半金属Mn_2ZnSi和MN(M=Mg,Sr,Ba)的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于密度泛函理论预测了Mn2ZnSi和MN (M=Mg, Sr, Ba)两种类型的半金属,包括它们的磁性和外界压强对半金属性质的影响。
     在二十世纪八十年代早期,Rob de Groot等人发现了一种新型的磁性材料:半金属(half-metal)。这种新材料的特性在于自旋向上与自旋向下的电子具有不同的导电特性。一个自旋方向的电子呈现金属的导电特性,另一自旋方向则呈现半导体或绝缘的特性。在这种具有百分之百自旋极化的材料中,所有的导电电子自旋都朝同一方向。这种同时具有金属与绝缘体能带特性的材料被视为一种新型材料,而它许多特有的性质也被认为在内存组件及自旋电子学的应用上极具潜力。第一性原理计算能够在理论上预测具有应用价值的半金属,从而能够给实验合成提供很好的指导和参考。
     第二章首先介绍了密度泛函理论的发展过程及其理论框架。量子力学创立之初只能计算最简单的氢原子,几年之后E. A. Hylleraas和D. R.Hartree才分别利用变分方法和自洽场方程来计算出了氦原子的基态;随后V. Fock改良了D. R. Hartree的自洽场方法提出了著名的Hartree-Fock方法,这种方法是很多现代电子结构计算方法的原型:20世纪60年代密度泛函理论创立,由于其计算精度较高并且计算量适中已经成为计算化学、材料模拟领域中最重要的理论方法之一。
     第三章我们基于第一性原理方法系统地研究了Heusler合金Mn2ZnSi(?)勺电子结构和磁性。计算结果表明Mn2ZnSi在平衡晶格常数下表现出了半金属亚铁磁(ferrimagnetic)性。同时我们还研究了自旋轨道相互作用对磁矩的影响。结果显示自旋轨道相互作用对磁矩基本没有影响。通过拟合Murnaghan状态方程,得到了Mn2ZnSi的体弹性模量为134.3GPa,这个表明Mn2ZnSi比起其他一些Heusler合金更容易被压缩。结果还显示Mn2ZnSi在外界压强从0到17.7GPa时为半金属。所以Mn2ZnSi在自旋由于学的的应用中将公成为有应用前景的材料。
     在第四章中使用密度泛函理论研究了岩盐结构的sp电子半金属M=Mg,Sr, Ba)在外界压强下半金属性和磁性。计算结果显示三种化合物在无外界压强时为半金属铁磁体,当外界压强增大时,三种化合物首先半金属性都会消失,随着压强的继续增大MgN和BaN会出现铁磁态到磁态的磁性相变。这些特性在将来的应用中都是常有用的。
     第五章我们对我们的现有的工作进行了一个总结,对以后的工作进行了展望。
In this thesis, two types of half-metal Mn2ZnSi and MN (M=Mg, Sr, Ba) are predicted by first-principle calculation, the magnetic properties and influence of increased pressure for the magnetic moments are also investigated.
     In the early1980s, Rob de Groot and collaborators discovered a new type of magnetic material:half-metal. The feature of this new type material is two spin channels shows different conductive characteristic, for which one of the two spin channels shows a typical metallic be-havior while the other has semiconductor or insulator properties. At this material with100%spin-polarization, the spin orientation of conduction electrons is in the same direction. For half-metal both has metallic and insulating band properties, is regarded as a new type of functional material. However, many unique natures of half-metal make it has great potential application in random access memory and spintronic. First-principle calculation can theoretically predict half-metal with great application value, thus it can guide the experimental synthesis.
     At first we gived a short introduction to the development and the basic concept of DFT. Only simple H atom can be calculated by quantum mechanics at the very beginning of its foundation. Several years later, E. A. Hylleraas and D. R. Hartree calculated the ground state of Helium atom by variational and self-consistent field method, respectively; V. Fork improved the self-consistent field method forming the well-know Hartree-Fork method. This method is the prototype of many modern methods for electronic structure calculation, The DFT was founded in1960's, it is widely used in materials simulations and computational chemistry because of its high precision and moderate computational consumption.
