自混合干涉测速技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了激光自混合干涉测速技术的研究背景和意义,综述了国内外自混合干涉测速技术的研究现状,以建立完善的自混合干涉测速系统为目的,进行了深入、广泛的理论研究和实验研究。
     在理论上,运用Doppler效应,复合腔理论,建立了自混合干涉的数学模型,研究了自混合干涉测速的基本原理,对自混合干涉测速上限问题进行了详实的讨论,对信号调制深度进行了分析,数值模拟研究了光纤耦合系统各个参数对自混合信号波形的影响。
     设计了自由空间自混合干涉和全光纤自混合散斑干涉两套实验系统。重点研究了光纤传光、自聚焦透镜收集反馈光的全光纤自混合散斑干涉系统的可行性,建立了自聚焦透镜收集效率的模型,并进行了收集效率的实验研究,从理论上证明了全光纤自混合散斑干涉的可行性。
     开展了信号处理研究。研究了信号的消噪与归一化处理;通过分析自混合干涉信号的特征,提出采用时频分析技术处理自混合干涉信号,进行了相应的数值模拟研究;理论上得到了位移信息重构的解析解,提出了积分速度曲线获得位移的数值方法。对比研究了自混合散斑干涉信号处理的计数法和自相关法,最后采用简单的计数法来处理自混合散斑信号。
     搭建了自由空间自混合干涉和全光纤自混合散斑干涉两套实验系统,进行了实验研究,获得了较好的实验信号,最后给出了实验结果。
In this dissertation, the background and the significance of self-mixing interference velocity measurement technique are introduced. The state of the self-mixing interference velocity measurement is reviewed. In order to construct the perfect technique for this measurement, the theoretical analysis and the experimental research are extensively and deeply studied.
     In theory, the model of self-mixing interference has been build based on the Doppler effects and the compound cavity theory. The principle of self-mixing velocity measurement bas been studied, the problem of upper limit has been discussed carefully, the depth of modulation has been analyzed. At last, the parameters of the fiber-coupled self-mixing interference system how to influence the waveform of self-mixing interference signal have been simulated.
     The systems of free-space self-mixing interference and all-fiber speckle self-mixing interference have been designed. We put stress on the study of the feasibility using fiber to transmit light and using self-focus lens to collect feedback light. Firstly, we build the model of self-focus lens, and then, we study the collection efficiency of the self-focus lens how to change with radius and working distance, at last, the experiments of collection efficiency have been done. The feasibility of using fiber to transmit light and using self-focus lens to collect feedback light is theoretically proved.
     The signal processing has been studied. These researches include how to normalize the self-mixing interference signal, how to acquire the velocity from the self-mixing interference signal, and how to acquire the displacement. At last, we compare threshold method and auto-correlation method which are used to process the self-mixing speckle interference signal. At last, we adopt the threshold method to process the self-mixing speckle interference signal.
     The systems of free-space self-mixing interference and all-fiber speckle self-mixing interference have been constructed, the experiments have been carried through, the ideal signals have been acquired, and at last, the experimental results are given.
引文
1. Tetsuya Kanada, Kiyoshi Nawata. Injection laser characteristics due to reflected optical power[J]. IEEE Journal of Quantum Electronics, 1979,15(7):559~565.
    
    2. L. Goldberg, Henry F. Taylor and Anthony Dandridge et al. Spectral characteristics of semiconductor laser with optical feedback[J]. IEEE Journal of Quantum Electronics, 1982,18(6):555~563.
    
    3. Meziane, B., Sanchez, F. et al. Optical feedback effects in Nd-doped fiber lasers with broadband spectra[J]. Applied Optics, 1996, 35(12):2016-2022.
    
    4. B. Tromborg, J. Mork. Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers[J]. IEEE Journal of Quantum Electronics, 1990, 26(4):642~654.
    
    5. J. Sacher, W. Elsasser, E. Gobel. Intermittency in the coherence collapse of a semiconductor laser with external feedback[J]. Physics Review of Letters, 1989, 63(20): 2224-2227.
    
