derivatives[J]. J. Phys. Chem., 1990, 94: 199-203
    
    [201] Mulliken R S. Structures of complexes formed by halogen molecules with aromatic andwith oxygenated solvents[J]. J. Am. Chem. Soc, 1950, 72: 600-608
    
    [202] Mootz D, Deeg A. 2-Butyne and hydrogen chloride cocrystallized: solid-state geometry of Cl-H…π hydrogen bonding to the carbon-carbon triple bond J. Am. Chem. Soc; 1992, 114(14), 5887-5888.
    
    [203] Rozas I .Alkorta I, Elguero. J. Unusual Hydrogen Bonds: H…π Interactions[J] J. Phys.Chem. A, 1997,101 (49):9457 -9463
    
    [204] Liu T, Gu J D, Tan X J, et al. The relationship between binding models of TMA with furan and imidazole and the molecular electrostatic potentials: DFT and MP2??computational studies[J]. J. Phys. Chem. A., 2002,106: 157-164
    
    [204] Shea J A, Kukolich S G. The rotational spectrum and molecular structure of the furan-HClcomplex[J]. J. Chem. Phys., 1983,78:3545-3551
    
    [205] Lesarri A, Lopez J C, Alonso J L. Rotational spectrum, H, F nuclear spin-nuclear spincoupling and structure of the furan-HF dimer[J]. J. Chem. Soc., Faraday Trans., 1998,94: 729-735
    
    [206] Cole G C, Legon A C, Ottaviani P. Are members of the family of hydrogen-bondedcomplexes formed by furan with the hydrogen halides isostructural? An answer from the rotational spectrum of furan...HBr[J]. J. Chem. Phys., 2002, 117: 2790-2799
    
    [207] Cooke S A, Corlett G K, Legon A C. Comparisons of the interactions of benzene, furan and thiophene with Lewis acids: the rotational spectrum of thiophene...HF[J]. Chem. Phys. Lett., 1998, 291:269-276
    
    [208] Cooke S A, Corlett G K, Legon A C. Rotational spectrum of thiophene...HCl does thiophene act as an aromatic it-type electron donor or an n-type electron donor in hydrogen-bond formation?[J]. J. Chem. Soc., Faraday Trans., 1998,94:1565-1571
    
    [209] Cooke S A, Holloway J H, Legon A C. Rotational spectrum of thiophene...ClF and the role of thiophene as a π- or n-electron pair donor in weakly bound complexes[J]. Chem. Phys. Lett., 1998,298: 151-160
    
    [210] Jiang J C, Tsai M H. Ab initio study of the hydrogen bonding between pyrrole andhydrogen fluoride: A comparison of NH...F and FH...π Interactions[J]. J. Phys. Chem. A., 1997, 101:1982-1988
    
    [211] Cooke S A, Corlett G K, Legon A C. The rotational spectrum of the pyridine-hydrogenfluoride complex[J]. J. Mol. Struct., 1998,448:107-114
    
    [212] Cooke S A, Corlett G K, Lister D G, et al. Is pyridinium hydrochloride a simplehydrogen-bonded complex C_5H_5N...HCl or an ion pair C_5H_5NH~+...Cl~- in the gas phase? An answer from its rotational spectrum[J]. J. Chem. Soc., Faraday Trans., 1998,94: 837-843
    
    [213] Legon A. C. and Millen D. J. Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classfication of dimer geometries Faraday Discuss. Chem. Soc., 1982, 73,71 - 87
    
    [214] Legon A C. Millen D J. Angular geometries and other properties of hydrogen-bonded dimers: a simple electrostatic interpretation of the success of the electron-pair model[J]. Chem. Soc. Rev., 1987,16:467-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700