低维金属氧化物纳米材料的结构和电子学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着纳米科学和技术的飞速发展,纳米材料由于自身尺寸大小(纳米尺度1~100nm之间)而具有许多独特物理化学性能,引起了人们的极大兴趣和关注,成为当前材料研究最活跃的领域之一。其中低维金属氧化物纳米材料以其独有的结构特征,优异的力学、光学、电学、电子学等特性而具有诱人的应用前景,研究它们的微观结构和性能对于探讨其形成机理,开发其应用潜力具有重要的意义。本论文针对具有中空管状结构的单壁水铝英石纳米管(矿物学上称为纳米晶须)和具有小面结构的纤锌矿型氧化锌和硫化锌纳米材料(纳米管和纳米线)进行了相关的探索研究,获得了一些有重要意义的结果。
     在计算机科技飞速发展的今天,对于纳米材料的研究仅仅采用传统的实验方法已不能满足需要。近年来计算机模拟方法越来越受到青睐,成为除理论分析和实验研究之外的第三大工具,是沟通理论和实验的桥梁,不仅可以辅助实验,指导实验,而且可以得到一些实验难以测量的结果,并能深入揭示所研究系统的内在行为机制。当前主要有两种常用的计算方法:一种是第一原理计算方法,也称ab initio方法,主要包括Hartree-Fock自洽场方法和密度泛函方法;另一种是经验的或半经验的方法,比较常用的就是经典分子力学和分子动力学模拟方法。从头算法是从量子力学第一原理出发,通过自洽迭代求解薛定谔方程,可以预测材料的各种微观性质。经验算法是根据已有的相互作用势函数解析形式计算材料的某些性质。
     针对本论文的研究体系(低维金属氧化物纳米结构),本论文采用了密度泛函计算和经典分子力学和分子动力学模拟相结合的方法,研究了单壁水铝英石纳米管和氧化锌、硫化锌纳米材料的一些结构、电学和电子学特性。本论文主要分两部分,第一部分介绍了我们进行研究工作的理论基础,第二部分介绍了作者本人在攻读博士学位期间所作的主要研究工作,分别简介如下:
     1.研究工作的理论基础
     在本论文的第二章中针对研究方法,密度泛函计算和经典分子力学和分子动力学模拟方法做了简要的介绍。密度泛函方法是当前最为重要的一种基于第一原理的研究方法,由于其不依赖于任何经验参数而具有常广泛的应用,且可以计算材料的结构性质、机械性质、电学性质、光学性质、磁学性质等多方面的性质,但是由于其计算量常巨大,在当前的计算条件下,最多只能处理上百个原子的体系,对于更大的体系,只能借助于经验或半经验的方法。而经典分子力学和分子动力学模拟方法则具有较高的运算效率,可以计算上万个原子的体系,但是一般情况下只能研究物质的构象问题,机械特性或热力学特性,而不能涉及到化学变化,电子转移等问题。两种计算方法各有特点,把二者结合起来,就能研究更为广泛的课题。本章中针对这两种计算方法分别予以介绍,作为后面几章研究内容的理论基础简介。
     2.单壁水铝英石纳米管的结构和力学特性研究
     自从碳纳米管首次被发现以来,以其独特的结构和优良的性质,成为了近年来纳米科技中的一个研究热点,并因此激励了其它无机纳米管的研究。但是制备中如何得到它们的直径均匀分布的纳米管(即直径单分散性),至今还是一个亟待解决的难题。人们研究发现了一种特殊的单壁水铝英石纳米管(矿物学上称为纳米晶须),无论是天然的或人工合成的,都具有相当固定的直径。那么单壁水铝英石纳米管所具有的直径单分散性的内在机理是什么呢?在本论文的第三章中我们采用经典分子力学方法研究了具有不同指数的纳米管的结构和能量,发现指数等于13的纳米管对应着能量的最低值,从而证实了其直径单分散性。进一步分析了其直径具有单分散性的原因,结果表明是内壁硅烷醇对水铝层的功能化造成的。这一结果可为碳纳米管及其它无机纳米管的直径控制提供有益启示:可以在表面上连接功能化结构而引起键能的变化,从而有可能改变能量随尺寸的单调变化情况,解决其制备中很难得到直径单一的纳米管这一难题。同时采用经典动力学模拟方法研究了其主要力学特性,给出了杨氏模量和泊松比的数值。
     3.单壁水铝英石纳米管的表面电荷和电子学特性研究
     诸多实验研究表明,单壁水铝英石纳米管具有广谱的吸附能力,既可以和阳离子反应,也可以和阴离子反应。可以通过在其表面吸附不同的功能基团实现功能化,单壁水铝英石纳米管的功能化是一个正在探索的新领域,最近已有不少关于其功能化的研究,具有十分诱人的应用前景。在本论文的第四章中采用密度泛函计算的方法研究了单壁水铝英石纳米管的表面“结构”电荷分布及相应的电子结构:纳米管的结构形变导致了沿径向存在着电场,同时在外表面感应出微弱正电荷,而内表面的电荷分布具有“位点依赖性”;偶极电场还造成了能级移动,使得带隙变窄,此外对应表面电子态的位点是活泼的反应位点。从而对其具有的广谱的吸附能力作出了合理的解释,同时说明可以简便的通过反应或吸附不同的功能基团实现单壁水铝英石纳米管的功能化。这些研究结果为水铝英石纳米管的功能化这个新的研究热点提供了重要的理论依据。
     4.氧化锌、硫化锌纳米材料的结构和电子学特性研究
     氧化锌纳米材料因其优异的光电性质而成为短波半导体材料研究的国际热点。迄今为止,人们已经运用各种制备方法合成了多种特殊形态的氧化锌纳米管和纳米线,同时研究了它们的发光特性。在本论文的第五章中采用密度泛函计算和经典分子力学和分子动力学模拟相结合的方法,研究了各种形态和尺寸的有小面结构的纤维锌矿型氧化锌纳米线和纳米管的结构、能量和电子学性质。结果表明,最稳定的是六边棱柱形态,和实验结果一致。能量演变遵守如下规律:纳米线相对于体材料的形成能(Eform)随着半径的增加而减小;厚壁纳米管的形成能Eform与半径无关,随着壁厚的增加而减少;当纳米管的壁厚和纳米线的半径相当时,它们有接近的形成能Eform;这主要归因于其表面悬挂键的影响,可以用基于表面能的简单模型加以解释。同样纳米结构表面的的弛豫现象也是由表面悬挂键引起的。研究其电子结构后发现其光致发光谱的蓝移与表面电子态有关。此外ZnO倾向于合成纤锌矿型厚壁纳米管,单壁纳米管很难合成。同时与具有类似结构的硫化锌纳米材料进行了比较,得出了相似的结论。这些研究结果将对它们的制备和应用起到指导作用。
Accompanying with the rapid progress of nanotechnology,the study of nanomaterials has attracted considerable attention and been one of the most active areas,owing to their unique size-dependent chemical and physical properties.Among them,low-dimensional metal oxide nano-tubular materials exhibit unique quasi one-dimensional structure characteristics,and unique mechanical,optical,electric and electronic properties.So they have wide and great potential in many areas of nanotechnological applications.The research on the structure and the properties of nanotubular materials is essential for better understanding the forming mechanism of the materials and exploring their potential applications.The research subject of this dissertation is on single-walled imogolite nanotubes(nanometric tubular fibre, imogolite),and facted wurtzite nanowires and nanotubes of ZnO and ZnS.
     Following the rapid development of computer science and technology, computational simulations have become one of the most important methods in the studies of nanostructure materials,besides the experimental and the traditionally theoretical methods.It provides a bridge between experiments and theories in searching for the micromechanism of material syntheses and in predicting the properties of materials,especially for the nanomaterials.In general there are two kinds of simulation methods:one is the so-called ab initio calculations(or first-principle calculation),such as density functional theory(DFT);the other is empirical or semi-empirical methods,e.g.molecular mechanics method and molecular dynamics simulation.Ab initio calculation starts with first-principle quantum chemistry and solves Schrodinger equation self-consistently by iteration,while empirical method calculates some properties of materials through analytic potential functions.