    6. Noriyuki Kikuchi. Chaos control and noise suppression in external cavity semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1997, 33(1):57~65.
    
    7. Hua Li, Jun Ye, John G. Mcinerney. Detailed analysis of coherence collapse in semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1993, 29(9): 2421-2431.
    
    8. D. Lenstra, B. H. Verbeek and A. J. Denoef. Coherence collapse in single mode semiconductor laser due to optical feedback[J]. IEEE Journal of Quantum Electronics, 1985, 21(6): 674-679.
    
    9. Masahiko Fujiwara, Keichi Kubota, Roy Long. Low-frequency intensity fluctuation in laser diode with external optical feedback[J]. Applied Physics Letter, 1981, 38(4):217-220.
    
    10. Gerard A. Acket, Daan Lenstra, Arie J. Den Boef et al. The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1984,20(10): 1163-1169.
    
    11. Osamu Hirota, Yasuharu Suematsu. Noise properties of injection lasers due to reflected waves[J]. IEEE Journal of Quantum Electronics, 1979,15(3): 142-149.
    
    12. H. Yasaka, Y. Yoshikuni, H. Kawaguchi. FM noise and spectral line width reduction by incoherent optical negative feedback[J]. IEEE Journal of Quantum Electronics, 1991, 27(2): 193-204.
    
    13. P. G. R. King. Metrology with an optical maser[J]. Review of Scientific Instruments, 1963, No. 17:180-182.
    
    14. Lorenzo Scalise, Nicola Paone. Laser Doppler vibrometry based on self-mixing effect[J]. Optics and Lasers in Engineering, 2002, 38(3-4):173~184.
    
    15. James. H. Churnside. Laser Doppler velocimetry by modulating a CO_2 laser with backscattered light[J]. Applied Optics, 1984, 23(1):61~66.
    
    16. Acket G, Lenstra D et al. The influence of feedback intensity on longitudinal mode properties and optical noise in index-guide semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1984, 20(10):1163-1169.
    
    17. Edson T Shimizu. Directional discrimination in the self-mixing type laser Doppler velocimetry [J]. Applied Optics, 1987, 26(2):4541-4544.
    
    18. He Deyong, Xu Jun, Gui Huaqiao. The direction discrimination of single mode VCSEL self-mixing laser Doppler velocimeter using automatic tracking triangular wave modulation[J]. Proceedings of SPIE, 2005, Vol.5644: 529-532.
    
    19. Thierry Bosch, Novel Servagent. The self-mixing interference inside a laser diode: Application to displacement, velocity and distance measurement[J]. Proceedings of SPIE, Vol.3478:98~108.
    
    20. Yu Yanguang, Yao Jianquan. View for the development of theory on the self-mixing interference and general model of the displacement measurement[J]. Proceedings of SPIE, 2002, Vol.4919:235-241.
    
    21. Katsuhiko Hara, Shigenobu Shinohara. New digital vibrometer with high accuracy using self-mixing type LDV[J]. IEEE Instrumentation and Measurement Technology Conference, 1997, Vol.2:860-864.
    
    22. Kenju Otsuka, Kazutaka Abe, Natsumi Sano et al. Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing[J]. Applied Optics, 2005, 44(9): 1709-1714.
    
    23. Guo Dongmei, Wang Ming. A new self-mixing interferometer for micro-displacement reconstruction[J]. Proceedings of SPIE, 2006, Vol.6341:634123-1-6341123-5.
    
    24. J. B. Gerardo and J. T. Verdeyen. Plasma refractive index by a laser phase measurement[J]. Applied Physics Letters, 1963, 3(7): 121-123.
    
    25. J. B. Gerardo, J. T. Verdeyen, M. A. Gusinow. High-frequency laser interferometry in plasma diagnostics[J]. Journal of Applied Physics, 1965, 36(7):2146-2151.
    
    26. D. E. T. F. Ashby, D. F .Jephcott, A. Malein and F. A. Raynor. Performance of the He-Ne gas laser as an interferometer for measuring plasma density[J]. Journal of Applied Physics, 1965, 36(1 ):29~34.
    
