超高分子量聚乙烯耐磨性和导热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分子量聚乙烯(UHMWPE或UPE)以其优越的物理机械性能如抗冲击性、耐磨损性、自润滑性、无毒性和耐低温性等性能而应用于医疗、采矿业、油气资源开发、纺织、化工及体育运动器械等领域,特别是在人工关节和耐磨管道方面的应用。但是在使用过程中,一方面因为UPE本身是线性结构,另外一个方面因为导热系数低,磨擦生热使材料温度升高,UPE仍然容易发生蠕变和强度疲劳而影响材料的磨擦等性能。因此本论文从两个大的方面对UPE进行改性:(1)通过添加辐照敏化剂进行辐照交联的方法使UPE形成交联网络,改变UPE的线性结构,使UPE不易产生塑性变形等蠕变现象。(2)提高UPE的导热系数,把因磨擦生热而产生的热量导出,从而降低因温度升高而导致的蠕变,导热部分主要研究包括:UPE本征导热;比较内容中包括添加Al_2O_3制备UPE/Al_2O_3、LLDPE/Al_2O_3和Epoxy/Al_2O_3复合材料;添加碳材料(石墨NG、碳纤维CF和石墨烯GS)制备UPE/NG、UPE/CF和UPE/GS复合材料。具体研究内容及结论如下:
     1. UPE、TMPTMA/UPE和TPGDA/UPE复合材料
     通过引入交联助剂TMPTMA和TPGDA到UPE中,后经电子束辐照交联,可保证在降低辐照剂量的同时提高UPE材料的交联程度。通过FTIR和溶胀平衡测试、DSC、电子拉力机、磨擦试验机、SEM对辐照前后的材料的结构、凝胶含量、交联点间分子量、结晶度、力学性能、磨擦性能、磨擦形貌进行了表征和研究。主要结论如下:
     (a) FTIR和凝胶含量测试结果表明复合材料中均发生了交联反应,TPGDA/UPE和TMPTMA/UPE的凝胶含量均高于纯UPE的凝胶含量,TMPTMA和TPGDA的加入有利于在降低辐照剂量的同时提高UPE的交联程度。
     (b)辐照后材料的结晶度均有所增加,而且TMPTMA/UPE和TPGDA/UPE的结晶度高于UPE的结晶度,说明TMPTMA和TPGDA这两种交联助剂小分子的加入有利于UPE结晶。
     (c) UPE材料结晶度的提高和交联度的提高有利于UPE磨擦性能的提高,如1%TMPTMA/UPE(100kGy)和1%TPGDA/UPE(100kGy)的磨损率分别为1.89×10-7mm3/(N m)和4.28×10-7mm3/(N m),分别为UPE(100kGy)磨损率(4.28×10-7mm3/(N m))的44.2%和100%。表明TMPTMA对于降低UPE的磨损率是有效的,而TPGDA因为增塑作用却几乎没有作用。SEMs的结果也表明1%TMPTMA/UPE(100kGy)的表面最光滑,溶胀平衡实验结果也表明1%TMPTMA/UPE(100kGy)的交联点间分子量(Mc=3141g/mol)低于UPE(100kGy)的交联点间分子量(Mc=5055g/mol)。
     2. UPE本征导热
     通过控制降温程序的方法提高UPE材料的本征导热性能。通过DSC法研究了UPE材料的熔融重结晶过程,主要结论如下:
     (a)降温速率、保温温度和保温时间均会影响材料的结晶,降温速率越慢,在125℃保温,且保温时间越长越有利于UPE材料结晶度的提高和结晶的规整性。
     (b)通过DSC法研究发现随机冷却最有利于UPE材料结晶度的提高和熔点的提高,也有利于材料密度的增加和导热系数的提高,拉伸强度有所提高。随机冷却的UPE的导热系数为0.593W/(m K)比10min水压冷的UPE材料的导热系数0.503W/(m K)高17.9%。
     (c) UPE导热系数的提高是由于UPE中的一个一个球晶连成的晶桥来实现的,即导热提高的机理为结晶晶桥导热机理,随机冷却的方式相当于拓宽了晶桥的宽度,从而有利于导热声子的传递,导热系数提高。
     3. UPE/Al_2O_3、LLDPE/Al_2O_3和Epoxy/Al_2O_3复合材料对比性研究
     通过在乙醇熔液共混热压法(UPE和Al_2O_3的粉末混合、包覆、热压法)制备了UPE/Al_2O_3复合材料,并对UPE/Al_2O_3复合材料进行了退火热处理,哈克密炼法制备了LLDPE/Al_2O_3复合材料,真空浇注法制备了Epoxy/Al_2O_3复合材料,研究高结晶材料和低结晶材料、结晶材料和非晶材料、热处理对材料导热性能的影响。通过SEM、TGA、DSC、导热仪、介电谱仪和高阻计对形成的复合材料的分散性、热性能、结晶情况或玻璃化转变温度、导热系数、介电性能和电阻率。主要结论如下:
     (a)本征导热高的基体,形成的复合材料的导热系数也高。DSC测试表明树脂基体结晶度大小次序为LLDPE     (b)热处理可以提高结晶复合材料的结晶度和结晶规整性,同时可以提高材料的导热系数。热处理后的UPE/Al_2O_3(100phr)的熔融热比热处理前分别提高了18.5%,熔点提高了3.8℃,导热系数可以提高到了1.960W/(m K),比处理前的导热系数1.554W/(m K)高出约35.4%。
     (c)无定形聚合物Epoxy的导热系数小于结晶聚合物PE的导热系数,添加相同份数的Al_2O_3填料后导热系数增加的倍数也小。UPE/Al_2O_3(12.0vol%)、LLDPE/Al_2O_3(12.0vol%)和Epoxy/Al_2O_3(13.8vol%)三种复合材料的导热系数分别为1.160W/(m K)、0.909W/(m K)和0.425W/(m K),分别比各自树脂基体的导热系数提高了132.0%、102.4%和72.8%。
     (d)添加Al_2O_3后,复合材料的热稳定性能都有所提高。UPE/Al_2O_3(100phr)、LLDPE/Al2O(3100phr)和Epoxy/Al_2O_3(100phr)的5%热失重温度为467℃、461℃和366℃,分别比纯基体提高了11.5℃、13℃和34℃。三种复合材料均获得了较好介电性能和电性能。
     4. UPE/NG、UPE/CF和UPE/GS复合材料
     用改性的Hummers法制备了氧化石墨烯,氧化石墨烯在水-乙醇溶液的混合液中和UPE混合,水合肼还原,然后再通过热压的方法制备了UPE/GS复合材料。通过在乙醇溶液混合和热压成型的方法制备了UPE/NG、UPE/CF复合材料。研究三种高导热高导电碳材料对于UPE材料导热导电性能的影响。主要结论如下:
     (a)利用FT-IR、XRD等手段对石墨烯进行了结构表征;利用AFM和TEM对石墨烯形貌进行了表征;用TGA方法研究了其热稳定性,结果表明制备了石墨烯材料。
     (b)复合材料越致密、导热晶体结构越规整越有利于导热通路的形成。复合材料的导热性能次序为:UPE/NG>UPE/CF>UPE/GS,这与复合材料的结构有关,UPE/NG的结构规整,材料密度随着填料的增加而逐渐增加;UPE/CF复合材料的结构整体上规整,但还是有有一定的团聚现象,但宏观上的TGA测试还是比较均匀的,材料的密度变化不大;UPE/GS复合材料的密度随着GS的增加反而是下降的,GS的加入引入了很多空隙。UPE/NG(60phrNG)、UPE/CF(60phr CF)和UPE/GS(10phr GS)的导热系数为分别为3.257W/(m K)、0.778W/(m K)和0.52W/(m K),分别比UPE的导热系数提高了556.7%、56.9%和4.8%。
     (c)填料为10phr时,复合材料的导电次序为UPE/CF>UPE/GS>UPE/NG。电导率次序和导热性能次序不一样,导电机理为电子导电,电子可以很容易地跨越界面壁垒,受界面影响不大;而导热机理为逾渗理论,且导热主要以声子导热为主,导热声子很难跨越界面壁垒,受界面影响较大。所以说并不能把导热机理等同于导电机理。
Ultra High Molecular Weight Polyethylene (UPE) with its excellent mechanical propertiessuch as high impact resistance, wear resistance, self-lubrication, non-toxic and low temperatureresistance and other properties has been used in the fields of medical, mining, oil and gasexploitation, textile chemical and sports equipment, especially in the application of artificial jointsand wear-resistant pipe. However, the liner structure of UPE and frictional heat during the usemake UPE creep weak and the strength fatigue, and then affect the wear property of UPE. So UPEis modified from two aspects:(1) the irradiation sensitizer is added into UPE to form a crosslinkednetwork to change the linear structure of UPE to make UPE difficult to produce plasticdeformation and creep.(2) Improving the thermal conductivity of UPE is used to export frictionalheat to reduce creep caused by elevated temperature. The method consists of three parts: theimprovement of UPE intrinsic thermal conductivity, Preparation of UPE/Al_2O_3, LLDPE/Al_2O_3andEpoxy/Al_2O_3composites; Preparation of UPE/NG, LLDPE/CF and Epoxy/GS composites. Thedetail contents and conclusions are as follows:
     1UPE/Al_2O_3, LLDPE/Al_2O_3and Epoxy/Al_2O_3composites
     TMPTMA and TPGDA are dispersed on the UPE powders by the solution method. UPE,TMPTMA/UPE和TPGDA/UPE composites were made by compression-molded and thencrosslinked by EB. The method above can reduce the irradiation dose at the same time to increasethe crosslinking degree of UPE. FTIR, Swelling balance test, DSC, Electronic tensile testingmachine, friction tester, SEM are used to test the structure changes before and after irradiation, thegel content, crosslinking point between molecular weight, degree of crystallinity, mechanicalproperties, friction properties, friction morphology. The main conclusions are as follows:
     (a) FTIR and gel content show that the crosslink reaction happens in the composite,. The gelcontent of TMPTMA/UPE和TPGDA/UPE composites are all higher than that of UPE. The addingof TMPTMA and TPGDA can reduce the irradiation dose at the same time to increase thecrosslinking degree of UPE.