     In this dissertation,DFT calculations and MM/MD simulations are used in the studies of the structures and the properties of single-walled imogolite nanotubes and faceted wurtzite ZnO/ZnS nanomaterials.There are two parts included in this dissertation.The first part introduces the theoretical fundamentals that we used in our research works.The second part introduces the author's main work done during my Ph.D.degree studies.The following gives a brief outline of the main contents of this dissertation.
     1.The Theoretical Fundamentals Used in Our Research Work
     In chapterⅡ,the basic theories of DFT calculation and MM/MD simulations are introduced.At present,DFT calculation is one of the most important investigation methods that can describe the structural mechanical,electronic,magnetic,and optic properties of small systems which contain no more than hundreds of atoms.As for the larger systems,we can only rely on the empirical methods.Classical MM/MD simulation can deal with a system containing ten thousands of atoms,but only the conformational,mechanical,and thermodynamic properties of the system can be obtained.So we are trying to combine the two methods together to obtain as much as information as possible concerning the system under study.
     2.Theoretical studies of single-walled imogolite nanotube:atomic structure and mechanics properties
     Since the first discovery of single-walled carbon nanotubes(SWNT)in 1991, they have attracted considerable attention because of their unique structures and properties,and prompting the studies of other inorganic nanotubes(e.g.BN,WS_2, MoS_2).But up to now,how to control over nanotube diameter or monodispersity has remained a challenging task,while single-walled aluminosilicate nanotubes (nanometric tubular fibres "imogolite")have the monodispersity in diameter,for both natural and artificial tubes.In chapterⅢwe studied the structures and energetics of imogolite nanotubes with different component index(N_v),and confirmed the monodispersity of diameters for this material.We find that the monodispersity is due to the functionalization of the inner surface with silanol groups and consequently the change in bond energies.This result can be considered as an inspiration for diameter control of carbon nanotubes and other inorganic oxide nanotubes.We have also evaluated the mechanical properties of this material and reported it's Young's modulus and Poisson ratio values.
     3.Theoretical studies of single-walled imogolite nanotube:surface electric charge and electronic properties
     Several experimental results have proved that the imogolite can absorb both cations and anions.So the functionalization of the imogolite nanotube can be easily achieved by absorbing proper atoms,molecules or radicals on the wall,and there have been some studies on its functionalization.In chapterⅣ,we have studied in detail the surface "structural" electric charge distribution and the corresponding electronic structure of the imogolite nanotube with N_v=12,which is predicted to be the most possible index for the synthesized imogolite nanotube.Our results show that the deformation of this material leads to structural electric charges on the tube wall and existence of electric field in the radial direction.The outer wall of the imogolite nanotube was negatively charged while the electric charges distribution on the inner wall is site-dependent.This can give a reasonable explanation for the imogolite's broad-spectrum adsorbability.From the DOS and PDOS we can see that the electric field cause the energy shifts and make the energy band gap narrower.And PDOS also indicate that the most reactive sites are located on the tube wall.Functionalization of the single-walled imogolite nanotube is a new subject worthy of further studies.Our results provide the convincing theoretical prediction for this subject.