    27. T. R. Lawrence, D. J. Wilson and C. E. Craven. A laser velocimeter for remote wind sensing[J]. Review of Scientific Instruments, 1972, 43(3):512-518.
    
    28. Barker L M, Hollenbanch R E. Laser interferometer for measuring high velocity of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11):4669~4675.
    
    29. Gidon S, Behar G. Instantaneous velocity field measurement: application on shock wave studies[J]. Applied Optics, 1986, 25(9): 1429-1433.
    
    30. Wen Jidong, Tan Hua, Wang Xiang et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(111101):l~3.
    
    31. S. Shinohara, A. Mochizuki, H. Yoshida et al. Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode[J]. Applied Optics, 1986,25(9): 1417-1419.
    32.Shigenobu Shinohara,Hideaki Naito,Hirofumi Yoshida et al.Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction -discrimination circuit[J].IEEE Transactions on Instrumentation and Measurement,1989,38(2):574~577.
    33.D.Nordin,K.Hyypa.Advantages of a new modulation scheme in an optical self-mixing frequency-modulated continuous-wave system[J].Optics Engineering,2002,41(5):1128~1133.
    34.M.H.Koelink,M.Slot,F.F.M.de Mul et al.Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser:theory[J].Applied Optics,1992,31(18):3401~3408.
    35.M.H.Koelink,F.F.M.de Mul,Ao L.Weijers et al.Fiber-coupled self-mixing diode laser Doppler velocimeter:technical aspects and flow velocity profile disturbances in water and blood flows[J].Applied Optics,1994,33(24):5628~5641.
    36.Koelink,M.H.Slot,M.e Mul,et al.Glass-fiber self-mixing diode-laser Doppler velocimeter[J].Measurement Science & Technology,1992,3(1):33~37.
    37.W.M.Wang,W.J.O.Boyle,K.T.V.Grattan.Self-mixing interference in a laser diode:experimental observations and theoretical analysis]J].Applied Optics,1993,32(9):1551~1558.
    38.Xavier Raoul,Thierry Bosch,Noel Servagent.Double laser diode speed sensor for contactless measures of moving targets[J].Proceedings of SPIE,2002,Vol.4827:363~373.
    39.T.Shibata.S.Shinohara.Laser speckle velocimeter using self-mixing laser diode[J].IEEE Transactions on Instrumentation and Measurement,1996,45(2):499~503.
    40.W.M.Wang,K.T.V.Grattan,W.J.O.Boyle et al.Active optical feedback in a dual-diode laser configuration applied to displacement measurements with a wide dynamic range[J].Applied Optics,1994,33(10):1795~1801.
    41.马军山,孙晓明,强锡富.半导体激光自混合干涉的弱光反馈模型[J].半导体光电,1997,18(2):106~109.
    42.禹延光,穆晓明,强锡富.低于阈值运行的半导体激光器内自混合干涉现象--实验观察及理论分析[J].光学技术,2000,26(2):115~117.
    43.陆敏,王鸣,郝辉.半导体激光器的自混合散斑干涉测量流体速度[J].光学学报,2005,25(2):190~194.
    44.谈宜东,张书练.光回馈Nd:YAG激光器中的多模跳变现象[J].物理学报,2007,56(4):2124~2130.
    45.张勇.LD泵浦的多模固体激光器自混合干涉效应的珲论与应用研究[D].博士学位论文,天津,天津大学,2003.
    46.桂华侨.垂直腔而发射激光器自混合传感与光学定位跟踪技术研究[D].博士学位论文,安徽合肥,中国科学技术大学,2006.
    47.H.W.Jentink,F.F.M.de Mul,H.E.Suichies et al.Small laser Doppler velocimeter based on the self-mixing effect in a diode laser[J]Applied Optics,1988,27(2):379~385.