     (b) The degree of crystallinity of all specimens increases after irradiation. The degree ofcrystallinity of TMPTMA/UPE和TPGDA/UPE composites are all higher than that of that of UPE,showing that the adding of TMPTMA and TPGDA are useful to increasing the degree ofcrystallinity.
     (c) The increasing of the degree of crystallinity and the degree of crosslinking are useful toincreasing the wear resistance of UPE. The wear rate of1%TMPTMA/UPE(100kGy) and1%TPGDA/UPE(100kGy) is1.89×10-7mm3/(N m) and4.28×10-7mm3/(N m),respectively, about44.2%and100%of the wear rate of UPE(4.28×10-7mm3/(N m)).
     2UPE intrinsic thermal conductivity
     The intrinsic thermal conductivity of the material of the UPE is improved by controlling thecooling process. The melting and recrystallization process of UPE is studied by DSC method.Themain conclusions are as follows:
     (a) Cooling rate, holding temperature and holding time will affect the degree of crystallinityof UPE. The slower the cooling rate, the holding temperature at125℃and the longer theholding time are useful to improve the degree of crystallinity and crystallization tacticity of UPE.
     (b) Stochastic cooling is most useful to increase the degree of crystallinity and melting pointof UPE by the DSC method, and also helpful to improve the tensile strength of UPE. Thermalconductivity of UPE (Stochastic cooling) is0.593W/(m K),17.9%higher than thermalconductivity of UPE(press with water for10min)(0.503W/(m K)).
     (c) The improvement of thermal conductivity of UPE is due to the connection of the crystalbridge formed by UPE spherulites. The heat conduction mechanism of UPE is the crystal bridgeconduction mechanism. Stochastic cooling manner is equivalent to widening the width of thecrystal bridge, thereby useful to the transmission of the thermal conductivity phonons, so thethermal conductivity is improved.
     3UPE/Al_2O_3, LLDPE/Al_2O_3and Epoxy/Al_2O_3composites
     UPE/Al_2O_3composite is prepared by powder mixing in ethanol and compression-moldedmethods. Then UPE/Al_2O_3composite is thermal treated at200℃. LLDPE/Al_2O_3composite ismade by Huck mixing method. Epoxy/Al_2O_3composite is made by vacuum casting method.Thermal Conductivity between Highly crystalline materials and low-crystalline materials,crystalline materials and amorphous materials, thermal treatment and un-thermal treatment are studied. The dispersion, thermal properties, crystalline or glass transition temperature, thermalconductivity, dielectric properties and resistivity of UPE/Al_2O_3, LLDPE/Al_2O_3and Epoxy/Al_2O_3composites are measured by SEM, TGA, DSC, thermal analyzer, dielectric spectroscopy and highresistance meter. The main conclusions are as follows:
     (a) If intrinsic thermal conductivity of the polymer matrix is high, thermal conductivity of theforming composite is also high. The degree of crystallization order is LLDPE      (b) Thermal treatment can increase the degree of crystallinity and the crystalline regularity ofthe crystalline of the composite, at the same time can improve the thermal conductivity of thematerial. After thermal treatment, the heat of fusion and the melting point are18.5%,3.8℃higher than that of UPE/Al_2O_3(100phr) composite before thermal treatment, respectively. Thermalconductivity of UPE/Al_2O_3(100phr) after thermal treatment is1.960W/(m K),35.4%higherthan that of UPE/Al_2O_3(100phr) before thermal treatment (1.554W/(m K)).
     (c) Thermal conductivity of Epoxy(Amorphous polymer) is lower than thermal conductivityof PE(crystalline polymer). After adding the same content of Al_2O_3filler, thermal conductivityincreasing proportion of Epoxy composite is also lower than that of PE composite. Thermalconductivity of UPE/Al_2O_3(12.0vol%)、LLDPE/Al_2O_3(12.0vol%) and Epoxy/Al_2O_3(13.8vol%)are1.160W/(m K),0.909W/(m K) and0.425W/(m K),respectively,132.0%,102.4%and72.8%higher than that of each of the resin matrix.
     (e) Thermal stability of the composite after adding Al_2O_3filler,5%weight loss temperatureof UPE/Al_2O_3, LLDPE/Al_2O_3and Epoxy/Al_2O_3are467℃,461℃and366℃, respectively,11.5℃13℃and34℃,higher than the pure matrix. Three composites all have good dielectricproperties and electrical properties.
     4UPE/NG, UPE/CF and UPE/GS composites
     Graphene oxide(GO) is prepared by modified Hummers method. GO is mixed with UPE inwater-ethanol solution, then GO is reduced by hydrazine hydrate. At last, UPE/GS is prepared bythe hot press method. UPE/NG and UPE/CF composites are prepared by powder mixing in ethanoland compression-molded methods. Influences of the three kinds of carbon materials on electricconductivity and thermal conductivity performances of UPE composites. The main conclusions are as follows:
     (a) FT-IR and XRD is used to characterize the structure of graphene. AFM and TEM are usedto characterize the graphene morphology. TGA is used to study the thermal stability of graphene.The results above show that the graphene is prepared.
     (b) If the composite is more dense and the crystal structure of the filler is more regular, thethermal conductive path will be easy to formed. Thermal conductivity of the composite order isUPE/NG>UPE/CF>UPE/GS, which is related to the structure of the composites. UPE/NGcomposite has regular structure and the density gradually increases with the increasing filler.UPE/CF composite is regular on the overall structure of the material, but still has a certainagglomeration, and the density has little change. The density of UPE/GS material decreases withthe increasing GS, GS join introduces a lot of gaps. Thermal conductivities of UPE/NG(60phrNG)、UPE/CF(60phr CF)and UPE/GS(10phr GS)composites are3.257W/(m K)、0.778W/(m*K) and0.52W/(m K), respectively,556.7%,56.9%and4.8%higher than that of UPE matrix.
     (c) When the filler content is10phr, electric conductivity order of the three composites isUPE/CF>UPE/GS>UPE/NG. The electric conductivity order is not same as thermal conductivityorder, showing that the electric conductivity mechanism is not same as the thermal conductivitymechanism. Electric conductivity mechanism is mainly affected by the electronic conductivity, notaffected by the interface so large. Thermal conductivity mechanism is percolation theory andthermal is mainly transmitted by phonon combined with some electronic thermal conductivity.Thermal conductivity is also influenced by the interface and the interface effect is very big. Soelectric conductivity mechanism cannot simply be transformed to thermal conductivity mechanism.The two mechanism are not the same thing.
引文
[1] R. Lee, A. Essner, A. Wang, W.L. Jaffe. Scratch and wear performance of prostheticfemoral head components against crosslinked UHMWPE sockets[J]. Wear,2009,267(11):1915-1921.
    [2] A. Kilgour, A. Elfick. Influence of crosslinked polyethylene structure on wearof joint replacements[J]. Tribology International,2009,42(11-12):1582-1594.
