纳微复合陶瓷的设计、制备及其摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷是一种具有广阔应用前景的新型工程材料,其以耐高温、耐腐蚀、耐磨损和抗氧化等诸多优点而受到人们的关注。氧化铝陶瓷是应用最广泛的一种结构陶瓷材料,在电子、机械、宇航工业等高科技领域有着广阔的应用前景,然而其较低的断裂强度、相对较差的抗热震性能和抗蠕变能力大大限制了其应用和发展。近年来,研究者们试图利用多相复合材料来改善氧化铝陶瓷的力学性能,其中以纳米级可相变四方相氧化锆作为弥散相和延性相的增韧氧化铝陶瓷是当前陶瓷材料领域的热点之一。基于此,同时考虑到CN_x:H薄膜具有低摩擦系数、良好的自润滑性和化学稳定性,是一种优异的耐磨、减摩和保护性涂层材料,而陶瓷材料的热膨胀系数与CN_x的接近,有利于降低薄膜与陶瓷基体的热膨胀应力、提高膜-基结合强度,本论文设计以ZrO2为连续相,以SiO_2添加剂作为陶瓷烧结中的玻璃相,采用“溶胶-共沉淀”方法制备ZrO_2/Al_2O_3纳微复合粉体。进而将ZrO2/Al2O3纳微复合粉体在常压下烧结得到ZrO2/Al2O3复相陶瓷,并在陶瓷表面沉积CNx:H薄膜,以填补陶瓷材料表面的缺陷、降低摩擦系数、提高耐磨性能。本论文的主要研究内容如下:
     1.纳米氧化锆陶瓷材料的制备及其形貌和粒径分析
     分别采用水和正丙醇-水混合液作为溶剂,以ZrOCl_2·8H_2O为原料,以二甲基二乙氧基硅烷为硅源,制备了二氧化硅修饰纳米氧化锆颗粒;分析了纳米氧化锆颗粒的形貌、粒径,以及SiO_2同ZrO_2纳米颗粒的键合方式。结果表明,当反应体系中存在SiO_2时,ZrO2颗粒随着反应时间的延长发生晶粒细化,团聚现象显著减弱。在醇水混合溶液中,在相同的反应条件得到的ZrO_2纳米颗粒具有片状结构。一方面,SiO_2作为异相成核的中心可促进晶粒细化,且无机锆盐在醇-水混合溶液中的水解和醇解更加完全,使生成的ZrO_2纳米颗粒的粒径较小(小于10nm)。另一方面,SiO2可作为ZrO2_晶体生长的结构取向剂,使ZrO_2能够定向生长。与此同时,SiO2经由Si―O―Zr化学键与ZrO2结合,有利于减轻纳米颗粒产物的团聚。总体而言,利用无机锆盐ZrOCl_2·8H_2O的醇解可以方便、快捷地制备ZrO_2纳米材料;且该方法可以拓展用于大量制备其它二维功能无机材料。2. ZrO_2/Al_2O_3复合陶瓷材料的制备及性能研究
     以简单易得、廉价的无机锆盐ZrOCl2·8H2O和商品α-Al_2O_3作为原料,采用“溶胶-共沉淀”方法,在水和正丙醇-水混合溶剂中制备了ZrO_2/Al_2O_3复合陶瓷粉体;分析了其组成和结构。结果表明,ZrO2/Al2O3复合陶瓷粉体以ZrO2为连续相,以SiO_2为玻璃相,二者均匀包裹在微米级商品α-Al_2O_3周围。随着ZrO_2/Al_2O_3质量比的增加(20:80,30:70,40:60,50:50),ZrO2在Al2O3表面的聚集加剧。当反应体系中存在SiO_2时,得到的ZrO_2/Al_2O_3复合粉体中的ZrO2颗粒发生细化。在正丙醇-水混合溶液中,当ZrO_2/Al_2O_3质量比为20:80时,制备的SiO_2修饰ZrO_2/Al_2O_3复合陶瓷粉体的粒径最小,分散性最好,商品α-Al_2O_3周围包覆的ZrO2数量最多;相应的烧结ZrO_2/Al_2O_3复相陶瓷的力学性能优异。在醇-水溶液中制备的SiO_2修饰ZrO_2/Al_2O_3纳微复合粉体经1600℃煅烧后,得到的复相陶瓷的密度大(约为4.16g/cm3,相对密度为99%)、硬度高(维氏硬度为2123HV,比采用商品氧化锆/氧化铝制得的陶瓷材料r-Z2A8的硬度高约40%,比采用商品α-Al_2O_3制得的陶瓷材料的硬度高约50%)、断裂韧性好(比采用商品原料制备的r-Z2A8的断裂韧性高约50%),具有一定的应用价值。
     3.硅基底上CN_x:H薄膜的制备及其摩擦磨损性能研究
     首次用乙二胺为前驱体,采用化学气相沉积(CVD)方法在单晶硅基底上制备了CN_x:H薄膜;分析了薄膜的结构,测定了其摩擦磨损性能。结果表明,在制备的CN_x:H薄膜中,碳主要以C═C双键的形式存在;提高生长温度使得CN_x:H膜中的N/C比降低、N原子进入薄膜石墨相中形成碳氮化合物。而在相对较低的制备温度(700℃和800℃)下得到的CN_x:H薄膜具有无定形结构,与硅基底的结合强度较差,且耐磨性能不佳。虽然在900℃下制备的CN_x:H薄膜的N/C比仅为0.02,但其由纳米晶组成,且与基底硅的结合强度最强,故其减摩抗磨性能最佳,经50小时滑动后摩擦系数仍然保持在较低水平(0.14)。与此同时,CN_x:H薄膜的摩擦系数主要同焙烧温度有关(即主要取决于C=C双键含量和是否形成CNx化合物),而其耐磨寿命主要同厚度密切相关。
     4.陶瓷基底上CN_x:H薄膜的制备及其摩擦磨损性能研究
     将化学气相沉积(CVD)方法,以乙二胺为前驱体热解制备CN_x:H薄膜的方法可以应用到金属、陶瓷表面。以乙二胺为前驱体,利用CVD方法(900~1000℃范围内热解)在自制的ZrO2/Al2O3复合陶瓷(ZTA)基底表面制备了纳米晶CN_x:H薄膜;分析了薄膜结构,并测定了其摩擦磨损性能。结果表明,CN_x:H薄膜中碳主要以C═C双键的形式存在,CN_x:H薄膜中的N与ZrO2/Al2O3复相陶瓷基底中的Al形成N―Al键。与此同时,陶瓷表面CN_x:H薄膜的氮原子进入到石墨相的晶格中形成CN化合物。CN_x:H薄膜的摩擦磨损行为与薄膜的微结构和化学结构密切相关。在1000℃得到的C═C双键含量最高(62.9%),其摩擦系数最低(约为0.15);而因膜基结合强度差使其耐磨损寿命较短。在950℃下制备的CN_x:H薄膜的C═C双键的含量约53.4%,且其膜基结合强度最大,故CN-950的耐磨寿命最长。在950℃下制备的不同厚度的CN-950样品的摩擦系数基本相同(约为0.22),耐磨寿命则随厚度不同而呈现明显差异。此外,当陶瓷基底的表面粗糙度不同时,相应的CN_x:H薄膜的摩擦系数相似(约为0.20),但耐磨寿命有所不同。与此同时,CN_x:H薄膜中的N原子与陶瓷基底中的Al原子形成N―Al键,使薄膜与基底间的结合强度增大,从而显著改善薄膜的耐磨性能。正因为如此,在陶瓷基底上制备的CN_x:H薄膜的耐磨性能比Si基底上的CN_x:H薄膜的耐磨性更优。
Advanced ceramics as engineering materials with promising application have attracted extensiveattention, due to their superior properties such as high temperature stability, chemical stability and wearresistance. Of various ceramics, Al2O3-based ceramics as the most widely used essential structural materialshave promising applications in electronic, machinery, and aerospace industries. However, their applicationsand development are highly limited by relatively low fracture toughness, poor thermal shock resistance andpoor creep resistance. To overcome that drawback, many researchers have tried to improve the mechanicalproperties of alumina ceramics though doping polyphase materials. Particularly, alumina ceramicstoughened with phase transformable tetra-ZrO_2as the dispersed phase and ductile phase have been highlyfocused on in the field of ceramics.