    48.Edson T.Shimizu.Directional discrimination in the self-mixing type laser Doppler velocimeter[J].Applied Optics,1987,26(2):4541~4544.
    49.Rudd M J.A laser Doppler velocimeter employing the laser as a mixer-oscillator[J].Journal of Physics E:Scientific Instruments,1968,1(7):723~726.
    50.孙晓明,马军山,强锡富.半导体激光自混合干涉理论研究[J].中国激光,1998,25(11):1018~1022.
    51.孙晓明.半导体激光干涉理论及应用[M].北京:国防工业出版社,1998:193~201.
    52.季新昕,刘劲松.半导体激光器自混合干涉理论与研究现状[J].光电技术应用,2005,20(6):40~45.
    53.Christian Zakian,Mark Dickinson,Terence King.Dynamic light scattering by using self-mixing interferometry with a laser diode[J].Applied Optics,2006,45(10):2240~2245.
    54.江剑平.半导体激光器[M].北京,电子工业出版社,2000:209.
    55.辛国锋,陈国鹰,花吉珍.高速半导体激光器的设计[J].半导体技术,2003,28(10):74~78.
    56.江剑平.半导体激光器[M].北京,电子工业出版社,2000:117~119.
    57.王欣,温继敏,黄亨沛等.利用光自注入改善DFB激光器的频率响应[J].半导体学报,2007,28(2):254~257.
    58.Peter J.DE Groot.Range-dependent optical feedback effects on the multimode spectrum of laser diodes[J].Journal of Modern Optics,1990,37(7):1199~1214.
    59.黄伟,吕亮,桂华侨等.光纤传输的激光振动自混合信号的分析[J].光电工程,2006,33(1):50~53.
    60.西安同维,自聚焦透镜使用说明书 V3.0,2007.
    61.胡绍楼.激光干涉测技术[M].北京:国防工业出版社,2001:10~11.
    62.葛哲学,陈仲生.Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006:243~244.
    63.禹延光,郭常盈,叶会英等.光反馈自混合干涉信号预处理方法[J].激光技术,2008,32(3):265~271.
    64.耿萌,石林锁.三种非平稳信号时频分析的方法[J].机械工程与自动化,2008,第1期:108~114.
    65.彭军,王光明,刘丹.基于时频分析的ISAR成像[J].雷达与对抗,2008,第1期:30~33.
    66.冯志鹏,刘立,张文明等.基于小波时频框架分解方法的滚动轴承故障诊断[J].振动与冲击,2008,27(2):110~114.
    67.刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006:22~69.
    68.葛哲学,陈仲生.Matlab时频分析技术及其应用[M].北京:人民邮电出版社,2006:57.
    69.唐向宏,李齐良.时频分析与小波变换[M].北京:科学出版社,2008:344.
    70.施冰皓.激光自混合干涉式位移测量的仿真及实验[D].硕士学位论文,西安,西北工业大学, 2004.
    71.Ming Wang.Fourier transform method for self-mixing interference signal analysis[J].Optics and Laser Technology,2001,No.33:409~416.
    72.薛琦,叶会英,禹延光.基于光反馈自混合干涉的任意振动信号重构[J].微计算机信息,2007,23(11-1):273~275.
    73.Takaaki Shibata,Shigenobu Shinohara,Hirokai Ikeda et al.Laser speckle velocimeter using self-mixing laser diode[J].IEEE Transaction on Instrumentation and Measurement,1996,45(2):499~503.
    74.Takaaki Shibata,Shigenobu Shinohara,Hiroaki Ikeda et al.Automatic measurement of velocity and length of moving plate using self-mixing laser diode[J].IEEE Transaction Instrumentation and Measurement,1999,48(6):1062~1067.
    75.Sahin Kaya Ozdemir,Satoshi Ito,Shigenobu Shinohara et al.Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode[J].Applied Optics,1999,38(33):6859~6865.
    76.Sahin Kaya Ozdemir,Tatsuya Takasu,Shigenobu Shinohara et al.Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes[J].Applied Optics,1999,38(10):1968~1974.
    77.Gang Liu,Shulian Zhang and Jun Zhu et al.Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He-Ne laser[J].Optics Communications,2003,221(4-6):387~393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700