     In the third chapter, by first-principle calculation, the electronic structure and magnetic properties of the Mn2ZnSi full-Heusler alloy are investigated. Calculations show that Mn_>ZnSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The influence of spin-orbit interaction for the magnetic moments is investigated. The result shows spin-orbit interaction has little influence on magnetic moment. The bulk modulus of Mn^ZnSi obtained by a fit of the Murnaghan equation of state is134.3GPa, which is more compressible than some other Heusler alloys. At the pressure range of0to17.7GPa, Mn2ZnSi presents half-metallic character. Mn2ZnSi would be a promising material for future spintronic applications.
     In the fourth chapter, magnetic properties of sp-electron half-metallic MN (M=Mg, Sr, Ba) in rocksalt structure under pressure have been investigated using density functional theory. The calculated results show that the three compounds are half-metallic ferromagnets at equilibrium state. With the pressure increasing, firstly the half-metallic properties of the three compounds are disappeared, then with the pressure continuously increasing, MgN and BaN will occur pressure-induced magnetic phase transitions from ferromagnetic to nonmagnetic state. These features will be useful for future applications.
     In the final chapter, we made a conclusion for this thesis, and made a plan for the following work.
引文
[1]I. Zutic, J. Fabian, S.D. Sarma, Reviews of Modern Physics 76(2),323 (2004)
    [2]I. Galanakis, P. Mavropoulos, P.H. Dederichs, Journal of Physics D:Applied Physics 39(5),765 (2006)
    [3]I. Galanakis, P. Mavropoulos, Journal of Physics:Condensed Matter 19(31),315213 (2007)
    [4]J. De Boeck, W. Van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein, G. Borghs, Semiconductor science and technology 17(4),342 (2002)
    [5]R. De Groot, F. Mueller, P.v. Engen, K. Buschow, Physical Review Letters 50(25),2024 (1983)
    [6]I. Galanakis, P. Dederichs, N. Papanikolaou, Physical Review B 66(13),134428 (2002)
    [7]M. Zhang, X. Dai, H. Hu, G. Liu, Y. Cui, Z. Liu, J. Chen, J. Wang, G. Wu, Journal of Physics: Condensed Matter 15(46),7891 (2003)
    [8]I. Galanakis, P. Dederichs, N. Papanikolaou, Physical Review B 66(17),174429 (2002)
    [9]S. Fujii, Journal of the Physical Society of Japan 64(1),185 (1995)
    [10]Y. Miura, K. Nagao, M. Shirai, Physical Review B 69(14),144413 (2004)
    [11]I. Galanakis, Journal of Physics:Condensed Matter 16(18),3089 (2004)
    [12]R. Soulen Jr, J. Byers, M. Osofsky, B. Nadgorny, T. Ambrose, S. Cheng, P.R. Broussard, C. Tanaka, J. Nowak, J. Moodera, et al., Science 282(5386),85 (1998)
    [13]H. Kato, T. Okuda, Y. Okimoto, Y Tomioka, K. Oikawa, T. Kamiyama, Y. Tokura, Physical Review B 69(18),184412(2004)
    [14]T. Shishidou, A. Freeman, R. Asahi, Physical Review B 64(18),180401 (2001)
    [15]I. Galanakis, Physical Review B 66(1),012406 (2002)
    [16]M. Shirai, Journal of Applied Physics 93(10),6844 (2003)
    [17]H. Akai, Physical Review Letters 81(14),3002 (1998)