     Bearing those perspectives in mind, and noticing that CN_x:H film, as an excellent antiwear andfriction-reducing protective candidate, has low friction coefficient, good lubricity and good chemicalstability, while alumina ceramics have similar thermal expension coefficient as CNxfavoring to reduce thethermal expension stress of ceramics-CNx:H film thereby increasing the film-substrate bonding strength, inthe present research we design and fabricate ZrO_2/Al2O3composite ceramic powders via asol-coprecipitation route with ZrO_2as the continuous phase and SiO_2additive as the glassy phase forceramic sintering. As-obtained ZrO_2/Al2O3composite ceramic powders are sintered at ambient pressure togenerate ZrO_2/Al2O3multiphase ceramics. Moreover, CN_x:H film is deposited on the surfaces of thesintered composite ceramics so as to remove defects thereon and thereby reducing friction coefficient andincreasing wear resistance of the ceramics. The main contents of this thesis are as follows:
     1. Preparation of ZrO_2nanoparticles modified by SiO_2and analysis of their morphology and grain
     size
     ZrO_2nanoparticles modified by SiO_2are prepared from ZrOCl_2·8H_2O as the starting material anddiethoxydimethylsilane as the silicon source in the presence of water as the solvent or mixedn-propanol/water as the solvent. The morphology and grain size of resultant ZrO_2nanoparticles as well asthe bonding mode of SiO_2with ZrO_2are analyzed. Results show that when SiO_2is present in the reaction system, as-obtained ZrO_2grains are refined with increasing reaction time, and the agglomerationphenomenon is greatly retarded. In the mixture of n-propanol/water, ZrO_2nanoparticles with sheet-likestructure are obtained under the same experimental condition as that in water. On the one hand, SiO_2acts asthe center of heterogeneous nucleation to favor refining of ZrO2grains, while zirconium inorganic salt iscompletely hydrolyzed and/or alcoholyzed completely in the mixed solvent of n-propanol/water, resultingin ZrO2nanoparticles with a grain size of less than10nm. On the other hand, SiO_2may function as astructural manipulating agent to allow oriented growth of ZrO2nanoparticles. In the meantime, SiO_2ischemically combined with ZrO2via Si―O―Zr bond, benefiting to retard the agglomeration of as-preparedZrO2nanoparticles. In one word, ZrO2nanoparticles can be readily prepared by making use of thealcoholysis of inorganic ZrOCl_2·8H2O, and the approach may be well extended to prepare other similarfunctional inorganic nanomaterials.
     2. Preparation of ZrO2/Al2O3nano-micro composite ceramics and investigation of their properties
     ZrO2/Al2O3nano-micro composite ceramic powders are prepared from readily available ZrOCl2·8H2O oflow cost and commercial α-Al_2O_3as the starting materials via sol-coprecipitation route withn-propanol/water as the mixed solvent. The composition and microstructure of as-obtained ZrO2/Al2O3composite powders have been analyzed. It has been found that ZrO2is the continuous phase and SiO_2is theglassy phase in the composite ceramic powders, and they both well surround micron α-Al_2O_3. With theincrease of the mass ratio of ZrO_2:Al_2O_3(from20:80to30:70,40:60, and50:50), the agglomeration ofZrO_2surrounded by Al2O3tends to be serious. When the mass ratio of ZrO2:Al2O3is20:80, SiO_2-modifiedZrO_2/Al_2O_3obtained in the mixed solvent of n-propanol/water has a very small grain size and possessesgood dispersion capability as well as excellent mechanical properties. Corresponding ZrO2/Al2O3composite ceramics obtained by sintering of the composite ceramic powders at1600℃has a high density(about4.16g/cm3, relative density about99%) and hardness (Vickers hardness is about2123HV, which is40%higher than that of ZTA prepared from commercial ZrO_2/Al_2O_3and50%higher than that of aluminaceramic made from commercial α-Al_2O_3), showing potential application in engineering.
     3. Preparation of hydrogenated carbon nitride films on silicon substrate and evaluation of their
     friction and wear behavior
     Ethylenediamine is used as the precursor to prepare hydrogenated-carbon nitride (CN_x:H) films on silicon substrate via CVD route (pyrolysis of ethylenediamine). The microstructure of as-prepared CNx:Hfilms on Si substrate has been analyzed, and their friction and wear behavior has been evaluated. Resultsindicate that carbon in as-prepared CNx:H films exist mainly in the form of C═C. Increasing growthtemperature gives rise to a decrease of N/C ratio and contributes to formation of CNxcomposition. TheCNx:H films obtained at relatively lower temperatures of700oC and800oC are amorphous and have pooradhesion to Si substrate and hence poor wear resistance as sliding against stainless steel counterpart.Although the CNx:H film prepared at900oC has next to the lowest N/C ratio of0.02, it consists ofnanocrystalline and possesses the maximum adhesion to Si substrate, therefore it shows the best wearresistance among the four kinds of tested carbon nitride films. It seems that the incorporation of a smallamount of N atoms into the crystal lattice of graphite forming CNxcompounds in carbon films and resultsin improved wear resistance; and the antiwear life of as-deposited carbon nitride films is highly dependenton their thickness.
     4. Preparation of hydrogenated carbon nitride films on ceramic substrate and evaluation of their
     friction and wear behavior
     Hydrogenated-carbon nitride (CN_x:H) films are prepared on ceramic substrate via the pyrolysis ofethylenediamine in a temperature range of900~1000oC. The microstructure of as-prepared CNx:H films onZrO2/Al2O3ceramic substrate has been analyzed, and their friction and wear behavior has been evaluated.Results show that carbon in as-prepared CNx:H films exist mainly in the form of C═C, while N inas-prepared CNx:H films and Al in ZrO2/Al2O3composite ceramic substrate form N―Al bond. Besides, theCNx:H films formed on the composite ceramic substrates with different surface roughness have similarfriction coefficient (about0.20) but different antiwear life. In the meantime, N in the CNx:H films and Al inthe composite ceramic substrate form N―Al bond, which contributes to increase the bonding strengthbetween the films and the ceramic substrate and hence significantly improve wear resistance of the films.This is why the CNx:H films formed on the composite ceramic substrate have better wear resistance thanthe same films formed on Si substrate.