    [3] H. Liu, S. Ge, S. Cao, S. Wang. Comparison of wear debris generated from ultrahigh molecular weight polyethylene in vivo and in artificial joint simulator[J].Wear,2011,271(5-6):647-652.
    [4] R. Lerf, D. Zurbrugg, D. Delfosse. Use of vitamin E to protect cross-linked UHMWPEfrom oxidation[J]. Biomaterials,2010,31(13):3643-3648.
    [5] B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker, K. Brummitt. Wear of UHMWPEsliding against untreated, titanium nitride-coated and ‘Hardcor’-treatedstainless steel counterfaces[J]. Wear,1995,181-183(part1):258-262.
    [6] E. Oral, O.K. Muratoglu, Radiation cross-linking in ultra-high molecular weightpolyethylene for orthopaedic applications[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2007,265(1):18-22.
    [7] L. Xiong, D.S. Xiong, J.B. Jin. Study on Tribological Properties of IrradiatedCrosslinking UHMWPE Nano-Composite[J]. Journal of Bionic Engineering,2009,6(1):7-13.
    [8]陈战,王家序,秦大同.超高分子量聚乙烯的性能及在机械领域中的应用[J].机械工程材料,2001,25(8):1-2.
    [9] K. L. Alderson, R.S. Webber,K. E. Evans. Novel variations in the microstructureof auxetic ultra-high molecular weight polyethylene. Part2: Mechanical properties[J]. Polymer Engineering&Science,2000,40(8):1906-1914.
    [10]何继敏,薛平,何亚东.超高分子量聚乙烯性能及应用[J].工程塑料应用,1996,24(5):55-56.
    [11] H.E. Svetlik. UHMWPE lines: An engineered solution to production corrosionproblems [J].Proc. of NACE Corrosion,1997,136:699-713.
    [12]何红,朱复华.单螺杆挤出过程粒子熔融理论[J].中国塑料,2003,17(2):102-104.
    [13]刘广建.超高分子量聚乙烯[M」.北京:化学工业出版社,2001.
    [14]明艳,贾润礼.超高分子量聚乙烯成型加工及改性[J].合成树脂及塑料,2002,19(4):68-72.
    [15]黄丽,郑旖旎,吕亚非.不同混合方式对超高分子量聚乙烯复合材料中填料粒子分散性的影响[J].北京化工大学学报,2006,33(l):105-109.
    [16」 A.Bahattin,T.Teoman. Radiation grafting of various water-soluble monomerson ultra-high molecular weight polyethylene powder: Part I. Grafting conditions andgrafting yield [J].Radiation Physics and Chemistry,2001,60(3):237-243.
    [17] J.M. Hofsté, K.J.R. Bergmans, J. de Boer, R. Wevers, A.J. Pennings. Shortaramid-fiber reinforced ultra-high molecular weight polyethylene[J]. PolymerBulletin,1996,36(2):213-220.
    [18] J.M. Hofsté, H.H. G. Smit, A.J. Pennings. Wear behaviour of discontinuous aramidfibre reinforced ultra-high molecular weight polyethylene[J]. Polymer Bulletin,1996,37(3):385-392.
    [19] S.R. Bakshi, J.E. Tercero, A. Agarwal. Synthesis and characterization ofmultiwalled carbon nanotube reinforced ultra high molecular weight polyethylenecomposite by electrostatic spraying technique[J].Composites Part A: Applied Scienceand Manufacturing,2007,38(12):2493–2499.
    [20]尚尔魁.碳纳米管增强超高分子量聚乙烯复合材料纤维界面强度的分子动力学仿真[M].大连:大连理工大学,2010.
    [21]胡永乐.超高分子量聚乙烯复合磨擦学材料的研制及其性能研究[M].兰州:兰州大学,2011.
    [22] A. Gupta, G. Tripathi, D. Lahiri, K.Balani.Compression Molded Ultra HighMolecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon NanotubeHybrid Composites for Hard Tissue Replacement[J].Journal of Materials Science&Technology.doi.org/10.1016/j.jmst.2013.03.010.
    [23] M.E. Babiker, Y. Muhuo. The Effects of Loading of Montmorillonite (MMT) on theProperties of the Ultra-High Molecular Weight Polyethylene (UHMWPE/Organo-MMT)Nanocomposite Sheets Prepared by Gel and Pressure Induced Flow (PIF) Processing[J].Arabian Journal for Science and Engineering,2013,38(3):479-490.
    [24] E.M. Lee, Y.S. Oh, H.S. Ha, H.M. Jeong, B.K. Kim. Ultra High Molecular WeightPolyethylene/Organoclay Hybrid Nanocomposites[J]. Journal of Applied PolymerScience,2009,114(3):1529–1534.
    [25]彭学成.填充改性UHMWPE复合材料及加工研究[M].北京:北京化工大学,2006.
    [26]谢晓芳.超高分子量聚乙烯超细无机粉体填充、有机交联改性复合材料性能研究[M].北京:北京化工大学,2004.
    [27] R. Lerf, D. Zurbrugg, D. Delfosse. Use of vitamin E to protect cross-linkedUHMWPE from oxidation[J], Biomaterials,2010,31(13):3643-3648.
    [28] P. Bracco, V. Brunella, M. Zanetti, M.P. Luda, L. Costa, Stabilisation ofultra-high molecular weight polyethylene with Vitamin E[J], Polymer Degradation andStability,2007,92(12):2155-2162.
    [29] L. Costa, I. Carpentieri, P. Bracco, Post electron-beam irradiation oxidationof orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized withvitamin E[J], Polymer Degradation and Stability,2009,94(9):1542-1547.
    [30] M.S. Jahan, B.M. Walters, Macroradical reaction in ultra-high molecular weightpolyethylene in the presence of vitamin E[J], Radiation Physics and Chemistry,2011,80(2):281-285.
    [31] E. Oral, K.K. Wannomae, S.L. Rowell, O.K. Muratoglu, Diffusion of vitamin Ein ultra-high molecular weight polyethylene[J], Biomaterials,2007,28(35):5225-5237.
    [32] M.J. Martínez-Morlanes, P. Castell,P.J. Alonso, M.T. Martinez, J.A. Puértolas.Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiatedultrahigh molecular weight polyethylene composites[J].Carbon,2012,50(7):2442–2452.
    [33] Q. Li, S. Basavarajaiah, N.H. Kim,S. Heo,J.H. Lee. Synergy Effect of HybridFillers on the Positive Temperature Coefficient Behavior ofPolypropylene/Ultra-High Molecular Weight Polyethylene Composites[J]. Journal ofApplied Polymer Science,2010,116(1):116–124.
    [34] Y. Bin, C. Xu, D Zhu, M. Matsuo. Electrical properties of polyethylene and carbonblack particle[J]. Carbon,2002,40(2):195–199.
    [35] Y. Xi, H. Ishikawa, Y. Bin, M. Matsuo. Positive temperature coefficient effectof LMWPE–UHMWPE blends filled with short carbon fibers[J]. Carbon,2004,42(8-9):1699–1706.
    [36] H.L. Hu,G. Zhang, L.G. Xiao, H.J. Wang, Q.S. Zhang, Z.D. Zhao. Preparation andelectrical conductivity of graphene/ultrahigh molecular weight polyethylenecomposites with a segregated structure[J].Carbon,2012,50(12):4596–4599.
    [37] C. Zhang, C.A. Ma, P. Wang, M. Sumita. Temperature dependence of electricalresistivity for carbon black filled ultra-high molecular weight polyethylenecomposites prepared by hot compaction[J].Carbon,2005,43(12):2544-2553.
    [38] G.R Valenciano, A.E Job, L.H.C. Mattoso. Improved conductivity of films of ultrahigh molecular weight polyethylene and polyaniline blends prepared from anm-cresol/decaline mixture[J]. Polymer,2000,41(12):4757–4760.
    [39]陈茹.超高分子量聚乙烯基导电复合材料的电/热性能研究[D],大连:大连理工大学,2010.
    [40]万莉.抗静电超高分子量聚乙烯管材生产技术开发研究[M],四川:四川大学,2005.
    [41]王苏娜.矿用阻燃、抗静电超高分子量聚乙烯复合材料的研究[M].北京:北京化工大学,2003.
    [42] Z.Han, A.Fina.Thermal conductivity of carbon nanotubes and their polymernanocomposites: A review[J]. Progress in polymer science,2011,36(7):914-944.
    [43] Pierson, H. O. Handbook of carbon, graphite, diamond, and fullerenes:properties, processing,and applications[M]. William Andrew,1993.