     4.Theoretical studies of zince oxide and zince sulfide nanomaterials:atomic structure and electronic properties
     Zince oxide(ZnO)nanomaterials have become one of the major focuses in the research field of semiconductor short-wavelength devices,owing to their uique optical and photonic properties.So far diverse kinds of ZnO nanostructures have been fabricated by various synthetic approaches,such as nanoparticles,nanowires, nanotubes,nanobelts and nanosheets,and their photoluminescence spectrums have also been measured.In chapterⅤ,the structures,energetics and electronic properties of faceted wurtzite zince oxide nanowires and nanotubes with various morphologies and sizes have been studied.Among them the hexagonal prisms are found to be most stable which agrees with the experiments results.The formation energy of the nanowires with respect to wurtzite ZnO crystal decreases monotonously with the increase of wire radius,whereas that of the multi-walled nanotubes decreases with the increasing wall thickness,irrespective of the tube radius.If the wall thickness of the multi-walled nanotubes is dose to the radius of the nanowires,they will have close Eform values.Their energetic evolution as a function of wire radius or wall thickness, which is attributed to dangling bonds on the surface,is understandable in terms of a simple model based on surface energy.We have also studied their electronic structures and discovered that the blue shift in the photoluminescence spectrum may be relevant to the surface states.Their surface relaxation and the possibility of synthesizing ZnS-SWNTs are also briefly discussed.The surface relaxation also arises from dangling bonds on the surface.The multi-walled ZnO nanotubes prefer hexagonal-faceted wurtzite morphology and the growth of the single-walled ZnO nanotubes is very complicated.ZnS nanomaterials with analogous morphology have very similar results as ZnO ones.These results can provide the guide-line for building nanoscale optical and optoelectronic devices.
引文
1 张立德,牟季美。纳米材料和纳米结构。北京:科学出版社,2001.1-19
    2 D.L.Klein,R.Roth,A.K.L.Lim,et al.Nature 389,699(1997)
    3 A.P.Alivisatos,J.Phys.Chem.100,13226(1996)
    4 A.P.Alivisatos,Science 271,933(1996)
    5 R.Pool,Science 263,1698(1994)
    6 J.T.Hu,L.S.Li,A.P.Alivisatos,et al.Science 292,2060(2001)
    7 J.T.Hu,T.W.Odom,C.M.Lieber,chem.Res.32,435(1999)
    8 Y.N.Xia,P.D.Yang,Y.G.Sun,et al.Adv.Mater.15,353(2003)
    9 Y.N.Xia,P.D.Yang,Adv.Mater.15,351(2003)
    10 朱静。纳米材料与器件。北京:清华大学出版社,2003,1-448
    11 D.L.Klein,R.Roth,A.K.L.Lim,et al.Nature 389,699(1997)
    12 M.T.Bjork,B.J.Ohlsson,T.Sass,et al.Nano Lett.2(2),87(2002)
    13 J.H.Zhan,Y.Bando,J.Q.Hu,et al.Angew.Chem.lnt.Ed.44(14),2140(2005)
    14 X.F.Duan,C.M.Niu,V.Sahi,et al.Nature 425(6955),274(2003)
    15 X.F.Duan,Y.Huang,R.Agarwal,et al.Nature 421(6920),241(2003)
    16 M.H.Huang,S.Mao,H.Feick,et al.Science 292(5523),1897(2001)
    17 M.S.Gudiksen,L.J.Lauhon,J.Wang,et al.Nature 415(6872),617(2002)
    18 O.Hayden,A.B.Greytak,D.C.Bell,Adv.Mater.17(6),701(2005)
    19 Y.N.Xia,P.D.Yang,Y.G.Sun,et al.Adv.Mater.15,353(2003)
    20 E.Ryshkewitch,Oxide ceramics.New York and London:Academic Press,1960,3-11
    21 G.V.Samsonov,The oxide handbook(second editon).New York:IFI/Pienum Data Company,1982,1-458
    22 Z.M.Jarzebski,Oxide semiconductor.Oxford:Pergamon Press,1973,1-265
    23 C.Boulessteix,Oxides.Switzerland:Trans Tech Publications Ltd,1998,1-467
    24 徐毓龙,氧化物和化合物半导体基础。西安:西安电子科技大学出版社,1991,1-368
    25 J.W.Diggle,Oxides and oxide films(Volume 1).New York:Marcel Dekker, INC.,1972,1-499
    26 W.Diggle,Oxides and oxide films(Volume 2).New York:Marcel Dekker,INC.,1973,1-386
    27 J.A.Wingrave,Oxide surface.New York:Marcel Dekker,2001,1-515
    28 林梦海,《量子化学计算方法与应用》。科学出版社,2004
    29 A.R.Leach,《Molecular Modeling Principles and Applications》,Addison Wesley Longman Limited,London,1996
    30 A.R.Leach.Molecular modeling Principles and applications 2nd ed[M]Beijing:Pearson Education Limited,2003
    31 P.D.G Cradwick,V.C.Farmer,J.D.Russell,C.R.Masson,K.Wada,and N.Yoshinaga,Nature Phys.Sci.240,187(1972)
    32 L.A.Bursill,J.L.Peng and L.N.Bourgeois,Phil.Mag.A 80,105(2000)
    33 S.Mukherjee,V.M.Bartlow,and S.Nair,Chem.Mater.17,4900(2005)
    34 G H.Koenderink,S.G J.M.Kluijtmans,and A.P.Philipse,J.Colloid and Interface Sci.216,429(1999)
    35 Y.H.Lee,B.Kim,W.Yi,A.Takahara,and D.Sohn,Bull.Korran Chem.Soc.,27,1815(2006)
    36 K.Yamamoto,H.Otsuka,S-I.Wada,A.Takahara,Chem.Lett.11,1162(2001)
    37 K.Yamamoto,H.Otsuka,S-I.Wada,D.Sohn,and A.Takahara,Polymer 46,12386(2005)
    38 Y.J.Xing,Z.H.Xi,Z.Q.Xue,X.D.Zhang,and J.H.Song,R.M.Wang,J.Xu,Y.Song,S.L.Zhang,and D.P.Yua,Appl.phys.Lett.83,1689(2003)
    39 B.M.Wen,Y.Zh.Huang,and J.J.Boland,J.Phys.Chem.C 112,106(2008)
    40 S.Ch.Lyu,Y.Zhang,H.Ruh,H-J Lee,H-W Shim,E-K Suh,Ch.J.Lee,Chem.Phys.Lett.363,134(2002)
    41 Q.H.Xiong,G.Chen,J.D.Acord,X.Liu,J.J.Zengel,H.R.Gutierrez,J.M.Redwing,L.C.Lew Yan Voon,B.Lassen,and P.C.Eklund,Nano Lett.4,1663(2004).