引文
[1]郭景坤.中国先进陶瓷研究及其展望[J].无机材料学报,1997,6:195-200.
    [2] X. H. Wu, P. Su, Z. H. Jiang, et al. Influences of current density on tribological characteristics ofceramic coatings on ZK60Mg alloy by plasma electrolytic oxidation [J]. Appl. Mater. Interfaces,2010,2(3):808–812.
    [3] V. Hlavacek, J. A. Puszynski. Chemical engineering aspects of advanced ceramic materials [J]. Ind.Eng. Chem. Res.,1996,35(2):349–377.
    [4] K. Kendall. Influence of powder structure on processing and properties of advanced ceramics [J].Powder Technol.,1989,58(3):151-161.
    [5] D. Bashford. A review of advanced metallic and ceramic materials suitable for high temperature use inspace structures [J]. Acta Astronaut.,1990,22:137-144.
    [6] G. B. Yu, W. Yan, S. H. Wang, et al. Toughening mechanism of lined Al2O3-ZrO2multiphase ceramicsin SHS composite pipes [J]. Miner. Metall. Mater.,2006,13(2):178-182.
    [7] X.M. Chen, B. Yang. A new approach for toughening of ceramics [J]. Mater. Lett.,1997,33(3-4):237-240.
    [8]钦征骑,钱杏南,贺盘发.新型陶瓷材料手册[M].江苏科学技术出版社,1995:1-5.
    [9]白春礼.纳米科学与技术[M].昆明:云南出版社,1995.
    [10] J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature [J]. Nature,1978,330(10):556-558.
    [11] R.W. Chan. Materials science: nanostructured materials [J]. Nature,1990,348:389-390.
    [12] K. T. Soo, G. Takashi, L. B. Taek. Microstructure control and mechanical properties of fibrousAl2O3/ZrO2composites fabricated by extrusion process [J]. Scr. Mater.,2005,52(8):725–729.
    [13] E. K. Koehler. The structure and properties of refractory zirconia ceramics II. Applied investigations:A review of research works carried out in the USSR [J]. Ceram. Int.,1984,10(2):66-74.
    [14] M. J. Mayo. Synthesis and applications of nanocrystalline ceramics [J]. Mater.&Des.,1993,14(6):323-329.
    [15] J. R. Kelly, I. Denry. Stabilized zirconia as a structural ceramic: An overview [J]. Dent. Mater.,2008,24(3):289-298.
    [16]王诚训,张义先,于青. ZrO2复合耐火材料[M].北京:冶金工业出版社,1997:216.
    [17] R. C. Garvie, R. H. Hannink, R. T. Pascoe. Ceramic steel [J]. Nature,1975,258:703-704.
    [18] A. Afrasiabi, M. Saremi, A. Kobayashi. A comparative study on hot corrosion resistance of three typesof thermal barrier coatings: YSZ, YSZ+Al2O3and YSZ/Al2O3[J]. Mater Sci&Eng: A,2008,478(1-2):264-269.
    [19] Y. S. Chou, E. C. Thomsen, J. P. Choi, et al. Compliant alkali silicate sealing glass for solid oxide fuelcell applications: The effect of protective YSZ coating on electrical stability in dual environment [J]. J.Power Sources,2012,202(15):149-156.
    [20]王焕英,宋秀芹.以六次甲基四胺为沉淀剂制备纳米ZrO2的研究[J].人工晶体学报,2005,34(4):615-619.
    [21] Z. C. H. Michael, D. H. Rodney, E. Andrew. Nanocrystallization and phase transformation inmonodispersed ultrafine zirconia particles from various homogeneous precipitation methods [J]. J.Am.Ceram. Soc.,1999,82(9):2313-2320.
    [22]王和义,傅依备.沉淀一乳化法制备二氧化锆纳米粉末技术研究[J].硅酸盐通报,1999,4:66-68.
    [23] Y. C. Liu, J. G. Chen, Y. H. Sun. Preparation of tailored pore size mesoporous zirconia with enhancedthermal stability via controlled sol-gel process [J]. Stud. Surf. Sci. Catal.,2005,156:249-256.
    [24] X. X. Li, L. Chen, B. Li. Preparation of zirconia nanopowders in ultrasonic field by the sol-gel method[J]. Eng. Mater.,2005,280-283:981-986.
    [25]程虎民,马玉荣,廖复辉,等.水热均匀沉淀法合成中孔氧化锆[J].物理化学学报,2003,19(4):326-328.
    [26] G. D. Agli, G. Mascolo. Hydrothermal synthesis of ZrO2–Y2O3solid solutions at low temperature [J]. J.Eur. Ceram. Soc.,2000,20(2):139-145.
    [27] M. B. Kizling, F. Regali. Preparation of zirconium oxide particles for catalyst supports by themicroemulsion technique. Characterization by X-ray diffraction, BET, SEM-EDX, FT-IR and catalytictests [J]. Stud. Surf. Sci. Catal.,1998,118:495-504.
    [28] C. Y. Tai, M. H. Lee, Y. C. Wu. Control of zirconia particle size by using two-emulsion precipitationtechnique [J]. Chem. Eng. Sci.,2001,56(7):2389-2398.
    [29] H. W. Brinkman, G. Z. Cao, J. Meijerink, et al. Modelling and analysis of CVD processes for ceramicmembrane preparation [J]. Solid State Ionics,1993,63-65:37-44.
    [30] V. S. Vladimir, W. Markus, H. Horst. Sintering behavior of nanocrystalline zirconia prepaned bychemical vapor synthesis [J]. J. Am. Ceram. Soc.,2000,83(4):729-736.
    [31]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [32] A. N. Samant, N. B. Dahotre, Laser machining of structural ceramics—A review [J]. J. Eur. Ceram.Soc.,2009,29(6):969-993.
    [33]黄勇,何锦涛,马天.氧化锆陶瓷的制备及其应用[J].稀有金属快报,2004,23(6):11-17.
    [34] D. J. Chen, M. J. Mayo. Densification and grain growth of ultrafine3mol%Y2O3-ZrO2ceramics [J].Nanostruct. Mater.,1993,2:469-478.
    [35]李蔚,高濂,李强.热压烧结制备纳米Y-TZP材料形貌及结构的分析[J].硅酸盐学报,2001,29(1):84-86.
    [36] S. P. S. Badwal, A. E. Hughes. The effects of sintering atmosphere on impurity phase formation andgrain boundary resistivity in Y2O3-fully stabilized ZrO2[J]. J. Eur. Ceram. Soc.,1992,10(2):115-122.