    [44] K. Goodson. Thermal Conductivity of Solids[J]. Science315,342(2007), DOI:10.1126/science.1138067.
    [45]林凌剑,盖国胜,杨玉芬.超高分子量聚乙烯基复合材料导热性能研究[J].中国粉体技术,2010,(6):33-35.
    [46]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[M].武汉:武汉材料保护研究所,2002.
    [47]周文英.高导热绝缘高分子复合材料研究[D].西安:西北工业大学,2007.
    [48]汪雨荻,周和平.AlN/聚乙烯复合基板的导热性能[J].无机材料学,2000,15(6):1030-1036.
    [49]李莹莹,朱冬生.超高分子量聚乙烯基纳米复合材料的导热性能研究[J].化工新型材料,2009,37(1):72-74.
    [50]周文英,张亚婷.本征型导热高分子材料[J].合成树脂及塑料,2010,27(2):69-73.
    [51] C.L. Choy, W.H. Luk, F.C. Chen. Thermal conductivity of highly orientedpolyethylene[J]. Polymer,1978,19(2):155-162.
    [52]蔡忠龙,黄元华,杨光武.超拉伸聚乙烯的弹性模量和导热性能[J].高分子学报,1997,6(3):331-342.
    [53] S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen. Polyethylene nanofibres withvery high thermal conductivities[J]. Nature Nanotechnology,2010,5(4):251-255.
    [54] B.Y. Cao, Y.W. Li, J. Kong, H. Chen, Y. Xu. K.L. Yung. A. Cai. High thermalconductivity of polyethylene nanowire arrays fabricated by an improved nanoporoustemplate wetting technique[J]. Polymer,2011,52(8):1711-1715.
    [55] C.L. Choy, Y.W. Wong, G.W. Yang, T. Kanamoto. Elastic modulus and thermalconductivity of ultradrawn polyethylene[J]. Journal of Polymer Science Part B:Polymer Physics,1999,37(23):3359-3367.
    [56] A. Yamanaka, Y. Izumi, T. Kitagawa. The Radiation Effect on Thermal Conductivityof High Strength Ultra-High-Molecular-Weight Polyethylene Fiber by γ-Rays[J].Journal of Applied Polymer Science,2006,101(206):2619–2626.
    [57] D.A. Baker, R.S. Hastings, L. Pruitt. Study of fatigue resistance of chemicaland radiation crosslinked medical grade ultrahigh molecular weight polyethylene[J].Journal of Biomedical Materials Research,1999,46(4):573-581.
    [58] R.M. Gul. The effects of peroxide content on the wear behavior, microstructureand mechanical properties of peroxide crosslinked ultra-high molecular weightpolyethylene used in total hip replacement[J]. Journal of Materials Science:Materials in Medicine,2008,19(6):2427-2435.
    [59] S.M. Kurtz, L.A. Pruitt, C.W. Jewett, J.R. Foulds, A.A. Edidin. Radiation andchemical crosslinking promote strain hardening behavior and molecular alignment inultra high molecular weight polyethylene during multi-axial loading conditions[J].Biomaterials,1999,20(16):1449-1462.
    [60] C.Y. Tang, X.L. Xie, X.C. Wu, R.K.Y. Li, Y.W. Mai. Enhanced wear performanceof ultra high molecular weight polyethylene crosslinked by organosilane[J]. Journalof Materials Science: Materials in Medicine,2002,13(11):1065-1069.
    [61] P. Bracco, V. Brunella, M.P. Luda. Oxidation behaviour in prosthetic UHMWPEcomponents sterilised with high-energy radiation in the presence of oxygen[J].Polymer Degradation and Stability,2006,91(12):3057-3064.
    [62] P. Bracco. Oxidation behaviour in prosthetic UHMWPE components sterilised withhigh energy radiation in a low-oxygen environment[J]. Polymer Degradation andStability,2006,91(9):2030-2068.
    [63] A.M. Visco, L. Torrisi, N. Campo, U. Emanuele, A. Trifiro, M. Trimarchi.Mechanical Performance of Electron-Beam-Irradiated UHMWPE in Vacuum and in Air[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials, B2009,89B(1):55-64.
    [64] M. Choudhury, I.M. Hutchings. The effects of irradiation and ageing on theabrasive wear resistance of ultra high molecular weight polyethylene[J]. wear,1997203-204:335-440.
    [65] L. Costa, I. Carpentieri, P. Bracco. Post electron-beam irradiation oxidationof orthopaedic UHMWPE. Polymer Degradation and Stability,2008,93(9):1695-1703.
    [66] M. Dalborg, K. Jacobson, S. Jonsson. Methods for determining the spatialdistribution of oxidation in ultra-high molecular-weight polyethyleneprostheses[J]. Polymer Degradation and Stability,2007,92(3):437-447.
    [67] A.A. Mendes, A.M. Cunha, C.A. Bernardo. Study of the degradation mechanismsof polyethylene during reprocessing[J]. Polymer Degradation and Stability,2011,96(6):1125-1133.
    [68] S.E. Levine, L.J. Broadbelt. Detailed mechanistic modeling of high-densitypolyethylene pyrolysis: Low molecular weight product evolution[J]. PolymerDegradation and Stability,2009,94(5):810-822.
    [69] K. Jacobson. Oxidation of ultra high molecular weight polyethylene (UHMWPE)part1: Interpretation of the chemiluminescence curve recorded during thermaloxidation[J]. Polymer Degradation and Stability,2006,91(9):2126-2132.
    [70] F.J. Medel, F. Garcia-Alvarez, E. Gomez-Barrena, J.A. Puertolas.Microstructure changes of extruded ultra high molecular weight polyethylene aftergamma irradiation and shelf-aging[J]. Polymer Degradation and Stability,2005,88(3):435-443.
    [71] T. Ueno, E. Nakashima, K. Takeda. Quantitative analysis of random scission andchain-end scission in the thermal degradation of polyethylene[J]. PolymerDegradation and Stability,2010,95(9):1862-1829.
    [72] B.R. Burroughs, T.A. Blanchet. The effect of pre-irradiation vacuum storageon the oxidation and wear of radiation sterilized UHMWPE[J]. Wear,2006,261(11-12):1277-1284.
    [73] C.J. Perez, E.M. Valles, M.D. Failla. The effect of post-irradiation annealingon the crosslinking of high-density polyethylene induced by gamma-radiation[J].Radiation Physics and Chemistry,2010,79(6):710-717.
    [74] L. Xiong, D.S. Xiong, Y.Y. Yang, J.B. Jin. Effect of irradiation dose on plasticdeformation of vacuum hot pressed ultra high molecular weight polyethylene[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2010,268(17-18):2846-2849.
    [75] P. Bracco, V. Brunella, M. Zanetti, M.P. Luda, L. Costa. Stabilisation ofultra-high molecular weight polyethylene with Vitamin E[J]. Polymer Degradation andStability,2007,92(12):2155-2162.
    [76] L. Costa, I. Carpentieri, P. Bracco. Post electron-beam irradiation oxidationof orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized withvitamin E[J]. Polymer Degradation and Stability,2009,94(9):1542-1547.
    [77] M.S. Jahan, B.M. Walters. Macroradical reaction in ultra-high molecular weightpolyethylene in the presence of vitamin E[J]. Radiation Physics and Chemistry,2011,80(2):281-285.
    [78] E. Oral, K.K. Wannomae, S.L. Rowell, O.K. Muratoglu. Diffusion of vitamin Ein ultra-high molecular weight polyethylene[J]. Biomaterials2007,28(35):5225-5237.
    [79] P. Gijsman, H.J. Smelt, D. Schumann. Hindered amine light stabilizers: Analternative for radiation cross-linked UHMWPE implants[J]. Biomaterials,2010,31(26):6685-6691.
    [80] H.J. Liu, Y.N. Pei, D. Xie. Surface modification of ultra-high molecular weightpolyethylene (UHMWPE) by argon plasma[J]. Applied Surface Science,2010,256(12):3941-3945.
    [81] A. Kondyurin, P. Naseri, K. Fisher, D.R. McKenzie, M.M.M. Bilek. Mechanismsfor surface energy changes observed in plasma immersion ion implanted polyethylene:The roles of free radicals and oxygen-containing groups[J]. Polymer Degradation andStability,2009,94(4):638-646.
    [82] P. Bracco, V. Brunella, M.P. Luda, M. Zanetti, L. Costa. Radiation-inducedcrosslinking of UHMWPE in the presence of co-agents: chemical and mechanicalcharacterisation[J]. Polymer,2005,46(24):10648-10657.
