环形掺铒光纤激光器的自混合散斑测速研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自混合散斑将自混合干涉与传统的散斑相结合,把散斑现象引入激光器谐振腔,与传统的双光束光路相比仅有一个光轴、紧凑、简单、易调节,是近年发展起来的一种新型的光学测试技术。光纤激光器相对于半导体激光器具有以下特点:器件占用空间小,调谐范围宽,单色性好,激光输出谱线多,激光阈值低,转换效率高。其中掺铒光纤激光器由于其工作波长处于光纤通信的第三窗口而快速发展,并且在光纤传感和通信等领域得到了广泛的应用。
     本文研究了一种基于强度自相关函数的环形光纤激光器自混合散斑速度测量方法。理论上,建立了环形掺铒光纤激光器光反馈理论模型,根据铒离子三能级系统的速率方程,推导了铒离子内光放大方程,利用该方程的稳态解研究外光反馈条件下激光器输出功率和频率的变化。以环形光纤激光器光反馈理论为基础,对自混合散斑信号进行强度自相关分析,推导自混合散斑信号自相关频率与构成外腔的粗糙物体运动速度之间的关系式。实验上,设计了环形掺铒光纤激光器自混合散斑测速实验系统,采集了不同速度下的自混合散斑信号,对其进行自相关分析,计算出自相关频率,得到自相关频率与物体速度之间的线性关系式。实验结果与理论分析结果相吻合,研究结果表明该方法可以用于物体运动速度的测量。
Self-mixing speckle combines the self-mixing interference with traditional speckle, which introduces speckle phenomenon into laser resonator cavity. Compared with the conventional two-beam interference, it is compact, simple, easy to adjust and have only one optical axis. Self-mixing speckle is a new optical measurement technique developed in recent years. Compared with semiconductor laser, there are lots of advantages for fiber laser:smaller in size, wider tuning range, better monochromatic, more laser output spectrum, lower laser threshold, and higher efficiency. Erbium-doped fiber laser whose wavelength is the window for fiber communication is developing rapidly and it is widely used in fiber communication and fiber sensing field.
     In this paper, a new velocity measurement method of self-mixing speckle based on intensity autocorrelation function in an erbium-doped ring laser is studied. Theoretically an analytical model of optical feedback is established based on the erbium-doped fiber ring laser. The light amplification equation is deduced from the rate equation of the erbium three-level system. The alteration of laser output power and frequency under optical feedback is studied by using the stable solution of the light amplification equation. The autocorrelation analysis of self-mixing speckle signal is made utilizing the optical feedback theory of fiber ring laser, and a relationship between the autocorrelation frequency of speckle signals and the velocities of moving object is theoretically obtained. A velocity measurement system of Self-mixing speckle based on an erbium-doped fiber ring laser is designed。Self-mixing speckle signals is collected with a dynamic target at different velocities. The autocorrelation frequency is calculated through the autocorrelation analysis, and the linear relationship between autocorrelation frequency and the velocity of the target is gained. Experimental result agrees with the theoretical derivation, it indicates that the autocorrelation of self-mixing speckle in a fiber ring laser can be applied to velocity measurement.
引文
[1]Goldberg L. Spectral characteristics of semiconductor laser with optical feedback [J]. IEEE J. Q. E, 1982,18(6):555-563.
    [2]Chartier T., Mezine B., Sanchez F., et al. Optical feedback effects in Nd-doped fiber laser with broadband spectra [J]. Appl. Opt,1996,35(12):2016-2022.
    [3]Fujiwara M., Kubota K. and Long R. Low-frequency intensity fluctuation in laser diode with external optical feedback [J]. Appl. Phys. Lett,1981,38(4):217-220.
    [4]Yasaka H., Yoshikuni Y., Kawaguchi H. FM noise and spectral line width reduction by incoherent optical negative feedback [J]. IEEE J. Q. E,1991,27(2):193-204.
    [5]King P. G. R. Metrology with an optical master [J]. Rev. Sci.,1963,17:180-182.
    [6]Rudd M. J.. A laser Doppler velocimeter employing the laser as a mixer oscillator [J]. J. Phys. E.,1968,1:723-726.
    [7]R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties [J]. IEEE J.Quant. Electron.,1980, Vol.16(3):347-355.
    [8]J. H. Churnside. Laser Doppler velocimeter by modulating a CO2 laser with back scattered light [J]. Appl. Opt,1984,23(1):61-65.
    [9]R. W. Tkach, A. R. Chraplyvy, Regimes of feedback effects on semiconductor laser properties [J],.J. Lightwave Tecnol,1986,16(4):1655.
    [10]E.T. Shimizu. Directional discrimination in the self-mixing type laser Doppler velocimeter [J]. Appl. Opt.,1988,27(2):379-385.
    [11]H. W. Jentink. Small laser Doppler velocimeter based on the self-mixing effect in a diode laser [J]. Appl. Opt.,1988,27(2):379-385.
    [12]P. J. De Groot, G. M. Gallatin, S. H. Macomber. Ranging and velocity generation in a backscatter-modulated laser diode [J]. Appl. Opt.,1998,27:4475-4480.