    [37] P. D. D Rodrigo, P. Boch. High purity mullite ceramics by reaction sintering [J]. Int. J High Tech.Ceram.,1985,1(1):3-30.
    [38] A. G. King. Effects of Processing on Properties [J]. Ceram. Tech. Process.,2002,333-377.
    [39] C. Ergun. Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing[J]. Ceram. Int.,2011,37(3):935-942.
    [40] A. Samdi, B. Durand, M. Roubin, et al. Pressing and sintering behaviour of yttria stabilized zirconiapowders prepared from acetate solutions [J]. J. Eur. Ceram. Soc.,1993,12(5):353-360.
    [41] A Goldstein, N Travitzky, A Singurindy, et al. Direct microwave sintering of yttria-stabilized zirconiaat2.45GHz [J]. J. Eur. Ceram. Soc.,1999,19(12):2067-2072.
    [42] B. Chen, C. Cheng, L. Xiong, et al. Transformation toughening of Al2O3/ZrO2laminated ceramicswith residual compressive stress [J]. J. Univ. Sci. Tech. Beijing, Miner. Metall. Mater.,2007,14(5):449-453.
    [43] M. Rühle. Microcrack and transformation toughening of zirconia-containing alumina [J]. Mater. Sci.Eng. A,1988,105-106:77-82.
    [44] G. Orange, G. Fantozzi, P. Homerin, et al. Preparation and characterization of a dispersion toughenedceramic for thermomechanical uses (ZTA). Part II: Thermomechanical characterization. Effect ofmicrostructure and temperature on toughening mechanisms [J]. J. Eur. Ceram. Soc.,1992,9(3):177-185.
    [45] N. Claussen, M Ruhle, A H Heuer. Microstructure design of zirconia toughened ceramics [J]. J. Am.Ceram. Soc.,1984,12(2):325-351.
    [46]方平安.包裹粉体制备氧化锆陶瓷的微结构形成与增韧机理的电镜研究[D].上海:中国科学院上海硅酸盐研究所,2004.
    [47] M. V.斯温主编,郭景坤等译.陶瓷的结构与性能[M].北京:科学技术出版社,1998:101.
    [48] H.G. Scott. Phase relationships in the zirconia-yttria system [J]. J. Mater. Sci.,1975,10:1527-1535.
    [49] M. V. Swain. Grain-size dependence of toughness and transformability of2mol%Y-TZP ceramic [J]. J.Mater. Sci. Lett.,1986,5:1159-1162.
    [50]施剑林,李包顺,陆正兰.3Y-TZP多晶材料密度、断裂相变与力学性能的相互关系[J].材料研究学报,1996,10(1):51-56.
    [51] Y. Lee, D.J. Kim, B.Y. Kin. Influence of alumina particle size on fracture toughness of(Y,Nb)-TZP/Al2O3composites [J]. J. Eur. Ceram. Soc.,2002,22:2173-2179.
    [52] N. Claussen, M. Ruhle, A. H. Yanagida (Eds), Advances in ceramics, Vol.12, science and technologyof zirconia Ⅱ [M]. American Ceramic Society. Columbus, OH,1985.
    [53] A. Sommers, Q. Wang, X. Han, et al. Ceramics and ceramic matrix composites for heat exchangers inadvanced thermal systems—A review [J]. Appl. Therm. Eng.,2010,30(11-12):1277-1291.
    [54] R. A. Cutler, K. M. Rigtrup, A. V. Virkar. Synthesis, sintering, microstructure and mechanicalproperties of ceramics made by exothermic reactions [J]. J. Am. Ceram. Soc.,1992,75(1):36-43.
    [55] L. Wang, Z. A. Munir, Y. M. Maximov. Thermite reactions their use in the synthesis and processing ofmaterials [J]. J. Mater. Sci.,1993,28:3693-3708.
    [56] S. B. Bhaduri, E. Zhou. Auto ignition synthesis and consolidation of Al2O3-ZrO2nano compositepowders [J]. J. Mater. Res.,1998,13(1):156-165.
    [57]单妍,王昕,尹衍升,等. ZTA纳米复相陶瓷的研究[J].硅酸盐通报,2002,2:43-46.
    [58] W. H. Tuan, R. Z. Chen, T. C. Wang, et al. Mechanical properties of Al2O3/ZrO2composites [J]. J. Eur.Ceram. Soc.,2002,22(16):2827-2833.
    [59] A. Leriche, G. Moortgat, F. Cambier, et al. Preparation and characterization of a dispersion toughenedceramic for thermomechanical uses (ZTA). Part I: Material preparation. Characterization ofmicrostructure [J]. J. Eur. Ceram. Soc.,1992,9(3):169-176.
    [60] S. Kimoto, K. Hirota, O. Yamaguchi. Formation and sintering of yttria-doped tetragonal zirconia with50mol%alumina prepared by the hydrazine method [J]. J. Am. Ceram. Soc.,1994,77(6):1694-1696.
    [61] S. Hori, M. Yoshimura, S. Somiya, et al. Al2O3-ZrO2ceramics prepared from CVD powders.Scienceand technology of ZirconiaⅡ [J]. Advan. Ceram.,1984,12:794-805.
    [62] T. Sornakumar, M. V. Gopalakrishnan, R. Krishnamurthy, et al. Development of alumina and Ce-TTZceramic-ceramic composite (ZTA) cutting tool [J]. Int. J. Refract. Met. Hard Mater.,1995,13(6):375-378.
    [63] A. S. Kumar, A. R. Durai, T Sornakumar. Machinability of hardened steel using alumina basedceramic cutting tools [J]. Int. J. Refract. Met. Hard Mater.,2003,21(3-4):109-117.
    [64] B. Mondal, A. B. Chattopadhyay, A. Virkar, et al. Development and performance of zirconia-toughened alumina ceramic tools [J]. Wear,1992,156(2):365-383.
    [65] C. Piconi. Oxide Ceramics for Biomedical Applications [M]. Encyclopedia Mater.: Sci. and Tech.(Second Edition),2001:6595-6601.
    [66] J. Chevalier, P. Taddei, L. Gremillard, et al. Reliability assessment in advanced nanocompositematerials for orthopaedic applications [J]. J. Mech. Behav. Biomed.,2011,4(3):303-314.
    [67]朱屯,王福明,王习东,等.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.
    [68]花国然,黄因慧,赵剑锋等.激光熔覆纳米Al2O3等离子喷涂陶瓷涂层[J].中国有色金属学报,2004,14(2):199-203.
    [69]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:270.
    [70]赵兴中,刘家浚,朱宝亮,陶瓷的润滑问题[J].材料研究学报,1995,9(5):420-427.
    [71] E. E. Klaus, J. L. Duda, W. T. Wu. Lubricated wear of silicon nitride [J]. Lubr. Eng.,1991,47:679-684.
    [72]薛群基,魏建军.陶瓷润滑研究的发展概况[J].摩擦学学报,1995,15(1):90-96.
    [73]周玉.摩擦材料学[M].哈尔滨:哈尔滨工业出版社,1995.