    [83] H. Marrs, D.C. Barton, R.A. Jones, I.M. Ward, J. Fisher, C. Doyle. Comparativewear under four different tribological conditions of acetylene enhancedcross-linked ultra high molecular weight polyethylene[J]. Journal of MaterialsScience: Materials in Medicine,1999,10(6):333-342.
    [1] R. Lee, A. Essner, A. Wang, W.L. Jaffe. Scratch and wear performance of prostheticfemoral head components against crosslinked UHMWPE sockets[J]. Wear,2009,267(11):1915-1921.
    [2] A. Kilgour, A. Elfick. Influence of crosslinked polyethylene structure on wearof joint replacements[J]. Tribology International,2009,42(11-12):1582-94.
    [3] H. Liu, S. Ge, S. Cao, S. Wang. Comparison of wear debris generated from ultrahigh molecular weight polyethylene in vivo and in artificial joint simulator[J].Wear,2011,271(5-6):647-652.
    [4] R. Lerf, D. Zurbrugg, D. Delfosse. Use of vitamin E to protect cross-linked UHMWPEfrom oxidation[J]. Biomaterials,2010,31(13):3643-3648.
    [5] B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker, K. Brummitt. Wear of UHMWPEsliding against untreated, titanium nitride-coated and ‘Hardcor’-treatedstainless steel counterfaces[J]. Wear,1995,181-183(part1):258-262.
    [6] E. Oral, O.K. Muratoglu. Radiation cross-linking in ultra-high molecular weightpolyethylene for orthopaedic applications[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2007,265(1):18-22.
    [7] L. Xiong, D.S. Xiong, J.B. Jin. Study on Tribological Properties of IrradiatedCrosslinking UHMWPE Nano-Composite[J]. Journal of Bionic Engineering,2009,6(1):7-13.
    [8] K. Plumlee, C.J. Schwartz. Improved wear resistance of orthopaedic UHMWPE byreinforcement with zirconium particles[J]. Wear,2009,267(5-8):710-717.
    [9] C.J. Schwartz, S. Bahadur, S.K. Mallapragada. Effect of crosslinking and Pt-Zrquasicrystal fillers on the mechanical properties and wear resistance of UHMWPE foruse in artificial joints[J]. Wear,2007,263(7-12):1072-1080.
    [10] J. Tong, Y.H. Ma, M. Jiang. Effects of the wollastonite fiber modification onthe sliding wear behavior of the UHMWPE composites[J]. Wear,2003,255(1-6):734-741.
    [11] V. Pettarin, M.J. Churruca, D. Felh s, J.K. Kocsis, P.M, Frontini. Changes intribological performance of high molecular weight high density polyethylene inducedby the addition of molybdenum disulphide particles[J]. Wear,2010,269(1-2):31–45.
    [12] D.A. Baker, R.S. Hastings, L. Pruitt. Study of fatigue resistance of chemicaland radiation crosslinked medical grade ultrahigh molecular weight polyethylene[J].Journal of Biomedical Materials Research,1999,46(4):573-581.
    [13] R.M. Gul. The effects of peroxide content on the wear behavior, microstructureand mechanical properties of peroxide crosslinked ultra-high molecular weightpolyethylene used in total hip replacement[J]. Journal of Materials Science:Materials in Medicine,2008,19(6):2427-2435.
    [14] S.M. Kurtz, L.A. Pruitt, C.W. Jewett, J.R. Foulds, A.A. Edidin. Radiation andchemical crosslinking promote strain hardening behavior and molecular alignment inultra high molecular weight polyethylene during multi-axial loading conditions[J].Biomaterials,1999,20(16):1449-1462.
    [15] C.Y. Tang, X.L. Xie, X.C. Wu, R.K.Y. Li, Y.W. Mai. Enhanced wear performanceof ultra high molecular weight polyethylene crosslinked by organosilane[J]. Journalof Materials Science: Materials in Medicine,2002,13(11):1065-1069.
    [16] P. Bracco, V. Brunella, M.P. Luda. Oxidation behaviour in prosthetic UHMWPEcomponents sterilised with high-energy radiation in the presence of oxygen[J].Polymer Degradation and Stability,2006,91(12):3057-3064.
    [17] P. Bracco. Oxidation behaviour in prosthetic UHMWPE components sterilised withhigh energy radiation in a low-oxygen environment[J]. Polymer Degradation andStability,2006,91(9):2030-2068.
    [18] A.M. Visco, L. Torrisi, N. Campo, U. Emanuele, A. Trifiro, M. Trimarchi.Mechanical Performance of Electron-Beam-Irradiated UHMWPE in Vacuum and in Air[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials, B2009,89B(1):55-64.
    [19] M. Choudhury, I.M. Hutchings. The effects of irradiation and ageing on theabrasive wear resistance of ultra high molecular weight polyethylene[J]. wear,1997203-204:335-440.
    [20] L. Costa, I. Carpentieri, P. Bracco. Post electron-beam irradiation oxidationof orthopaedic UHMWPE. Polymer Degradation and Stability,2008,93(9):1695-1703.
    [21] M. Dalborg, K. Jacobson, S. Jonsson. Methods for determining the spatialdistribution of oxidation in ultra-high molecular-weight polyethyleneprostheses[J]. Polymer Degradation and Stability,2007,92(3):437-447.
    [22] A.A. Mendes, A.M. Cunha, C.A. Bernardo. Study of the degradation mechanismsof polyethylene during reprocessing[J]. Polymer Degradation and Stability,2011,96(6):1125-1133.
    [23] S.E. Levine, L.J. Broadbelt. Detailed mechanistic modeling of high-densitypolyethylene pyrolysis: Low molecular weight product evolution[J]. PolymerDegradation and Stability,2009,94(5):810-822.
    [24] K. Jacobson. Oxidation of ultra high molecular weight polyethylene (UHMWPE)part1: Interpretation of the chemiluminescence curve recorded during thermaloxidation[J]. Polymer Degradation and Stability,2006,91(9):2126-2132.
    [25] F.J. Medel, F. Garcia-Alvarez, E. Gomez-Barrena, J.A. Puertolas.Microstructure changes of extruded ultra high molecular weight polyethylene aftergamma irradiation and shelf-aging[J]. Polymer Degradation and Stability,2005,88(3):435-443.
    [26] T. Ueno, E. Nakashima, K. Takeda. Quantitative analysis of random scission andchain-end scission in the thermal degradation of polyethylene[J]. PolymerDegradation and Stability,2010,95(9):1862-1829.
    [27] B.R. Burroughs, T.A. Blanchet. The effect of pre-irradiation vacuum storageon the oxidation and wear of radiation sterilized UHMWPE[J]. Wear,2006,261(11-12):1277-1284.
    [28] C.J. Perez, E.M. Valles, M.D. Failla. The effect of post-irradiation annealingon the crosslinking of high-density polyethylene induced by gamma-radiation[J].Radiation Physics and Chemistry,2010,79(6):710-717.
    [29] L. Xiong, D.S. Xiong, Y.Y. Yang, J.B. Jin. Effect of irradiation dose on plasticdeformation of vacuum hot pressed ultra high molecular weight polyethylene[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2010,268(17-18):2846-2849.
    [30] P. Bracco, V. Brunella, M. Zanetti, M.P. Luda, L. Costa. Stabilisation ofultra-high molecular weight polyethylene with Vitamin E[J]. Polymer Degradation andStability,2007,92(12):2155-2162.
    [31] L. Costa, I. Carpentieri, P. Bracco. Post electron-beam irradiation oxidationof orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized withvitamin E[J]. Polymer Degradation and Stability,2009,94(9):1542-1547.
    [32] M.S. Jahan, B.M. Walters. Macroradical reaction in ultra-high molecular weightpolyethylene in the presence of vitamin E[J]. Radiation Physics and Chemistry,2011,80(2):281-285.
    [33] E. Oral, K.K. Wannomae, S.L. Rowell, O.K. Muratoglu. Diffusion of vitamin Ein ultra-high molecular weight polyethylene[J]. Biomaterials2007,28(35):5225-5237.
    [34] P. Gijsman, H.J. Smelt, D. Schumann. Hindered amine light stabilizers: Analternative for radiation cross-linked UHMWPE implants[J]. Biomaterials,2010,31(26):6685-6691.
    [35] H.J. Liu, Y.N. Pei, D. Xie. Surface modification of ultra-high molecular weightpolyethylene (UHMWPE) by argon plasma[J]. Applied Surface Science,2010,256(12):3941-3945.