    42 L.W.Yin,Y.Bando,J.H.Zhan,M.S.Li,and D.Bolberg,Adv.Mater.17,1972(2005)
    1 杨小震,分子模拟与高分子材料[M]。北京:科学出版社(2002)
    2 徐光宪,黎乐民,王德明,量子化学基本原理和从头计算法(中册)。科学出版社(2001)
    3 林梦海,量子化学计算方法与应用。科学出版社(2004)
    4 A.R.Leach,Molecular Modelling Principles and Applications,Addison Wesley Longman Limited,London.(1996)
    5 C.C.J.Roothaan.Rev.Mod.Phys.,32(6):179(1960)
    6 J.B.Foresman,M.Head-Gordon,J.A.Pople and M.J.Frisch,J.Phys.Chem.96,135(1992)
    7 C.Moller and M.S.Plesset,Phys.Rev.46,618(1934)
    8 M.Head-Gordon,J.A.Pople and M.J.Frisch,Chem.Phys.Lett.153,503(1988)
    9(a)M.J.Frisch,M.Head-Gordon,J.A.Pople,Chem.Phys.Lett.,166,275(1990)
    (b)M.J.Frisch,M.Head-Gordon,J.A.Pople,Chem.Phys.Lett.166,281(1990)
    10 M Head-Gordon and T.Head-Gordon,Chem.Phys.Lett.220,122(1994)
    11 S.Saebo and J.Almlof,Chem.Phys.Lett.154,83(1989)
    12 P.Hohenberg and W.Kohn,Phys.Rev.B.136,864(1964)
    13 L.H.Thomas,Proc.Camb.Phil.Soc.23,542(1927)
    14 E.Fermi,Rend.Accad.Lincei.6,602(1927)
    15 P.Hohenberg,W.Kohn,Phys.Rew.B 6,864(1964)
    16 W.Kohn,L.J.Sham,Phys.Rev.A 140,1133(1965)
    17 L.H.Thomas,Proc.Camb.Phil.Soc.23,542(1927)
    18 E.Fermi,Rend.Accad.Lincei.26,376(1927)
    19 P.A.M.Dirac,Proc.Camb.Phil.Soc.26,376(1930)
    20 J.C.Slater,Phys.Rev.81,385(1951)
    21 J.C.Slater,Adv.Quant.Chem.6,1(1972)
    22 J.P.Perdew,Y.Wang,Phys.Rev.B 33,8800(1986)
    23 J.P.Perdew,Y.Wang,Phys.Rev.B 33,8822(1986)
    24 A.D.Becke.Phys.Rev.A 38.3098(1988)
    25 J.P.Perdew,J.A.Chevary,K.A.Hackson S.H.Vosko,M.R.Pederson,D.J.Singh,C.Fiolhais,Phys.Rev.B 46,6671(1992)
    26 J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77,1396(1996)
    27 F.A.Hamprecht,A.J.Cohen,D.J.Tozer,N.C.Handy,J.Chem.Phys.109,6264(1998)
    28 C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785(1988)
    29 A.D.Becke,J.Chem.Phys.98,5648(1993)
    30 J.B.Foresman and A.Frisch,Exploring Chemistry with Electronic Structure Methods,(Gaussian,Inc.,Pittsburgh,PA,1996)
    31 赵大成《固体量子化学》高等教育出版社2003年8月
    32 D.R.Hamann,M.Schlüter,C.Chiang,Phys.Rev.Lett.43,1494(1979)
    33 G.B.Bachelet,D.R.Hamann,M.Schlüter,Phys.Rev.B 26,4199(1982)
    34 N.Troullier,J.L.Martins,Phys.Rev.B 43,8861(1991)
    35 User's Guide Siestal.3 2003
    36 http://www.uam.es/siesta.