    [74] W. Bundschuh, K. H. Z. Gahr. Effect of temperature on friction and oscilating wear of dense andporous3Y-TZP zirconia ceramics [J]. Tribol. Int.,1994,27(2):97-103.
    [75] H. W. Liu, Q. J. Xue. The tribological properties of TZP-graphite self-lubricating ceramics [J]. Wear,1996,198(1-2):143-149.
    [76] M. Kalin, G. Dra i, S. Novak, et al. Wear mechanisms associated with the lubrication of zirconiaceramics in various aqueous solutions [J]. J. Eur. Ceram. Soc.,2006,26(3):223-232.
    [77] D. H. Buckley. Surface films and metallurgy related to lubrication and wear [J]. Prog. Surf. Sci.,1982,12(1):1-153.
    [78] T. Aizawa, A. Mitsuo, S. Yamamoto, et al. Self-lubrication mechanism via the in situ formedlubricious oxide tribofilm [J]. Wear,2005,259(1-6):708-718.
    [79] A. Y. Liu, M. L. Cohen. Prediction of new low compressibility solids [J]. Science,1989,245:841-842.
    [80]王鹏.碳基纳米复合薄膜的设计、制备及其性能研究[D].兰州:中科院兰州化学物理研究所,2008,5.
    [81] A. Grill. Diamond-like carbon: state of the art [J]. Diamond. Relat. Mater.,1999,8:428-434.
    [82] Y. Funada, K. Awazu, H. Yasui, et al. Adhesion strength of DLC films on glass with mixing layerprepared by IBAD[J]. Surf. Coat. Technol.,2000,128:308-312.
    [83] C. Corbella, M. Vives, G. Oncins, et al. Characterization of DLC films obtained at room temperatureby pulsed-dc PECVD[J]. Diam. Relat. Mater.,2004,13:1494-1499.
    [84] S. Kumar, C. M. S. Rauthan, P. N. Dixit, et al. Versatile microwave PECVD technique for depositionof DLC and other ordered carbon nanostructures [J]. Vaccum,2001,63:433-439.
    [85]刘军. CNx薄膜的制备与研究[D].江苏:江苏大学,2007:10.
    [86] P. Hammer, R. G. Lacerda, Jr. R. Droppa, et al. Comparative study on the bonding structure ofhydrogenated and hydrogen free carbon nitride films with high N content [J]. Diam. Relat. Mater.,2000,9:577-581.
    [87] M. Allon-Alaluf, N. Croitoru. Nitrogen and iodine doping in amorphous diamond-like carbon films [J].Diam. Relat. Mater.,1997,6:555-558.
    [88] H. Sj str m, S. Stafstr m, M. Boman, et al. Superhard and elastic carbon nitride thin films havingfullerenelike microstructure [J]. Phys. Rev. Lett.,1995,75:1336-1339.
    [89] A. C. Ferrari, J. Robertson. Raman spectroscopy of amorphous, nanostructured, diamond-like carbonand nanodiamond [J]. Phil. Trans. R. Soc. Lond. A,2004,362:2477-2512.
    [90] A. C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon [J].Phys. Rev. B,2000,61:14095-14107.
    [91] J. Schwan, S. Ulrich, V. Batori, et al. Raman spectroscopy on amorphous carbon films [J]. J. Appl.Phys.,1996,80:440-447.
    [92] B. Marcus, L. Fayette, M. Mermoux, et al. Analysis of the structure of multi-component carbon filmsby resonant Raman scattering [J]. J. Appl. Phys.,1994,76:3463-3470.
    [93] M. A. Capano, N. T. McDevitt, R. K. Singh, et al. Characterization of amorphous carbon thin films [J].J. Vac. Sci. Technol. A,1996,14:431-435.
    [94] S. Zhang, X. T. Zeng, H. Xie, et al. A phenomenological approach for the Id/Igratio and sp3fraction ofmagnetron sputtered a-C films [J]. Surf. Coat. Technol.,2000,123:256-260.
    [95] D. Beeman, J. Silverman, R. Lynds, et al. Modeling studies of amorphous carbon [J]. Phys. Rev. B.,1984,30:870-875.
    [96] D. P. Dowling, M. J. Ahern, T. C. Kelly. Characterization study of diamond and diamond-like carbon[J]. Surf. Coat. Technol.,1992,53:177-183.
    [97]陈光华,吴现成,贺德衍.氮化碳薄膜的结构与特性[J].无机材料学报,2001,16(2):377-380.
    [98] K. Kato, N. Umehara, K. Adachi. Friction, wear and N2lubrication of carbon nitride coatings: areview [J]. Wear,2003,254:1062-1069.
    [99] K. Kato, K. Adachi. Superlubricity of CNx-coatings in nitrogen gas atmosphere [J]. Superlubricity,2007,341-364.
    [1]李成功,姚熹等著.当代社会经济的先导——新材料[M].北京:新华出版社,1992.
    [2] S. T. Aruna, K. S. Rajam. Mixture of fuels approach for the solution combustion synthesis ofAl2O3-ZrO2nanocomposites [J]. Mater. Res. Bull.,2004,39:157–167.
    [3]卢德新,李佐宜. NH4+对ZrO2超细粉性能的影响[J].功能材料,1994,25(4):345-349.
    [4] A. C. Dodd, P. G. McCormick. Synthesis of nano-crystalline ZrO2powders by mechanochemicalreaction of ZrCl4with LiOH [J]. J.Eur. Ceram. Soc.,2002,22:1823-1829.
    [5] Z. Yi, S. W. Lee, L. Gao, et al. Atmospheric plasma sprayed coatings of nanost ructured zirconia [J].J. Eur. Ceram. Soc.,2002,22:347-351.
    [6]章天金,彭芳明.溶胶-凝胶工艺合成ZrO2超微粉末的研究[J].无机材料学报,1996,11(3):435-440.
    [7] G. Stefanic, S. Popvic, S. Music. Influence of pH on the hydrothermal crystallization kinetics andcrystal structure of ZrO2[J]. Theremochemica Acta,1997,303:31-39.
    [8] Y. T. Moon, D. K. Kim, C. H. Kin. Preparation of monodisperse ZrO2by the microwave heating ofzirconyl chloride solutions [J]. J. Am. Ceram. Soc.,1995,78(4):1103-1106.
    [9] Z. G. Wu, Y. X. Zhao, D. S. Liu. The synthesis and characterization of silica-zirconia aerogels [J].Micropor. Mesopor. Mater.,2004,68:127-132.
    [10] P. Colomban, E. Bruneton. Influence of hydrolysis conditions on crystallization, phase transitions andsintering of zirconia gels prepared by alkoxide hydrolysis [J]. J. Non-Cryst. Solids,1992,147-148:201-205.
    [11] K. Matsui, M. Ohgai. Phase transformation of hydrous-zirconia fine particles containing ceriumhydroxide [J]. J. Am. Ceram. Soc.,1999,82(11):3017–3023.
    [12]胡红英,胡慧萍,陈启元,等.球磨作用对改性二氧化硅热行为的影响[J].功能材料,2007,38(4):619-622.