    [36] A. Kondyurin, P. Naseri, K. Fisher, D.R. McKenzie, M.M.M. Bilek. Mechanismsfor surface energy changes observed in plasma immersion ion implanted polyethylene:The roles of free radicals and oxygen-containing groups[J]. Polymer Degradation andStability,2009,94(4):638-646.
    [37] P. Bracco, V. Brunella, M.P. Luda, M. Zanetti, L. Costa. Radiation-inducedcrosslinking of UHMWPE in the presence of co-agents: chemical and mechanicalcharacterisation[J]. Polymer,2005,46(24):10648-10657.
    [38] H. Marrs, D.C. Barton, R.A. Jones, I.M. Ward, J. Fisher, C. Doyle. Comparativewear under four different tribological conditions of acetylene enhancedcross-linked ultra high molecular weight polyethylene[J]. Journal of MaterialsScience: Materials in Medicine,1999,10(6):333-342.
    [39] U. Goschel, C.Ulrich. Mechanical Relaxation of Medical Grade UHMWPE ofDifferent Crosslink Density as Prepared by Electron Beam Irradiation[J]. Journalof Applied Polymer Science,2009,113(1):49-59.
    [40] S. Andjelic, R.E. Richard. Crystallization behavior of ultrahigh molecularweight polyethylene as a function of in vacuo γ-irradiation[J]. Macromolecules,2001,34(4):896-906.
    [41] I. Banik, S.K. Dutta, T.K. Chaki, A.K. Bhowmick. Electron beam inducedstructural modification of a fluorocarbon elastomer in the presence ofpolyfunctional monomers[J]. Polymer,1999,40(2):447-458.
    [42] W.L. McLaughlin, J. Silverman. High-density polyethylene dosimetry bytransvinylene FTIR analysis[J]. Radiation Physics and Chemistry,1999,56(4):503-508.
    [43] O.K. Muratoglu, W.H. Harris. Identification and quantification of irradiationin UHMWPE through trans-vinylene yield[J]. Journal of Biomedical Materials Research,2001,56(4):584-592.
    [44] J.L. Bolland. Kinetics of olefin oxidation[J]. Quarterly Reviews, ChemicalSociety,1949,3(1):1-21.
    [45] O.N. Tretinnikov, S. Ogata, Y. Ikada. Surface crosslinking of polyethylene byelectron beam irradiation in air[J]. Polymer,1998,39(24):6115-6120.
    [46] A. Elzubair, J.C.M. Suarez, C.M.C. Bonelli, E.B. Mano. Gel fractionmeasurements in gamma-irradiated ultra high molecular weight polyethylene[J].Polymer Testing,2003,22(6):647-649.
    [47] E.Orala, A.S. Malhia, O.K. Muratoglu. Mechanisms of decrease in fatigue crackpropagation resistance in irradiated and melted UHMWPE[J]. Biomaterials,2006,27(6):917-925.
    [48] K.S. K. Karuppiah, A.L. Bruck, S. Sundararajan, J. Wang, Z. Lin, Z. Xu, X. Li.Friction and wear behavior of ultra-high molecular weight polyethylene as a functionof polymer crystallinity[J]. Acta Biomaterialia,2008,4(5):1401-1410.
    [1] R. Lee, A. Essner, A. Wang, W.L. Jaffe. Scratch and wear performance of prostheticfemoral head components against crosslinked UHMWPE sockets[J], Wear,2009,267(11):1915-1921.
    [2] A. Kilgour, A. Elfick. Influence of crosslinked polyethylene structure on wearof joint replacements[J], Tribology International,2009,42(11-12):1582-1594.
    [3] H. Liu, S. Ge, S. Cao, S. Wang, Comparison of wear debris generated from ultrahigh molecular weight polyethylene in vivo and in artificial joint simulator[J].Wear,2011,271(5-6):647-652.
    [4] Lerf R, Zurbrugg D, Delfosse D. Use of vitamin E to protect cross-linked UHMWPEfrom oxidation[J]. Biomaterials,2010,31(13):3643-3648.
    [5] B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker, K. Brummitt. Wear of UHMWPEsliding against untreated, titanium nitride-coated and ‘Hardcor’-treatedstainless steel counterfaces[J], Wear,1995,181-183(part1):258-262.
    [6] E. Oral, O.K. Muratoglu. Radiation cross-linking in ultra-high molecular weightpolyethylene for orthopaedic applications[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2007,265(1):18-22.
    [7] L. Xiong, D.S. Xiong, J.B. Jin. Study on Tribological Properties of IrradiatedCrosslinking UHMWPE Nano-Composite[J]. Journal of Bionic Engineering,2009,6(1):7-13.
    [8] K. L. Alderson, R.S. Webber,K. E. Evans. Novel variations in the microstructureof auxetic ultra-high molecular weight polyethylene. Part2: Mechanical properties[J]. Polymer Engineering&Science,2000,40(8):1906-1914.
    [9] Z.Han, A.Fina.Thermal conductivity of carbon nanotubes and their polymernanocomposites: A review[J]. Progress in polymer science,2011,36(7):914-944.
    [10] H.O.Pierson. Handbook of carbon, graphite, diamond, and fullerenes: properties,processing,and applications[M]. William Andrew,1993.
    [11] K. Goodson. Thermal Conductivity of Solids[J]. Science315,342(2007), DOI:10.1126/science.1138067.
    [12]林凌剑,盖国胜,杨玉芬.超高分子量聚乙烯基复合材料导热性能研究[J].中国粉体技术,2010,(6):33-35.
    [13]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[M].武汉:武汉材料保护研究所,2002.
    [14]李莹莹,朱冬生.超高分子量聚乙烯基纳米复合材料的导热性能研究[J].化工新型材料,2009,37(1):72-74.
    [15]汪雨荻,周和平.AlN/聚乙烯复合基板的导热性能[J].无机材料学,2000,15(6):1030-1036.
    [16]周文英.高导热绝缘高分子复合材料研究[D].西安:西北工业大学,2007.
    [17]周文英,张亚婷.本征型导热高分子材料[J].合成树脂及塑料,2010,27(2):69-73.
    [18] C.L. Choy, W.H. Luk, F.C. Chen. Thermal conductivity of highly orientedpolyethylene[J]. Polymer,1978,19(2):155-162.
    [19] C.L. Choy, Y.W. Wong, G.W. Yang. Elastic modulus and thermal conductivity ofultradrawn polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics,1999,37(23):3359-3367.
    [20] B.Y. Cao, Y.W. Li, J. Kong. High thermal conductivity of polyethylene nanowirearrays fabricated by an improved nanoporous template wetting technique[J]. Polymer,2011,52(8):1711-1715.
    [21] S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen. Polyethylene nanofibres withvery high thermal conductivities[J]. Nature Nanotechnology,2010,5(4):251-255.
    [22]蔡忠龙,黄元华,杨光武.超拉伸聚乙烯的弹性模量和导热性能[J].高分子学报,1997,6(3):331-342.
    [23] A. Yamanaka, Y. Izumi, T. Kitagawa. The Radiation Effect on Thermal Conductivityof High Strength Ultra-High-Molecular-Weight Polyethylene Fiber by γ-Rays[J].Journal of Applied Polymer Science,2006,101(206):2619–2626.
    [1]陈战,王家序,秦大同.超高分子量聚乙烯的性能及在机械领域中的应用[J].机械工程材料,2001,25(8):1-2.
    [2] K. L. Alderson, R.S. Webber,K. E. Evans. Novel variations in the microstructureof auxetic ultra-high molecular weight polyethylene. Part2: Mechanical properties[J]. Polymer Engineering&Science,2000,40(8):1906-1914.
    [3]何继敏,薛平,何亚东.超高分子量聚乙烯性能及应用[J].工程塑料应用,1996,24(5):55-56.
    [4] R. Lee, A. Essner, A. Wang, W.L. Jaffe,Scratch and wear performance of prostheticfemoral head components against crosslinked UHMWPE sockets[J], Wear,2009,267(11):1915-1921.
    [5] A. Kilgour, A. Elfick, Influence of crosslinked polyethylene structure on wearof joint replacements[J], Tribology International,2009,42(11-12):1582-1594.
    [6] H. Liu, S. Ge, S. Cao, S. Wang, Comparison of wear debris generated from ultrahigh molecular weight polyethylene in vivo and in artificial joint simulator[J],Wear,2011,271(5-6):647-652.
    [7] R. Lerf, D. Zurbrugg, D. Delfosse. Use of vitamin E to protect cross-linked UHMWPEfrom oxidation[J]. Biomaterials,2010,31(13):3643-3648.