    37 Shu Zhen et al.Phys.Stat.Sol.(a)78,595(1983)
    38 冯端.金属物理学。北京:科学出版社,1998
    39 B.J.Alder,T.E.Wainwright,J.Chem.phys.27(5),1208(1957)
    40 M.D.Allen,D.J.Tildesley,.Computer Simulation of Liquids,Oxford:Clarendon press,1987
    41 A.Rahman,F.H.stillinger,J.Chem.phys.55(7),3336(1971)
    42 B.J.Alder,T.E.Wainwright,J.Chem.phys.31(2),459(1959)
    43 B.J.Alder,T.E.Wainwright,Phys.Rev.127(2),359(1962)
    44 J.E.Jones,Proc.Roy.Soc.106,441(1924)
    45 M.S.Daw,M.I.Baskes..Phys.Rev.B.29(12),6443(1984)
    46 K.W.Jacobsen,J.K.Norskov,M.J.puska,Phys.Rev.B 35(14),7423(1987)
    47 Masao Doyama,Y.Kogure,Computational Matetials Science 14,80(1990)
    48 J.Tersoff,Phys.Rev.B 39,5566(1989)
    49 D.W.Brenner,Phys.Rev.B 42,9458(1990)
    50 A.R.Leaeh Molecular modeling Principles and applications 2nd ed[M]Beijing: Pearson Edueation Limited,2003
    51 余庆森,朱龙观。分子模拟导论[M]。北京:高等教育出版社,2000
    52 D.H.Andrews,Phys.Rev.36,544(1930)
    53 陈正隆。分子模拟的理论和实践一讲习班教材[M]。2002
    54 苑世领。两亲分子自组装体系的分子模拟一博士学位论文[M]。济南:山东大学,2003
    55 Frenkel,Smit,汪文川(译)。分子模拟一从算法到应用[M]。北京:化学工业出版社,2002
    56 L.Verlet,Phys.Rev.159,98(1967);Phys.Rev.165,201(1967)
    57 R W.Honeycutt,Methods in Computational Physics 9,136(1970)
    58 W.Swope,H.Anderson,P.Berens,K.Wilson,J.Chem.Phys.76,637(1982)
    59 D.Beeman,Journal of Computational Physics 20,130(1976)
    60 J.D.Gale,J.Chem.Soc.Faraday Trans.93,629(1997).
    61 B.G.Dick,A.W.Overhauser,Phys.Rev.112,90(1958).
    1 M.S.Dresselhaus and H.Dai,MRS Bull.29,237(2004)
    2 M.Remskar,Adv.Mater.(Weinheim,Ger.)16,1497(2004)
    3 R.Tenne,C.N.R.Rao,Philos.Trans.R.Soc.London,Ser.A 362,2099(2004)
    4 H.Ago,S.Ohshima,K.Tsukuagoshi,M.Tsuji,and M.Yumura,Curr.Appl.Phys.5,128(2005)
    5 C.Klinke,J.M.Bonard,and K.Kern,Phys.Rev.B 71,035403(2005)
    6 D.H.Robertson,D.W.Brenner,J.W.Mintmire,Phys.Rev.B 45,12592(1992)
    7 H.Terrones and M.Ten'ones,New J.Phys.5,126(2003)
    8 P.D.G.Cradwick,V.C.Farmer,J.D.Russell,C.R.Masson,K.Wada,and N.Yoshinaga,Nature Phys.Sci.240,187(1972)
    9 L.A.Bursill,J.L.Peng and L.N.Bourgeois,Phil Mag.A 80,105(2000)
    10 S.Mukherjee,V.M.Bartlow,and S.Nair,Chem.Mater.17,4900(2005)
    11 G.H.Koenderink,S.G.J.M.Kluijtmans,and A.P.Philipse,J.Colloid and Interface Sci.216,429(1999)
    12 N.Yoshinaga,Soil Sci.Plant.Nutr.(Tokyo)14,238(1968)
    13 K.Wada and N.Yoshinaga,Am.Mineral 54,50(1969)
    14 V.Farmer and J.Russell,in Soil Colloids and Their Associations in Aggregates,edited by M.E.De Roodt et al.(Plenum,New York,1973).
    15 D.Dubroeucq,D.Geissert,and P.Quantin,Geoderma 86,99(1998)
    16 L.Mossin,M.Mortensen,and P.Nrnberg,Geoderma 109,103(2002)
    17 V.C.Farmer,A.R.Fraser,and J.M.Tait,J.Chem.Soc.,Chem.Commun.13,462(1977)
    18 V.C.Farmer,A.R.Fraser,Int.Clay Conf.1978.
    19 K.Wada,N.Yoshinaga,H.Yotsumoto,K.Ibe,and S.Aida,Clay Min,8,487(1970)
    20 J.D.Russell,W.J.McHardy,and A.R.Fraser,Clay Min.8,87(1969)
    21 S.-I.Wada,A.Eto,K.Wada,J.Soil,Sci.30,347(1979)
    22 S.-I.Wada,K.Wada,Clays Clay Miner.30,123(1982)
    23 S.Konduri,S.Mukherjee,and S.Nair,Phys.Rev.B 74,033401(2006)
    24 P.I.Pohl,J-L Faolon,and D.M.Smith,Langmuir 12,4463(1996)
    25 J.W.Mintmire,B.I.Dunlap,and C.T.White,Phys.Rev.Lett.68,631(1992)
    26 F.Ohashi,S.Tomura,K.Akaku,S.Hayashi,and S.-I Wada,J.Mater.Sci.39,1799(2004)
    27 S.Imamura,T.Kokubu,T.Yamashita,Y.Okamoto,K.Kajiwara,and H.Kanai,J.Catal.160,137(1996)
    28 L.L.Marzan,and A.P.Philipse,Colloids Surf.A 90,95(1994)
    29 S.Imamura,Y.Hayashi,K.Kajiwara,H.Hoshino,and C.Kaito,Ind.Eng.Chern.Res.32,600(1993)
    30 R.Sehgal,J.C.Huling,and C.J.Brinker,Proc.3~(rd)Int.Conf.On Inorganic Membranes,Ed.Y.Ma,p85(Woprcester,MA,1995)
    31 J.Oh,Y.Lee,D.Sohn,S.Chang,S.Roh,and W.Yi,Techanical Digest of the 17~(th)Int.Conf.(Cambrige,MA,July 2004)ed.A.I.Akinwande,L.Chen,I.Kymissis,and C.Hong,pp202-3(IEEE Cat.No.04TH8737)