    [13]M. H. Koelink, etc. In-vivo blood flow velocity measurements using the self-mixing effect in a fiber-coupled semiconductor laser [J]. Proc. Soc. Photo-Opt. Instrum. Eng.,1991,15:120-128.
    [14]M. H. Koelink. Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser:theory [J]. Appl. Opt.,1992,31(18):3401-3408.
    [15]M. H. Koelink, F. F. M. De Mul, A. L. Weijers, etc. Fiber-coupled self-mixing diode-laser Doppler velocimeter:technical aspects and flow velocity profile disturbances in water and blood flows [J]. Appl. Opt.,1994,33(24):5628-5641.
    [16]W. M. Wang, W. J. O. Boyle, K. T. V. Grattan et al. Self-mixing interference in a diode laser: experimental observation and theoretical analysis.Appl. Opt-LP,1993,32 (9):1551-1558.
    [17]W. M. Wang, K. T. V. Grattan. Self-mixing interference inside a single mode diode laser for optical sensing applications [J]. IEEE J. Lightwave,1994,12(9):1577-1587.
    [18]J. A. Smith, U. W. Rathe, C.P. Bruger. Lasers with optical feedback as displacement sensors [J]. Opt. Eng.,1995,34(9):2802-2810.
    [19]T. Bosch, N. Servagent, R. Chellali, et al. Three-dimensional object construction using a self-mixing type scanning laser range finder [J]. IEEE Trans. Instrum. Meas.,1998,47:1326-1329.
    [20]G. Mourat, N Servagent and T Bosch. Optical feedback effects on the spectral linewidth of semiconductor lasers using the self-mixing interference [J]. IEEE J. Quantum Electron,1998. 34(9):1717-1721.
    [21]N. Servagent, F. Gouaux, T.Bosch. Measurements of displacement using the self-mixing interference in a laser diode [J]. J. Opt.,1998,29:168-173.
    [22]G. Giuliani, M. Norgia. Laser diode linewidth measurement by means of self-mixing interferometry [J]. IEEE Photonic Tech L.,2000,12:1028-1030.
    [23]G. Giuliani, M. Norgia, S. Donati et al. Laser diode self-mixing technique for sensing applications [J]. Journal of Optics A:Pure and Applied Optics,2002,4:283-294.
    [24]X. Yang, G. Liu, J. Zhu, et al. Design and experimental study of laser self-mixing microscopeic system [J]. Guangxue Xuebao/Acta Optica Sinica,2004,24:418-422.
    [25]W. Mao, S. Zhang, L. Cui, et al. Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser [J]. Opt Express,2006,14:182-189.
    [26]G. Liu, S. Zhang, J. Zhu, et al. Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser [J]. Opt Commun,2003,221:387-393.
    [27]G. Liu, S. Zhang, T. Xu, J. Zhu, et al. Self-mixing interference in Zeeman-birefringent fual frequency laser [J]. Opt Commun,2004,241:159-166.
    [28]L. Fei, S. Zhang. Self-mixing interference effects of orthogonally polarized dual frequency laser [J]. Opt Express,2004,12:6100-6105.
    [29]L. Fei, S. Zhang, The discovery of nanometer fringes in laser self-mixing interference [J].Opt Commun,2007,273:226-230.
    [30]X. Cheng, S. Zhang. Intensity modulation of VCSELS under feedback with two reflectors and self-mixing interferometer [J]. Opt Commun,2007,272:420-424.
    [31]D. H. Zhang, Y. G. Yu, H. Y. Ye. Measuring the dynamic performance of PZT using self-mixing interference vibrometer [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser,2003, 5:117-122.
    [32]Y. Yu, H. Ye, J. Yao. Analysis for the self-mixing interference effects in a laser diode at high optical feedback levels [J]. Journal of Optics A:Pure and Applied Optics,2003,5:117-122.
    [33]Y. Yu, H. Ye, J. Yao. Steady solution to a self-mixing interference system for measuring displacement [J]. Guangxue Xuebao/Acta Optica Sinica,2003,23:80-84.
    [34]Y. Yu, J. Yao, H. Ye. Self-mixing interference structure with pre-feedback used for measuring displacement [J]. Guangxue Xuebao/Acta Optica Sinica,2002,22:308-312.
    [35]Y. Yu, M. Cheng, X. Qiang. Self-mixing interference effects in laser diode with multiple optical feedback [J]. Guangxue Xuebao/Acta Optica Sinica,2001,21:1093-1098.
    [36]J. Ma, Y. Yang, X. Qiang, Theoretical model on self-mixing interference in a linear frequency modulated laser diode [J]. Guangzi Xuebao/Acta Photonica Sinica,2002,31:553.
    [37]Y. Yu, X. Qiang, Z. Wei, et al. Differential displacement measurement system using laser self-mixing interference effect [J]. Guangxue Xuebao/Acta Optica Sinia,1999,19:1269-1273.
    [38]Y. Yu, G. Giuliani, S. Donati. Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect [J] IEEE Photonic Tech L, 2004,16:990-992.
    [39]J. Xi, Y. Yu, J. F. Chicharo, et al. Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry [J]. IEEE J Quantum Elect,2005,41:1058-1064.