    [8] B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker, K. Brummitt. Wear of UHMWPEsliding against untreated, titanium nitride-coated and ‘Hardcor’-treatedstainless steel counterfaces[J]. Wear,1995,181-183(part1):258-262.
    [9] E. Oral, O.K. Muratoglu, Radiation cross-linking in ultra-high molecular weightpolyethylene for orthopaedic applications[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,2007,265(1):18-22.
    [10] L. Xiong, D.S. Xiong, J.B. Jin, Study on Tribological Properties of IrradiatedCrosslinking UHMWPE Nano-Composite[J]. Journal of Bionic Engineering,2009,6(1):7-13.
    [11]薛俊.超高分子量聚乙烯及其复合材料/蠕变复合过程初探[J].磨擦学学报,2002,22(4):267-271.
    [12]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[M].武汉:武汉材料保护研究所,2002.
    [13]林凌剑,盖国胜,杨玉芬.超高分子量聚乙烯基复合材料导热性能研究[J].中国粉体技术,2010,(6):33-35.
    [14]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[M].武汉:武汉材料保护研究所,2002.
    [15]李莹莹,朱冬生.超高分子量聚乙烯基纳米复合材料的导热性能研究[J].化工新型材料,2009,37(1):72-74.
    [16]汪雨荻,周和平.AlN/聚乙烯复合基板的导热性能[J].无机材料学,2000,15(6):1030-1036.
    [17]周文英.高导热绝缘高分子复合材料研究[D].西安:西北工业大学,2007.
    [18] C. Kim, Z. Jin, P.K. Jiang, Z.S. Zhu, G.L. Wang. Investigation of dielectricbehavior of thermally aged XLPE cable in the high-frequency range[J]. PolymerTesting,2006,25(4):553-61.
    [19] F.A. He, J.T. Fan, S.T. Lau. Thermal, mechanical, and dielectric propertiesof graphite reinforced poly(vinylidene fluoride) composites[J]. Polymer Testing,2008,27(8):964-70.
    [20] J. Su, S.J. Chen, J. Zhang, Z.Z. Xu. Comparison of cure, mechanical, electricproperties of EPDM filled with Sm(2)O(3) treated by different coupling agents[J].Polymer Testing,2009,28(3):235-42.
    [21] X.Y. Huang, L.Y. Xie, P.K. Jiang, G.L. Wang, F. Liu. Electrical, thermophysicaland micromechanical properties of ethylene-vinyl acetate elastomer composites withsurface modified BaTiO(3) nanoparticles[J]. Journal of Physics D-AppliedPhysics,2009,42(24).
    [22] X.F. Wu,Y. Wang, L.Y. Xie, J.H. Yu, F. Liu, P.K.Jiang. Thermal and electricalproperties of epoxy composites at high alumina loadings and various temperatures[J].Iranian Polymer Journal,2013,22:61–73.
    [23] M. Kosaki, M. Nagao, N. Shimizu, Y. Mizuno. Solid insulation and itsdeterioration[J]. Cryogenics,1998,38(11):1095-104.
    [24] S.B. Lee, H.J. Lee, I.K. Hong.Diluent filler particle size effect for thermalstability of epoxy type resin[J]. Journal of Industrial and Engineering Chemistry,2012,18(2):635-41.
    [25] W. Jiang, F.L. Jin, S.J. Park. Thermo-mechanical behaviors of epoxy resinsreinforced with nano-Al2O3particles[J]. Journal of Industrial and EngineeringChemistry,2012,18(2):594-96.
    [26] M.R. Xie, Z.G. Wang. Synthesis and properties of a novel cycloaliphaticepoxide[J]. Macromolecular Rapid Communications.2001,22(8):620-23.
    [27] X.Y. Huang, Y. Zheng, P.K. Jiang, Y. Yin. Influence of Nanoparticle SurfaceTreatment on the Electrical Properties of Cycloaliphatic Epoxy Nanocomposites[J].Ieee Transactions on Dielectrics and Electrical Insulation,2010,17(2):635-43.
    [28] L.A. Khan, A. Nesbitt, R.J. Day. Hygrothermal degradation of977-2Acarbon/epoxy composite laminates cured in autoclave and Quickstep[J]. CompositesPart A: Applied Science and Manufacturing,2010,41(8):942–953
    [29] A. Ventrella, M. Salvo, M. Avalle, M. Ferraris. Comparison of shear strengthtests on AV119epoxy-joined ceramics[J]. Journal of Materials Science,2010,45(16):4401–4405.
    [30] Y.C. Zhang, C.U. Pittman, A. Arockiasamy, R.L. King. Studies of organoclayswith functionalized pillaring agents[J]. Journal of Applied Polymer Science,2011,121(4):2430–2441.
    [31] G. Sodeifian, H.R. Nikooamal, A.A. Yousefi. Molecular dynamics study ofepoxy/clay nanocomposites: rheology and molecular confinement[J]. Journal ofPolymer Research,2012,19:9897
    [32] M.M. Shokrieh, R. Rafiee. Development of a full range multi-scale model toobtain elastic properties of CNT/polymer composites[J]. Iranian Polymer Journal,2012,21(6):397–402.
    [33] S. Ghorabi, L. Rajabi, S.S. Madaeni, S. Zinadini, A.A. Derakhshan. Effects ofthree surfactant types of anionic, cationic and non-ionic on tensile properties andfracture surface morphology of epoxy/MWCNT nanocomposites[J]. Iranian PolymerJournal,2012,21(2):121-30.
    [34] J.H. Yu, X.Y. Huang, C. Wu, X.F. Wu, G.L. Wang, P.K. JiangInterfacialmodification of boron nitride nanoplatelets for epoxy composites with improvedthermal properties[J]. Polymer,2012,53(2):471-80.
    [35] H. Yu, L.L. Li, T. Kido, G.N. Xi, G.C. Xu, F. Guo. Thermal and insulatingproperties of epoxy/aluminum nitride composites used for thermal interfacematerial[J]. Journal of Applied Polymer Science,2012,124(1):669-77.
    [36] J. Kim, H. Im, J.M. Kim.Thermal and electrical conductivity of Al(OH)(3) coveredgraphene oxide nanosheet/epoxy composites[J]. Journal of Materials Science,2012,47(3):1418-26.
    [37] K. Liu, S.R. Lu, S.R. Li, B. Huang, C. Wei. Mechanical and thermal propertiesof POSS-g-GO reinforced epoxy composites[J]. Iranian Polymer Journal,2012,21(8):497–503
    [38] G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, L. Mascia. Epoxy-silicaparticulate nanocomposites: chemical interactions, reinforcement and fracturetoughness[J]. Polymer,2005,46(23):10506–10516.
    [39] H.Y. Jin, Y.Q. Yang, L.A. Xu, S.E. Hou. Effects of Spherical Silica on theProperties of an Epoxy Resin System[J]. Journal of Applied Polymer Science,2011,121(2):648-53.
    [40] W.Y. Peng, X.Y. Huang, J.H. Yu, P.K. Jiang, W.H. Liu. Electrical andthermophysical properties of epoxy/aluminum nitride nanocomposites: effects ofnanoparticle surface modification[J]. Composites Part A: Applied Science andManufacturing,2010,41(9):1201–1209.
    [41] S. Sabagh, A.R. Bahramian, M. Kokabi. SiAlON nanoparticles effect on thebehaviour of epoxy coating[J]. Iranian Polymer Journal,2012,21(4):229–237.
    [42] W.Y. Zhou. Effect of coupling agents on the thermal conductivity of aluminumparticle/epoxy resin composites[J]. Journal of Materials Science,2011,46(11):3883-89.
    [43] P.R. Marur, R.C. Batra, G. Garcia, A.C. Loos. Static and dynamic fracturetoughness of epoxy/alumina composite with submicron inclusions[J]. Journal ofMaterials Science,2012,39(4):1437-40.
    [44] Y. Dong, D. Chaudhary, C. Ploumis, K.T. Lau. Correlation of mechanicalperformance and morphological structures of epoxy micro/nanoparticulatecomposites[J]. Composites Part a-Applied Science and Manufacturing,2011,42(10):1483-92.
    [45] A. Omrani, L.C. Simon, A.A. Rostami. The effects of alumina nanoparticle onthe properties of an epoxy resin system[J]. Materials Chemistry and Physics,2009,114(1):145-50.
    [46] A. Omrani, A.A. Rostami. Understanding the effect of nano-Al(2)O(3) additionupon the properties of epoxy-based hybrid composites[J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2009,517(1-2):185-90.