    [13] D. Zheng, B. G. Anderson, Y. Amenomiya, et al. Silica-supported zirconia.1. Characterization byinfrared spectroscopy, temperature-programmed desorption, and X-ray diffraction [J]. Phys. Chem.,1995,99:14437-14443.
    [14] Y. Abe, N. Sugimoto. Preparation of monolithic gels SiO2–MxOy(M=Al, Zr) by the reaction ofsilicic acid with metal chelate compounds [J]. Non-cryst. Solids,1989,108:150-l56.
    [15] S. W. WANG, X. X. Huang, J. K. Guo. Wet chemical synthesis of ZrO2-SiO2composite powders [J].Eur. Ceram. Soc.,1996,16:1057-1061.
    [16] X. X. Wang, F. Lefebvre, J. Patarin, et al. Synthesis and characterization of zirconium containingmesoporous silicas I. Hydrothermal synthesis of Zr-MCM-41-type materials [J]. Micropor. Mesopor.Mater.,2001,42:269-276.
    [17] N. N. Zhao, D. C. Pan, W. Nie, et al. Two-phase synthesis of shape-controlled colloidal zirconiananocrystals and their characterization [J]. J. Am. Chem. Soc.,2006,128:10118-10124.
    [18] Y. J. Guo, X. T. Zu, B. Y. Wang, et al. XPS investigation of diffusion of two-layer ZrO2/SiO2andSiO2/ZrO2sol–gel films [J]. Optik-Int. J. Light Electron Opt.,2009,120:1012-1015.
    [19] K. Matsui, M. Ohgai. Formation mechanism of hydrous-zirconia particles produced by hydrolysis ofZrOCl2solutions: III, kinetics study for the nucleation and crystal-growth processes of primaryparticles [J]. J. Am. Ceram. Soc.,2001,84:2303–2312.
    [20] F. D. Monte, W. Larsen, J. D. Mackenzie. Chemical interactions promoting the ZrO2tetragonalstabilization in ZrO2-SiO2binary oxides [J]. J. Am. Ceram. Soc.,2000,83:1506-1512.
    [21] D. W. Liu, C. H. Perry, R. P. Ingel. Infrared spectra in nonstoichiometric yttria-stabilized zirconiamixed crystals at elevated temperatures [J]. J. Appl. Phys.1988,64:1413–1417.
    [22] P. Innocenzi. Infrared spectroscopy of sol–gel derived silica-based films: a spectra microstructureoverview [J]. J. Non-Cryst. Solids,2003,316:309-319.
    [23] S. W. Wang, X. X. Huang, J. K. Guo. Wet chemical synthesis of ZrO2-SiO2composite powders [J]. J.Eur. Ceram. Soc.,1996,16:1057-1061.
    [24] K. Matsui, M. Ohgai. Formation mechanism of hydrous zirconia particles produced by hydrolysis ofZrOCl2solutions [J]. J. Am. Ceram. Soc.,2002,85:545-553.
    [1] S. M. A. Shibli, F. Chacko, C. Divya. Al2O3–ZrO2mixed oxide composite incorporated aluminiumrich zinc coatings for high wear resistance [J]. Corros. Sci.,2010,52(2):518-525.
    [2] L. Qi, M. X. Xu, Y. M. Tian, et al. Preparation of alumina-doped yttria-stabilized zirconiananopowders by microwave-assisted peroxyl-complex coprecipitation [J]. Trans. Nonferrous Met. Soc.of China,2006,16(1):426-430.
    [3] D. D. Jayaseelan, D. A. Rani, T. Nishikawa, et al. Powder characteristics, sintering behavior andmicrostructure of sol–gel derived ZTA composites [J]. J. Eur. Ceram. Soc.,2000,20(3):267-275.
    [4] H. Gocmez, H. Fujimori, M. Tuncer, et al. The preparation and characterization of Al2O3/ZrO2nanocrystalline composite by a simple gel method [J]. Mater. Sci.&Eng.: B,2010,173(1-3):80-83.
    [5] C. C. Chen, F. S. Yen, C. Y. Huang. Aging effects on the characteristics and sintering behavior ofcoprecipitated Al2O3/ZrO2powders [J]. Ceram. Int.,1994,20(5):379-384.
    [6] M. Ipek, S. Zeytin, C. Bindal. An evaluation of Al2O3–ZrO2composites produced by coprecipitationmethod [J]. J. Alloys Compd.,2011,509(2):486-489.
    [7]徐刚,何万波,张影,等.添加钾长石对镁掺杂钛酸铝陶瓷烧结及热膨胀行为和抗弯强度的影响[J].硅酸盐学报,2011,3(2):273-277.
    [8]高景霞,陈昌平,黄淼淼,等. TiO2-CAS添加剂对氧化铝陶瓷密度和显微结构的影响[J].硅酸盐通报,2007,26(3):602-606.
    [9]路宗禹,赵学晓.工程陶瓷材料维氏硬度测定及分析[J].哈尔滨电工学院学报,1990,13(2):192-197.
    [10] F. Heshmatpour, Z. Khodaiy, R. B. Aghakhanpour. Synthesis and characterization of pure tetragonalnanocrystalline sulfated8YSZ powder by sol–gel route [J]. Powder Technol., In Press,2012.
    [11] C. Zhang, J. Yang, T. Qiu, et al. Preparation of ZTA ceramic by aqueous gelcasting with a low-toxicmonomer DMAA [J]. Ceram. Int.,2012,38(4):3063-3068.
    [12] D. Sarkar, S. Adak, M. C. Chu, et al. Influence of ZrO2on the thermo-mechanical response ofnano-ZTA [J]. Ceram. Int.,2007,33(2):255-261.
    [1] H. Kinoshita, M. Kiyama, H. Suzuki. Supermagnetron plasma CVD of highly effective a-CNx:Helectron-transport and hole-blocking films suited to Au/a-CNx:H/p-Si photovoltaic [J]. Thin SolidFilms,2009,517(14):4218-4221.
    [2] J. H. Niu, L. L. Zhang, Z. H. Zhang, et al. Deposition of hydrogenated amorphous carbon nitride filmsby dielectric barrier discharge plasmas [J]. Appl. Surf. Sci.,2010,256:6887-6892.
    [3] B. B. Fabre, K. Zellama, C. Godet,et al. Comparative study of the structure of a-CNxand a-CNx:Hfilms using NEXAFS, XPS and FT-IR analysis [J]. Thin Solid Films,2005,482(1-2):156-166.
    [4] E. Broitman, N. Hellgren, O. W nstrand, et al. Mechanical and tribological properties of CNx filmsdeposited by reactive magnetron sputtering [J]. Wear,2001,248(1-2):55-64.
    [5] Y. Kusano, J. E. Evetts, R. E. Somekh, et al. Properties of carbon nitride films deposited bymagnetron sputtering [J]. Thin Solid Films,1998,332(1-2):56-61.
    [6] Y. Kusano, Z.H. Barber, J.E. Evetts, et al. Tribological and mechanical properties of carbon nitridefilms deposited by ionised magnetron sputtering [J]. Surf. Coat. Technol.,2000,124(2-3):104-109.