    32 F.Alvarez-Ramirez,Phys.Rev.B 76,125421(2007).
    33 Lijuan Li,Yueyuan Xia,Mingwen Zhao,Chen Song,Jiling Li,and Xiandong Liu,Nanotech.19,175702(2008)
    34 H.J.Gao,Y.Kong,D.X.Cui,C.S.Nano Lett.3,471(2003)
    35 A.Kalra,S.Garde,G.Hummer,Proe.Natl Acad.Sci.U.S.A.100,10175(2003)
    36 G.Hummer,J.C.Rasaiah,J.P.Noworyta,Nature 414(6860),188(2001)
    37 C.Y.Kong,M.Muthukumar,Electrophoresis 23(16),2697(2002)
    38 J.J.Nakane,M.Akeson and A.Marziali,J.Phys.Conden.Matter 15(32),R1365(2003)
    39 K.Tamura and K.Kawamura,J.Phys.Chem.B 106,271(2002)
    40 S.Konduri,S.Mukherjee,and S.Nair,Phys.Rev.B 74,033401(2006)
    41 J.D.Gale,J.Chem.Soc.Farady Trans.93,629(1997)
    42 R.A.Jackson and C.R.A.Catiow,Mol.Simul.1,207(1988)
    43 A.J.M.de Man,B.W.H.van Beest,M.Leslie and R.A.van Santen,J.Phys.Chem.94,2524(1990)
    44 S.M.Tomlinson,R.A.Jackson and C.R.A.Catlow,J.Chem.Sot.Chem.Commun.813(1990)
    45 R.G.Bell,R.A.Jackson and C.R.A.Catlow,J.Chem.Sot.Chem.Commun.782(1990)
    46 G.Ooms,R.A.van Santen,C.J.J.den Ouden,R.A.Jackson and C.R.A.Catlow,J.Phys.Chem.92,4462(1988)
    47 B.Winkler,M.T.Dove and M.Leslie,Am.Mineral.76,313(1991)
    48 D.E.Akporiaye and G.D.Price,Zeolites 9,321(1989)
    49 K.P.Schroder,J.,Sauer;M.,Leslie,and C.R.A.Catlow,Chem.Phys.Lett.188,320(1992)
    50 C.I.Sainz-Diaz,A.Hernández-Laguna,M.T.Dove,Phys.Chem.Minerals 28,130(2001)
    51 M.J.Sanders,M.Leslie,and C.R.A.Catlow,J.Chem.Soc.Chem.Commun.19,1271(1884)
    52 D.F.Shanno,Math.Comput.24,647(1970) V.C.Farmer,M.J.Adams,A.R.Fraser,and E Palmieri,Clay Minerals,18,459(1983)
    2 P.I.Pohl,J.-L Fanlon,and D.M.Smith,Langmuir,12,4463(1996)
    3 H.Hoshino,H.Urakawa,N.Donkai,and K.Kajiwara,Polymer Bulletin,36,257(1996).
    4 K.Wada,1989 In Minerals in Soil Environments,2nd edition,J.B.Dixon and S.D.Weed,eds.,SSSA Book Series no.1,Soil Science Society of America,Madison,Wisconsin,USA,1051
    5 K.Egashira,and S.Aomine,Clay Science,4,2331(1974)
    6 S.Brunauer,P.H.Emmett,and E.Teller,Journal of the America Chemical Society,60,309(1938)
    7 Y.H.Lee,B.Kim,W.Yi,A.Takahara,and D.Sohn,Bull.Korran Chem.Soc.,27,1815(2006)
    8 K.Yamamoto,H.Otsuka,S -I.Wada,and A.Takahara,Chem.Lett.,11,1162(2001)
    9 K.Yamamoto,H.Otsuka,S-I.Wada,D.Sohn,A.Takahara,Polymer 46,12386(2005)
    10 J.Oh,Y.Lee,D.Sohn,S.Chang,S.Roh,and W.Yi,2004 Technical Digest of the 17th International Conference(IEEE Cat.No.04TH8737)202-3,Eds.A.I.Akinwande,L.Chen,I.Kymissis and C.Hong(Cambridge,MA,USA,11-16July 2004)