    [18]M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press,1954)
    [19]D.R. Hartree, in Mathematical Proceedings of the Cambridge Philosophical Society, vol.24 (Cam-bridge Univ Press,1928), vol.24, pp.89-110
    [20]V. Fock, Zeitschrift fur Physik A Hadrons and Nuclei 61(1),126 (1930)
    [21]P. Hohenberg, W. Kohn, Physical Review 136(3B), B864 (1964)
    [22]W. Kohn, L.J. Sham, Phys. Rev.140, A1133 (1965)
    [23]L.H. Thomas, Mathematical Proceedings of the Cambridge Philosophical Society 23,542 (1927)
    [24]E. Fermi, Accademia Nazionale dei Lincei 6,602 (1927)
    [25]E. Wigner, Phys. Rev.46,1002 (1934)
    [26]D.M. Ceperley, B.J. Alder, Phys. Rev. Lett.45,566 (1980)
    [27]A.D. Becke, Phys. Rev. A 38,3098 (1988)
    [28]J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996)
    [29]A.D. Becke, The Journal of Chemical Physics 98,1372 (1993)
    [30]X. Xu, W.A. Goddard, Proceedings of the National Academy of Sciences of the United States of America 101(9),2673 (2004)
    [31]W. Koch, M.C. Holthausen, M.C. Holthausen, A chemist's guide to density functional theory, vol. 2 (Wiley-Vch Weinheim,2001)
    [32]M. Ernzerhof, G.E. Scuseria, The Journal of Chemical Physics 110,5029 (1999)
    [33]K. Koepernik, H. Eschrig, Phys. Rev. B 59,1743 (1999)
    [34]I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60,14035 (1999)
    [35]H. Eschrig, Edition am Gutenbergplatz, Leipzig, Germany 9 (2003)
    [36]F.J. Jedema, A.T. Filip, B.J. van Wees, Nature 410,345 (2001)
    [37]S.J. Luo, K.L. Yao, J. Magn. Magn. Mater.292,367 (2005)
    [38]K. Ozdogan, I. Galanakis, J. Magn. Magn. Mater.321,34 (2009)
    [39]V. Ko, G. Han, Y.P. Feng, J. Magn. Magn. Mater.322,2989 (2010)
    [40]T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.75,3366 (1999)
    [41]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. lye, Appl. Phys. Lett.69, 363(1996)
    [42]V.A. Ivanov, O.N. Pashkova, V.P. Sanygin, P.M. Sheverdyaeva, V.N. Prudnikov, N.S. Perov, A.G. Padalko, J. Magn. Magn. Mater.310,2132 (2007)
    [43]R. Weht, W.E. Pickett, Phys. Rev. B 60,13006 (1999)
    [44]S. Wurmehl, H.C. Kandpal, G.H. Fccher, C. Felser, J. Phys.:Cond. Matt.18,6171 (2006)
    [45]H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. D:Appl. Phys.40,1507 (2007)
    [46]Y. Kota, H. Tsuchiura, A. Sakuma, J. Phys.:Conf. Ser.200,052012 (2010)
    [47]R. Yilgin, Y. Sakuraba, M. Oogane, Y. Ando, T. Miyazaki, J. Supercond. Nov. Magn. pp.1-5. URL http://dx.doi.org/10.1007/s10948-011-1238-x.10.1007/s 10948-011-1238-x
    [48]K. Mibu, D. Gondo, T. Hori, Y. Ishikawa, M.A. Tanaka, J. Phys.:Conf. Ser 217,012094 (2010)
    [49]R.Y. Umetsu, N. Endo, A. Fujita, R. Kainuma, A. Sakuma, K. Fukamichi, K. Ishida, J. Phys.:Conf. Ser 200,062036(2010)
    [50]X.P. Wei, J.B. Deng, S.B. Chu, G.Y. Mao, T. Lei, X.R. Hu, J. Magn. Magn. Mater.323,185 (2010)
    [51]S.T. Li, Z. Ren, X.H. Zhang, C.M. Cao, Physica B 404,1965 (2009)
    [52]X.P. Wei, X.R. Hu, G.Y. Mao, S.B. Chu, T. Lei, L.B. Hu, J.B. Deng, J. Magn. Magn. Mater.322, 3204(2010)