    [7] X. R. Zou, J. Q. Xie, J. Y. Feng. Structural and tribological characteristics of carbon nitride filmsdeposited by the reactive ionized-cluster beam technique [J]. Surf. Coat. Technol.,1999,111(2-3):119-122.
    [8] J. Wei, P. Hing, Z. Q. Mo. Structure and tribological behaviour of carbon nitride films [J]. Wear,1999,225-229(2):1141-1147.
    [9] A. G. Khurshudov, K. Kato. Tribological properties of carbon nitride overcoat for thin-film magneticrigid disks [J]. Surf. Coat. Technol.,1996,86-87:664-671.
    [10] C. Z. Wu, Q. X. Guo, P. Yin, et al. Synthesis of nitrogen-doped carbon nanostructures by the reactionsof small molecule carbon halides with sodium azide [J]. J. Phys. Chem. B,2005,109(7):2597-2604.
    [11] V. N. Khabashesku, J. L. Zimmerman, J. L. Margrave. Powder synthesis and characterization ofamorphous carbon nitride [J]. Chem. Mater.,2000,12(11):3264-3270.
    [12] L. Maya, D. R. Cole, E. W. Hagaman. Carbon–nitrogen pyrolyzates: attempted preparation of carbonnitride [J]. J. Am. Ceram. Soc.,1991,74(7):1686-1688.
    [13] D. C. Nesting, J. V. Badding. High-pressure synthesis of sp2-bonded carbon nitrides [J]. Chem. Mater.,1996,8(7):1535-1539.
    [14] C. J. Lee, S. C. Lyu, H. W. Kim, et al. Synthesis of bamboo-shaped carbon–nitrogen nanotubes usingC2H2–NH3–Fe(CO)5system [J]. Chem. Phys. Lett.,2002,359(1-2):115-120.
    [15] N. Hellgren, M. P. Johansson, E. Broitman, et al. Role of nitrogen in the formation of hard and elasticCNxthin films by reactive magnetron sputtering [J]. Phys. Rev. B,1999,59(7):5162-5169.
    [16] A. Graaf, G. Dinescu, J. L. Longueville. Amorphous hydrogenated carbon nitride films deposited viaan expanding thermal plasma at high growth rates [J]. Thin Solid Films,1998,333(1-2):29-34.
    [17] J. Takadoum, J. Y. Rauch, J. M. Cattenot,et al. Comparative study of mechanical and tribologicalproperties of CNxand DLC films deposited by PECVD technique [J]. Surf. Coat. Technol.,2003,174-175:427-433.
    [18] W. C. Chan, M. K. Fung, K. H. Lai, I. Bello, et al. Mechanical properties of amorphous carbon nitridefilms synthesized by electron cyclotron resonance microwave plasma chemical vapor deposition [J].Non-Cryst. Solids,1999,254(1-3):180-185.
    [19] A. Vinu, K. Ariga, T. Mori, et al. Preparation and characterization of well-ordered hexagonalmesoporous carbon nitride [J]. Adv. Mater.,2005,17(13):1648-1652.
    [20] S. Q. Song, Q. M. Gao, J. H. Jiang, et al. A novel kind of porous carbon nitride using H-magadiite asthe template [J]. Mater. Lett.,2008,62(16):2520-2523.
    [21] J. C. S. López, C. Donnet, F. Lefèbvre, et al. Bonding structure in amorphous carbon nitride: Aspectroscopic and nuclear magnetic resonance study [J]. J. Appl. Phys.,2001,90(2):675-681.
    [22] J. Y. Hao, T. Xu, W. M. Liu. Preparation and characterization of hydrogenated carbon nitride filmssynthesized by dual DC-RF plasma system [J]. Mater. Sci. and Eng. A,2005,408(1-2):297-302.
    [23] D. W. Zeng, K. C. Yung, C. S. Xie. XPS investigation of the chemical characteristics of Kapton filmsablated by a pulsed TEA CO2laser [J]. Surf. Coat. Technol.,2002,153(2-3):210-216.
    [24] S. Acquaviva, A. Perrone, A. Zocco, et al. Deposition of carbon nitride films by reactivesubpicosecond pulsed laser ablation [J]. Thin Solid Films,2000,373(1-2):266-272.
    [25] P. Hammer, R. G. Lacerda, R. Droppa, et al. Comparative study on the bonding structure ofhydrogenated and hydrogen free carbon nitride films with high N content [J]. Diam. Relat. Mater.,2000,9(3-6):577-581.
    [26] N. Paik, Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ionsource [J]. Surf. Coat. Tech.,2005,200:2170-2174.
    [27]27N. Hellgren, M.P. Johansson, E. Broitman, et al. Role of nitrogen in the formation of hard andelastic CNx thin films by reactive magnetron sputtering [J]. Phys. Rev. B,1999,59:5162-5169.
    [28] Z.W. Deng, R. Souda, Synthesis and thermal decomposition of carbon nitride films prepared bynitrogen ion implantation into graphite[J]. Thin Solid Films,2002,406:46-53.
    [29] E. Riedo, F. Comin, J. Chevrier, et al. Structural properties and surface morphology of laser-depositedamorphous carbon and carbon nitride films [J]. Surf. Coat. Technol.,2000,125(1-3):124-128.
    [30] E. Ozensoy, C.H.F. Peden, J. Szanyi. NO2Adsorption on Ultrathin-Al2O3Films: Formation ofNitrite and Nitrate Species [J]. J. Phys. Chem. B,2005,109:15977-15984.
    [31] M. Aono, S. Aizawa, N. Kitazawa, et al. XPS study of carbon nitride films deposited by hot filamentchemical vapor deposition using carbon filament [J]. Thin Solid Films,2008,516:648-651.
    [32] A. Majumdar, J. Sch fer, P. Mishra, et al. Chemical composition and bond structure of carbon-nitridefilms deposited by CH4/N2dielectric barrier discharge[J]. Surf. Coat. Technol,2007,201(14):6437-6444.
    [33] T. Ujvari, A. Toth, M. Mohai, et al. Composition and chemical structure characteristics of CNxlayersprepared by different plasma assisted techniques[J]. Solid State Ionics,2001,141-142:63-69.
    [34] C. Castiglioni, E. Donato, M. Tommasini, et al. Multi-wavelength Raman response of disorderedgraphitic materials: models and simulations [J]. Synth. Metals.,2003,139(3):885-888.
    [35]35H. Kuzmany, R. Pfeiffer, N. Salk, et al. The mystery of the1140cm1Raman line innanocrystalline diamond films [J]. Carbon,2004,42(5-6):911-917.
    [36] C. Ferrari, J. Robertson. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon,and nanodiamond [J]. Phil. Trans. R. Soc. Lond. A,2004,362:2477-2512.
    [37] P. Wang, X. Wang, Y. M. Chen, et al. The effect of applied negative bias voltage on the structure ofTi-doped a-C:H films deposited by FCVA [J]. Appl. Surf. Sci.,2007,253(7):3722-3726.