    [47] Z.G. Xu, N. Hameed, Q.P. Guo, Y.W. Mai. Nanostructures and ThermomechanicalProperties of Epoxy Thermosets Containing Reactive Diblock Copolymer[J]. Journalof Applied Polymer Science,2010,115(4):2110-18.
    [48] A. Kyritsis, G. Vikelis, P. Maroulas, et al. Polymer Dynamics in Epoxy/AluminaNanocomposites Studied by Various Techniques[J]. Journal of Applied Polymer Science,2011,121(6):3613-27.
    [49] J.H. Yu, X.Y. Huang, L.C. Wang, et al. Preparation of hyperbranched aromaticpolyamide grafted nanoparticles for thermal properties reinforcement of epoxycomposites[J]. Polymer,2011, Chemistry2(6):1380-1388.
    [50] N. Tagami, M. Hyuga, Y. Ohki, et al.Comparison of Dielectric Properties betweenEpoxy Composites with Nanosized Clay Fillers Modified by Primary Amine and TertiaryAmine[J]. Ieee Transactions on Dielectrics and Electrical Insulation,2010,17(1):214-20.
    [51] O. Becker, R. Varley, G. Simon. Morphology, thermal relaxations and mechanicalproperties of layered silicate nanocomposites based upon high-functionality epoxyresins[J]. Polymer,2002,43(16):4365-73.
    [52] Y.L. Liu, C.Y. Hsu, W.L. Wei, R.J. Jeng. Preparation and thermal propertiesof epoxy-silica nanocomposites from nanoscale colloidal silica[J]. Polymer,2003,44(18):5159-67.
    [53] M. Preghenella, A. Pegoretti, C. Migliaresi. Thermo-mechanicalcharacterization of fumed silica-epoxy nanocomposites[J]. Polymer,2005,46(26):12065-72.
    [54] Y.Y. Sun, Z.Q. Zhang, K.S. Moon, C.P. Wong. Glass transition and relaxationbehavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B-PolymerPhysics,2004,42(21):3849-58.
    [55] T.C. Mo, H.W. Wang, S.Y. Chen, Y.C. Yeh. Synthesis and characterization ofpolyimide/multi-walled carbon nanotube nanocomposites[J]. Polymer Composites,2008,29(4):451-57.
    [56] A.M. Mayes. Nanocomposites: Softer at the boundary[J]. Nature Materials,2005,4(9):651-52.
    [1]刘广建.超高分子量聚乙烯[M].北京:化学工业出版社,2001.
    [2]明艳,贾润礼.超高分子量聚乙烯成型加工及改性[J].合成树脂及塑料,2002,19(4):68-72.
    [3]黄丽,郑旖旎,吕亚非.不同混合方式对超高分子量聚乙烯复合材料中填料粒子分散性的影响[J].北京化工大学学报,2006,33(l):105-109.
    [5」 A. Bahattin,T. Teoman. Radiation grafting of various water-soluble monomerson ultra-high molecular weight polyethylene powder: Part I. Grafting conditions andgrafting yield [J].Radiation Physics and Chemistry,2001,60(3):237-243.
    [6] Q. Li, S. Basavarajaiah, N.H. Kim,S. Heo,J.H. Lee. Synergy Effect of HybridFillers on the Positive Temperature Coefficient Behavior ofPolypropylene/Ultra-High Molecular Weight Polyethylene Composites[J]. Journal ofApplied Polymer Science,2010,116(1):116–124.
    [7] Y. Bin, C. Xu, D Zhu, M. Matsuo Electrical properties of polyethylene and carbonblack particle[J]. Carbon,2002,40(2):195–199.
    [8] Y. Xi, H. Ishikawa, Y. Bin, M. Matsuo. Positive temperature coefficient effectof LMWPE–UHMWPE blends filled with short carbon fibers[J]. Carbon,2004,42(8-9):1699–1706.
    [9] H.L. Hu,G. Zhang, L.G. Xiao, H.J. Wang, Q.S. Zhang, Z.D. Zhao.Preparation andelectrical conductivity of graphene/ultrahigh molecular weight polyethylenecomposites with a segregated structure[J].Carbon,2012,50(12):4596–4599.
    [10] C. Zhang, C.A. Ma, P. Wang, M. Sumita. Temperature dependence of electricalresistivity for carbon black filled ultra-high molecular weight polyethylenecomposites prepared by hot compaction[J]. Carbon,2005,43(12):2544-2553.
    [11] G.R. Valenciano, A.E. Job, L.H.C. Mattoso. Improved conductivity of films ofultra high molecular weight polyethylene and polyaniline blends prepared from anm-cresol/decaline mixture[J]. Polymer,2000,41(12):4757–4760.
    [12]陈茹.超高分子量聚乙烯基导电复合材料的电/热性能研究[D].大连:大连理工大学,2010.
    [13]万莉.抗静电超高分子量聚乙烯管材生产技术开发研究[M].四川:四川大学,2005.
    [14]王苏娜.矿用阻燃、抗静电超高分子量聚乙烯复合材料的研究[M].北京:北京化工大学,2003.
    [15]林凌剑,盖国胜,杨玉芬.超高分子量聚乙烯基复合材料导热性能研究[J].中国粉体技术,2010,(6):33-35.
    [16]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[M].武汉:武汉材料保护研究所,2002.
    [17]李莹莹,朱冬生.超高分子量聚乙烯基纳米复合材料的导热性能研究[J].化工新型材料,2009,37(1):72-74.
    [18]汪雨荻,周和平.AlN/聚乙烯复合基板的导热性能[J].无机材料学,2000,15(6):1030-1036.
    [19]周文英.高导热绝缘高分子复合材料研究[D].西安:西北工业大学,2007.
    [20] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A.Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Graphene-based composite materials[J].Nature,2006,442:282-286.
    [21] N. Liu, F. Luo, H.X. Wu, Y.H. Liu, C. Zhang, J. Chen. One-StepIonic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-FunctionalizedGraphene Sheets Directly from Graphite[J]. Advanced Functional Materials,2008,18(10):1518-1525.
    [22] H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu,G. Y. Ji, Z.Z.Yu. Electrically conductive polyethylene terephthalate/graphene nanocompositesprepared by melt compounding[J]. Polymer,2010,51(5),1191-1196.
    [23] M. Yoonessi, J.R. Gaier. Highly Conductive Multifunctional GraphenePolycarbonate Nanocomposites[J]. ACS Nano,2010,4(12):7211–7220.
    [24] N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.S.Johansson, J.D. Nam, J. Seppala. Graphene/cellulose nanocomposite paper with highelectrical and mechanical performances[J]. Journal of Materials Chemistry,2011,21(36):13991-13998.
    [25] H.K. He, C. Gao. General Approach to Individually Dispersed, Highly Soluble,and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry[J].Chemistry of Materials,2010,22(17):5054-2064..
    [26] T. Wei, G.L. Luo, Z. J. Fan, C. Zheng, J. Yan, C.Z. Yao, W. F. Li, C. Zhang.Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion[J]. Carbon,2009,47(9):2296-2299.
    [27] X. L. Wang, H. Bai, Z. Y. Yao, A. R. Liu, G. Q. Shi, Electrically conductiveand mechanically strong biomimetic chitosan/reduced graphene oxide compositefilms[J]. Journal of Materials Chemistry,2010,20(41):9032-9036.
    [28] W.J. Li, X.Z. Tang, H.B. Zhang, Z.G. Jiang, Z.Z. Yu, X.S. Du, Y.W. Mai.Simultaneous surface functionalization and reduction of graphene oxide withoctadecylamine for electrically conductive polystyrene composites[J]. Carbon,2011,49(14):4724-4730.
    [29] C. Wu, X. Huang, G. Wang, L. Lv, G. Chen. G. Li, P. Jiang, Highly ConductiveNanocomposites with Three-Dimensional, Compactly Interconnected Graphene Networksvia a Self-Assembly Process[J]. Advanced Functional Materials,2013,23(4):506–513.
    [30]宿昌厚,鲁效明.论四探针法测试半导体电阻率时的厚度修正.计量技术,2005,(8):5-7.
    [31] Z.L. Wu, Y. Shen, X.F. Zhou, S.W. Guo, Y. Zhang. Influencing factors on localreduction of graphene oxide with a heated AFM tip[J]. Nuclear Science and Techniques,2011,22(4):245-250.
    [32] T. Lockwood. Trapping water monolayers with graphene allows AFM imaging[J].Mrs Bulletin,2010,35(11):830-830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700