    11 B.K.G.Theng,M.Russell,G.J.Churchman,and R.L Parfitt,Clays and Clay Minerals,30,143(1982)
    12 C.J.Clark,and M.B.McBride,Clays and Clay Minerals,32,291(1984)
    13 C.Su,J.B.Harsh,and P.M.Bertsch,Clays and Clay Minerals,40,280(1992)
    14 J.B.Harsh,S.J.Traina,J.Boyle,and Y.Yang,Clays and Clay Minerals,40,700(1992)
    15 C.Su,and J.B.Harsh,Clays and Clay Minerals,41,461(1993)
    16 L.Denaix,I.Lamy,and J.Y.Bottero,Colloids Surf.,A 158,315(1999).
    17 Y.Hirohisa,J.Michalik,J.Sadlo,J.Perlinska,S.Takenouchi,S.Shimomura,and Y.Uchida,Appl.Clay Sci.19,173(2001)
    18 M.A.Wilson,G.S.H.Lee,and R.C.Taylor,Clays Clay Miner.50,48(2002)
    19 J.Karube and Y.Abe,Clays Clay Miner.46,322(1998)
    20 S.Imamura,Y.Hayashi,K.Kajiwara,H.Hocino,and C.Taito,Ind.Eng.Chem.Res.32,600(1993)
    21 J.P.Gustafsson,Clays and Clay Minerals,49,73(2001)
    22 L.Guimaraes,A.N.Enyashin,J.Frenzel,T.Heine,H.A.Duarte,and G.Seifert,ACS nano 1,362(2007)
    23 F.Alvarez-Ramírez,Phys.Rev.B 76,125421(2007)
    24 P.D.G.Cradwick,V.C.Farmer,J.D.Russell,C.R.Masson,K.Wada,and N.Yoshinaga,Nature Phys.Sci.240,187(1972)
    25 S.Konduri,S.Mukherjee,and S.Nair,Phys.Rev.B 74,033401(2006)
    26 K.Tamura and K.Kawamura,J.Phys.Chem.B 106,271(2002)
    27 S.Mukherjee,V.M.Bartlow,and S.Nair,Chem.Mater.17,4900(2005)
    28 L.A.Bursill,J.L.Peng and L.N.Bourgeois,Phil,Mag.A 80,105(2000)
    29 P.Ordejón,E.Artacho,and J.M.Soler,Phys.Rev.B 53,R10441(1996)
    30 D.Sánchez-Portal,P.Ordejon,E.Artacho,and J.M.Soler,Int.J.Quantum Chem.65,453(1997)
    31 J.M.Soler,E.Artacho,J.Gale,A.Garciá,J.Junquera,P.Ordejón,and D.Sánchez-Portal,J.Phys.Condense Matter 14,2745(2002)
    32 N.Troullier and J.L.Martins,Phys.Rev.B 43,1993(1991)
    33 L.Kleinman and D.M.Bylander,Phys.Rev.Lett.48,1425(1982);D.M.Bylander and L.Kleinman,Phys.Rev.B 41,907(1990)
    34 J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865(1996)
    35 H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188(1976)
    36 H.Saalfeld,and M.Wedde,Z.Kristallogr.Bd.139,129(1974).
    37 M.Catti,G.Ferraris,S.Hull,A.Pavese,Eur.J.Miner.6,171(1994)
    38 S.Guggenheim,Y.-H,A.F.Koster van Groos,Am.Mineral 72,537(1987).
    39 D.Kassner,W.H.Baur,W.Joswig,K.Eichhorn,M.Wendschuh-Josties,V.Kupcik,Acta Crystallogr(B)Structural Science 49,646(1993).
    40 Z.Lodziana,J.K.Norskov,J.Chem.Phys.,115,11261(2001)
    41 J.Frenzel,A.F.Oliveira,H.A.Duarte,T.Heine,G.Z.Seifert,Anorg.Allg.Chem.,631,1267(2005)
    42 Y-W.Son,M.L Corthen,and S.G.Louie,nature 444,347(2006)
    1 P.Zu,Z.K.Tang,G.K.L.Wong,M.Kawaskai,A.Ohiomo,H.Koinmua,Y.Segawa,Solid State Commun.103,459(1997)
    2 M.H.Huang,S.Mao,H.Feick,H.Yan,Y.Wu,H.Kind,E.Weber,R.Russo,P.Yang,Science 292,5523(2001)
    3 R.F.Service,Science 276,895(1997)
    4 X.D.Wang,C.J.Summers,Z.L.Wang,Adv.Mater.16,1215(2004)
    5 L.Vayssieres,Adv.Mater.15,464(2003)
    6 J.Joshy,A.M.Khadar,Mat.Sci.Eng.A 810,304(2001)
    7 Zh.W.Pan,Z.R.Dai,Zh.L.Wang,Science 291,1947(2001)
    8 J.C.Johnson,P.D.Yang,J.Phys.Chem.B105,11387(2001)
    9 C.Gilbert,Science 294,1897(2001)
    10 W.John,Laser Focus World 38,15(2002)
    11 Z.L.Wang,X.Y.Kong,Y.Ding,P.Gao,W.L.Hughes,R.Yang,and Y.Zhang,Adv.Funct.Mater 14,943(2004)
    12 Z.L.Wang,Materialstoday 7,26(2004)
    13 G.C.Yi,C.Wang,W.I.Park,Semiond.Sci.Technol.20,S22(2005)
    14 C.Jin,X.Yuan,W.Ge,J.Hong,X.Xin,Nanotehnology 14,667(2003)