    [38] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, et al. Nitrogen modification of hydrogenatedamorphous carbon films [J]. J. Appl. Phys.,1997,81(6):2626-2634.
    [39] L. Wan, R. F. Egerton. Preparation and characterization of carbon nitride thin films [J]. Thin SolidFilms,1996,279(1-2):34-42.
    [40] S. E. Rodil, A. C. Ferrari, J. Robertson, et al. Raman and infrared modes of hydrogenated amorphouscarbon nitride [J]. J. Appl. Phys.,2001,89(10):5425-5430.
    [41] Y. L. Yu, B. Zhang, J. Y. Zhang. Fabrication of highly conductive Ru/a-CNx:H composite films byanode deposit [J]. Electrochem. Commun.,2009,11(4):772-775.
    [42] M. Zhang, Y. Nakayama, S. Harada. Photoluminescence of hydrogenated amorphous carbon nitridefilms after ultraviolet light irradiation and thermal annealing [J]. J. Appl. Phys.,1999,86(9):4971-4977.
    [43] C. Thomsen, S. Reich. Double Resonant Raman Scattering in Graphite [J]. Phys. Rev. Lett.,2000,85(24):5214-5217.
    [44] I. Haruhiko, N. Taro, S. Akihiko, et al. Hydrogen-storage characteristics of hydrogenated amorphouscarbon nitrides [J]. Thin Solid Films,2008,516(19):6575-6579.
    [45] A. V. Stanishevsky, S. Holliday. Mechanical properties of sol–gel calcium titanate bioceramiccoatings on titanium [J]. Surf. Coat. Technol.,2007,202(4-7):1236-1241.
    [1] D. F. Wang, K. Kato. Humidity effect on the critical number of friction cycles for wear particlegeneration in carbon nitride coatings [J]. Wear,2003,254(1-2):10-22.
    [2] D. H. Cho, Y. Z. Lee. Evaluation of ring surfaces with several coatings for friction, wear and scuffinglife[J]. Trans. Nonferrous Met. Soc. of China,2009,19(4):992-996.
    [3] Chih-Chung T,Yang Wen-Cheng,J Wei. Effects of material properties and testing parameters onwear properties of fine grain zirconia TZP [J]. Wear,2000,242:97-104.
    [4] S R Jansen, A J AWinnubst, Y J He, et al. Effect of grain size and ceria addition on ageing behaviourand tribological properties of Y-TZP ceramics [J]. J Eur. Ceram. Soc.,1998,18:557-563.
    [5] G. S. Lee, S. H. Bae, Y. Z. Lee. The influence of formation of transfer layer on the characteristics offriction and wear mechanism between several coatings and anodized aluminum alloy [J]. Surf. Coat.Technol.,2010,205: S152-S157.
    [6] X. Q. Zhao, Y. L. An, J. M. Chen, et al. Properties of Al2O3–40wt.%ZrO2composite coatings fromultra-fine feedstocks by atmospheric plasma spraying [J]. Wear,2008,265(11-12):1642-1648.
    [7] A. K. Dey, K. Biswas. Dry sliding wear of zirconia-toughened alumina with different metal oxideadditives [J]. Ceram. Int.,2009,35(3):997-1002.
    [8] C. Yang, S. Bahadur. Friction and wear behavior of alumina-based ceramics in dry and lubricatedsliding against tool steel [J]. Wear,1992,157(2):263-277.
    [9] D. F. Wang, K. Kato. Effect of coating thickness on friction for carbon nitride films in repeated slidingagainst a spherical diamond with nano-scale asperities [J]. Wear,2002,252(3-4):210-219.
    [10] S. B. Wei, T. M. Shao, P. Ding. Improvement of orthodontic friction by coating archwire with carbonnitride film [J]. Appl. Surf. Sci.,2011,257(24):10333-10337.
    [11] K. Miyoshi. Friction and wear properties of as-deposited and carbon ion-implanted diamond films[J].Mater. Sci.&Eng: A,1996,209(1-2):38-53.
    [12] Vinu, K. Ariga, T. Mori, et al. Preparation and characterization of well-ordered hexagonal mesoporouscarbon nitride [J]. Adv. Mater.,2005,17(13):1648-1652.
    [13] S. Q. Song, Q. M. Gao, J. H. Jiang, et al. A novel kind of porous carbon nitride using H-magadiite asthe template [J]. Mater. Lett.,2008,62(16):2520-2523.
    [14] J. C. S. López, C. Donnet, F. Lefèbvre, et al. Bonding structure in amorphous carbon nitride: Aspectroscopic and nuclear magnetic resonance study [J]. J. Appl. Phys.,2001,90(2):675-681.
    [15] Y. Hao, T. Xu, W. M. Liu. Preparation and characterization of hydrogenated carbon nitride filmssynthesized by dual DC-RF plasma system [J]. Mater. Sci. and Eng. A,2005,408(1-2):297-302.
    [16] D. W. Zeng, K. C. Yung, C. S. Xie. XPS investigation of the chemical characteristics of Kapton filmsablated by a pulsed TEA CO2laser [J]. Surf. Coat. Technol.,2002,153(2-3):210-216.
    [17] S. Acquaviva, A. Perrone, A. Zocco, et al. Deposition of carbon nitride films by reactivesubpicosecond pulsed laser ablation [J]. Thin Solid Films,2000,373(1-2):266-272.
    [18] P. Hammer, R. G. Lacerda, R. Droppa, et al. Comparative study on the bonding structure ofhydrogenated and hydrogen free carbon nitride films with high N content [J]. Diam. Relat. Mater.,2000,9(3-6):577-581.
    [19] N. Paik, Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ionsource [J]. Surf. Coat. Tech.2005,200:2170-2174.
    [20] N. Hellgren, M.P. Johansson, E. Broitman, et al. Role of nitrogen in the formation of hard and elasticCNx thin films by reactive magnetron sputtering [J]. Phys. Rev. B,1999,59:5162-5169.
    [21] Z.W. Deng, R. Souda, Synthesis and thermal decomposition of carbon nitride films prepared bynitrogen ion implantation into graphite[J]. Thin Solid Films,2002,406:46-53.
    [22] A. Majumdar, J. Sch fer, P. Mishra, et al. Chemical composition and bond structure of carbon-nitridefilms deposited by CH4/N2dielectric barrier discharge [J]. Surf. Coat. Technol.2007,201:6437-6444.
    [23] E. Riedo, F. Comin, J. Chevrier, et al. Structural properties and surface morphology of laser-depositedamorphous carbon and carbon nitride films [J]. Surf. Coat. Technol.,2000,125(1-3):124-128.
    [24] Rosenberger, R. Baird, E. McCullen, G.Auner, G. Shreve, XPS analysis of aluminum nitride filmsdeposited by plasma source molecular beam epitaxy [J]. Surf. Interface Anal.,2008,40:1254–1261.
    [25] L. Chan, K. T. Lau, T. T. Wong, et al. Interfacial bonding characteristic of nanoclay/polymercomposites [J]. Appl. Surf. Sci.,2011,258(2):860-864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700