    [40]Y. Yu, J. Xi, J. F. Chicharo, et al. Toward automatic measurement of the linewidth-enhancement factor using optical feedback self-mixing interferometry with weak optical feedback [J]. IEEE J Quantum Elect,2007,43:527-534.
    [41]H. Huan, M. Wang, D. Guo. Self-mixing interference effect of DFB semiconductor lasers [J]. Applied Physics B:Lasers and Optics,2004,79:325-330.
    [42]J. Zhou, M. Wang. Effects of self-mixing interference on gain-coupled distribute-feedback laser [J]. Opt Express,2005,13:1848-1854.
    [43]J. Zhou, M. Wang, D. Han. Experiment observation of self-mixing interference in distributed feedback laser [J]. Opt Express,2006,14:5301-5306.
    [44]D. Guo, M. Wang, S. Tan. Self-mixing interferometer based on sinusoidal phase modulating technique [J]. Opt Express,2005,13:1537-1543.
    [45]D. Guo, M. Wang. Self-mixing interferometry based on a double-modulation technique for absolute distance measurement [J]. Appl Optics,2007,46:1486-1491.
    [46]D. Guo, M. Wang. Self-mixing interferometer based on temporal-carrier phase-shifting technique for micro-displacement reconstruction [J]. Opt Commun,2006,263:91-97.
    [47]D. Guo, S. Tan, M. Wang. Analysis of micro-displacement measurement accuracy in self-mixing interferometer based on sinusoidal phase modulating technique [J]. Guangxue Xuebao/Acta Optica Sinica,2006,26:845-850.
    [48]M. Lu, M. Wang, et al. Self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica,2004,24(9):1229-1236.
    [49]M. Lu, M. Wang, et al. Measurement of flow velocity using self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica,2005,25(2):190-94.
    [50]Wang, M. and M. Lu, etal, Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity [J]. Optics Commun,2006,260(1):242-247.
    [51]J. C. Dainty. Laser speckle and related phenomena [J]. Berlin and New York:Springer-Verlag, 1975, pp:20-25.
    [52]R. K. Erf. Speckle metrology [J]. Hartford:United technologies Research center,1978, PP:3-7.
    [53]Sun Hong, Liu Ying, Ma Shining. Dynamic characteristics of double scattering speckle field in longitudinal motion [J]. Acta Optica Sinica,1999,19(2):181 - 185.
    [54]T. Asakura, N. Takai. Dynamic laser speckles and their application to velocity measurements of the diffuse object [J]. Appl. Phys.,1981,25:179-194. Springer-Verlag,1975, pp:20-25.
    [52]R. K. Erf. Speckle metrology [J]. Hartford:United technologies Research center,1978, PP:3-7.
    [53]Sun Hong, Liu Ying, Ma Shining. Dynamic characteristics of double scattering speckle field in longitudinal motion [J]. Acta Optica Sinica,1999,19(2):181 - 185.
    [54]T. Asakura, N. Takai. Dynamic laser speckles and their application to velocity measurements of the diffuse object [J]. Appl. Phys.,1981,25:179-194.
    [55]T. Okam Oto, T. Asakura. Velocity dependence of image speckles produced by a moving diffuser under dynamic speckle illumination [J]. Opt. Commun.,1990,77(23):113-120.
    [56]孙虹,刘迎,马世宁.纵向运动双散射散斑场的动态特性研究[J].光学学报,1999,19(2):181-185.
    [57]Jones R., Wykes G. Holographic and speckle interferometry [J]. Cambridge Univ. Press, 1983.
    [58]Burch J. M., Tokarski J. M.. Production of multiple beam fringes from photographic scatters [J]. Opt. Acta.,1968,15:101.
    [59]Peters W. H., Ranson W. F.. Digital imaging technique in experimental stress analysis [J]. Opt.Eng.,1982,21:427.
    [60]方强,谭玉山.白光数字散斑照相术[J].光学学报,1990,10(10).
    [61]Sahin Kaya Qzdemir. Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diode [J]. Applied Optics,1999,38(10): 1968-1974.
    [62]Sahin Kaya Qzdemir. Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode [J]. Applied Optics,1999,38(33):6859-6865.
    [63]Min Lu, Ming Wang, Hui Hao, et al. Self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica,2004,24(9):1229-1234.
    [64]Min Lu, Ming Wang, Hui Hao, et al. Measurement of flow velocity using self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica, 2005,25(2):190-194.
    [65]Ming Wang, Min Lu, Hui Hao, et al. Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity [J]. Optics Communications,2006,260(1):242-247.
    [66]C. Barnard, P. Myslinski, J. Chrostowski. Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers [J]. Quantum Electronics,1994,30(8):1817-1830.
    [67]Graciela G. Romero, Elvio E. Alanis. Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assent of paint drying [J]. Opt. Eng,2000,39(6): 1652-1658.
    [68]Peter D. Dragic. Analytical Model for Injection-Seeded Erbium-Doped Fiber Ring Lasers [J]. IEEE Photonics Technology Letters,2005,17(8):1629-1631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700