    15 H.J.Fan,R.Scholz,A.Dadgar,A,Krost,M.Zacharias,Appl.Phys.A 80,457(2005)
    16 P.X.Gao,Z.L.Wang,Nano.Lett.3,1315(2003)
    17 M.H.Huang,Y.Wu,H.Feick,N.Tran,E.Weber,P.Yang,Adv.Mater.13,113(2001)
    18 S.E.Ahn,J.S.Lee,H.Kim,S.Kim,B.H.Kang,K.H.Kim,GT.Kim,Appl.phys.ett.84,5022(2004)
    19 L.Xu,Y.Guo,Q.Liao,J.Zhang,D.Xu,J.Phys.Chem.B 109,13519(2005)
    20 Y.J.Xing,Z.H.Xi,Z.Q.Xue,X.D.Zhang,and J.H.Song,R.M.Wang,J.Xu,Y.Song,S.L.Zhang,and D.P.Yua,Appl.phys.Lett.83,1689(2003)
    21 B.M.Wen,Y.Zh.Huang,and J.J.Boland,J.Phys.Chem.C 112,106(2008)
    22 H.J.Fan,A.S.Barnard,M.Zacharias,Appl.phys.Lett.90,143116(2007)
    23 W.Fan,H.Xu,A.L.Rosa,Th.Frauenheim,R.Q.Zhang,Phys.Rev.g 76,073302(2007)
    24 R.Viswanatha,S.Sapra,B.Satpati,P.V.Satyam,B.N.Devb,and D.D.Sarma,J.Mater.Chem.14,661(2004)
    25 S.Ch.Lyu,Y.Zhang,H.Ruh,H-J Lee,H-W Shim,E-K Suh,and Ch.J.Lee,Chem.Phys.Lett.363,134(2002)
    26 赵康,刘正堂,功能材料29,58(1998)
    27 Ch-Y Yeh,Z.W.Lu,S.Froyen,and A.Zunger,Phys.Rev.B.46,10086(1992)
    28 D.B.Zhang,L.M.Qi,J Colloid Interf.Sci.246,413(2002)
    29 A.Govindaraj,F.L.Deepak,N.A.Gunari,lsrealJ Chem.41,23(2001)
    30 Q.H.Xiong,G.Chen,J.D.Acord,X.Liu,J.J.Zengel,H.R.Gutierrez,J.M.Redwing,L.C.Lew Yan Voon,B.Lassen,and P.C.Eklund,Nano Lett.4,1663(2004)
    31 L.W.Yin,Y.Bando,J.H.Zhan,M.S.Li,D.Bolberg,Adv.Mater.17,1972(2005)
    32 T.Akiyama,K.Sano,K.Nakamura,T.Ito,Jpn.J.Appl.Phys.46,1783(2007)
    33 J.B.Li,L.W.Wang,Phys.Rev.B 72,125325(2005)
    34 M.Li,J.C.Li,Mater.Lett.60,2526(2006)
    35 J.D.Gale,J.Chem.Soc.Faraday Trans.93,629(1997)
    36 B.G.Dick,A.W.Overhauser,Phys.Rev.112,90(1958)
    37 S.Hamad,S.Cristol,R.C.A.Catlow,J.Phys.Chem.B 106,11002(2002)
    38 L.Whitmore,A.A.Sokol,C.R.A.Catlow,Surface Science 498,135(2002)
    39 P.Ordejón,E.Artacho,J.M.Soler,Phys.Rev.B 53,R10441(1996)
    40 D.Sánchez-Portal,P.Ordejón,E.Artacho,J.M.Soler,lnt.J.Quantum Chem.65,453(1997)
    41 J.M.Soler,E.Artacho,J.D.Gale,A.García,J.Junquera,P.Ordejón,D.Sánchez-Portal,J.Phys.:Condens.Matter 14,2745(2002)
    42 N.Troullier,J.L.Martins,Phys.Rev.B 43,1993(1991)
    43 L.Kleinman,D.M.Bylander,Phys.Rev.Lett.48,1425(1982)
    44 J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77,3865(1996);78,1396(1997).
    45 H.J.Monkhorst,J.D.Pack,Phys.Rev.B 8,5747(1973)
    46 G.Kresse,J.Furthmüller,Comput.Mater.Sci.6,15(1996)
    47 G.Kresse,G.Furthmüller,J.Phys.Rev.B 54,11169(1996)
    48 EE.Blǒchl,Phys.Rev.B 50,17953(1994)
    49 X.Shen,EB.Allen,J.T.Muckerman,J.W.Davenport,J.C.Zheng,Nano.Lett.7,2267(2007)
    50 C.L Freeman,F.Claeyssens,N.L.Allan,J.H.Harding,Phys.Rev.Lett.96,066102(2006)
    51 H.J.Xiang,J.L.Yang,J.G.Hou,Q.S.Zhu,,4ppl.Phys.Lett.89,223111(2006)
    52 Z.X.Zhang,H.J.Yuan,D.F.Liu,L.E Liu,J.Shen,Y.J.Xiang,W.J.Ma,W.Y.Zhou,S.S.Xie,Nanotechnology 18,145607(2007).
    53 A.Sapra,D.D.Sarma,Phys.Rev.B 69,125304(2004)
    54 M.W.Zhao,Y.Y.Xia,X.D.Liu,Z.Y.Tan,B.D.Huang,Ch.Song,L.M.Mei,J.Phys.Chem.B 110,8764(2006)
    55 Y-R Lin,Sh-Sh Yang,S-Y Tsai,H-Ch Hsu,Sh-T Wu,and I-Ch Chen,Crys.Grow.& Design 6,1951(2006)
    56 Y.J.Xing,Z.H.Xia,X.D.Zhang,J.H.Song,R.M.Wang,J.Xu,Z.Q.Xue,D.P.Yub,Solid State Commun.129,671(2004)
    57 X.Shen,P.B.Allen,J.T.Muckerman,J.W.Davenport,and J-Ch Zheng,Nano.Lett.7,2267(2007)
    58 Z.C.Tu and X.Hu,Phys.Rev.B 74,035434(2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700