    [53]N. Xing, H. Li, J. Dong, R. Long, C. Zhang, Comput. Mater. Sci.42,600 (2008)
    [54]K. Koepernik, H. Eschrig, Phys. Rev. B 59,1743 (1999)
    [55]K. Koepernik, B. Velicky, R. Hayn, H. Eschrig, Phys. Rev. B 55,5717 (1997)
    [56]J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.77,3865 (1996)
    [57]O. Eriksson, M.S.S. Brooks, B. Johansson, Phys. Rev. B 41,7311 (1990)
    [58]N.A. Spaldin. Magnetic materials:fundamentals and device applications (Cambridge University Press, Cambridge,2003)
    [59]M. Sargolzaei, M. Richter. K. Koepernik, I. Opahle, H. Eschrig, I. Chaplygin, Phys. Rev. B 74, 224410(2006)
    [60]F.D. Murnaghau, Proc. Natl. Acad. Sci. USA 30,244 (1944)
    [61]V.V. Godlevsky, K.M. Rabe, Phys. Rev. B 63,134407 (2001)
    [62]A. Ayuela, J. Enkovaara. K. Ullakko, R.M. Nieminen, J. Phys.:Cond. Matt.11,2017 (1999)
    [63]J. Worgull, E. Petti, J. Trivisonno, Phys. Rev. B 54,15695 (1996)
    [64]H. Akinaga, T. Manago, M. Shirai, Japanese Journal of Applied Physics 39(Part 2, No.11B), L1118 (2000)
    [65]P. Mavropoulos, I. Galanakis, Journal of Physics:Condensed Matter 19(31),315221
    [66]M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Rev. Mod. Phys.80, 315(2008)
    [67]M. Geshi, K. Kusakabe, H. Tsukamoto, N. Suzuki, arXiv preprint cond-mat/0402641 (2004)
    [68]K. Kusakabe, M. Geshi, H. Tsukamoto, N. Suzuki, Journal of Physics:Condensed Matter 16(48), S5639
    [69]M. Sieberer, J. Redinger, S. Khmelevskyi, P. Mohn, Phys. Rev. B 73,024404 (2006)
    [70]O. Volnianska, P. Boguslawski, Phys. Rev. B 75,224418 (2007)
    [71]G. Gao, K. Yao, Z. Liu, J. Zhang, Y. Min, S. Fan, Physics Letters A 372(9),1512 (2008)
    [72]G.Y. Gao, K.L. Yao, E. Sasioglu, L.M. Sandratskii, Z.L. Liu, J.L. Jiang, Phys. Rev. B 75,174442 (2007)
    [73]G.Y. Gao, K.L. Yao, Z.L. Liu, J.L. Jiang, L.H. Yu, Y.L. Shi, Journal of Physics:Condensed Matter 19(31),315222(2007)
    [74]G.Y. Gao, K.L. Yao, Applied Physics Letters 91(8) (2007)
    [75]C.w. Zhang, S.s. Yan, H. Li, Physica Status Solidi (b) 245(1),201 (2008)
    [76]Y. Li, J. Yu, Phys. Rev. B 78,165203 (2008)
    [77]G. Gao, K. Yao, N. Li, Journal of Physics:Condensed Matter 23(7),075501 (2011)
    [78]G. Gao, K. Yao, Z. Liu, Y. Min, J. Zhang, S. Fan, D. Zhang, Journal of Physics:Condensed Matter 21(27),275502 (2009)
    [79]G. Gao, K.L. Yao, Journal of Applied Physics 106(5),053703 (2009)
    [80]W.E. Pickett, Computer Physics Reports 9(3),115 (1989)
    [81]M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys.64,1045 (1992)
    [82]W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Pettifor, Phys. Rev. Lett.91,037204 (2003)
    [83]V. Srivastava, M. Rajagopalan, S. Sanyal, The European Physical Journal B-Condensed Matter and Complex Systems 61(2),131 (2008)
    [84]G. Gokoglu,0. Giilseren, The European Physical Journal B-Condensed Matter and Complex Sys-tems 76(2),321 (2010)
    [85]A. Laref, E. oglu, I. Galanakis, Journal of Physics:Condensed Matter 23(29),296001 (2011)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700