碳氢燃料氧化积炭与裂解积炭的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文模拟吸热燃料在使用时的超临界条件,建立了超临界反应装置以及分析反应管内壁积炭重量和分布的装置及方法,通过大量的试验确定了适宜的反应条件。以正十二烷,RP-3和自配仿JP-7为裂解原料在304#不锈钢一次性反应器中进行裂解积炭实验,从积炭量分布、平均积炭速率分布以及积炭形态等方面考察了每种燃料的积炭特性。并且回归出各种燃料的热裂解积炭反应宏观动力学方程。
     本文还在已有研究基础上考察了正十二烷和RP-3的氧化积炭及其规律。正十二烷和RP-3的氧化积炭随温度的升高而缓慢增多,在燃料中的自溶解氧(空气中饱和为约70ppm)消耗完毕时,氧化积炭量达到最大值。而后随着温度的进一步升高,氧化积炭量有所下降,并且在氧化反应和裂解反应的过渡区内维持在较少的水平。对数据回归得到了正十二烷和RP-3的氧化反应表观活化能分别为36.91kJ/mol和80.15kJ/mol,这说明RP-3的热氧化安定性是优于正十二烷的。燃料在超临界热裂解过程中形成的积炭主要有两种:无定形炭和纤维状炭。
     金属催化产生的纤维焦炭是积炭的主要来源。通过对各种燃料在超临界条件下的裂解积炭总体分析,得到了正十二烷、RP-3和仿JP-7各自裂解反应的表观活化能分别为260kJ/mol、285 kJ/mol和399 kJ/mol ,这样就得到了三种燃料的热安定性由高到低的顺序为仿JP-7>RP-3>正十二烷。单独分析纤维状炭,得到正十二烷、RP-3和仿JP-7的纤维状炭积炭的表观活化能分别为371 kJ/mol,402 kJ/mol和550 kJ/mol。结果表明生成纤维状炭的积炭反应需要在较高的温度下才能发生。
Simulating engine system in the hypersonic aircraft, a set of continuous flow reactor was set up to evaluate coke formation from thermal cracking of endothemic fuel in supercritical conditions. Methods were also set up to determine coke amount and depositing rate. Suitable reacting conditions were confirmed by a set of tests. With n-dodecane, RP-3 and surrogate JP-7, thermal cracking experiments were carried on in 304 stainless steel tube. Analyzing curves of coke amount and depositing rate, deposition character of each fuel and three global kinetics equations were got.
     Thermal oxidation deposition of n-dodecane and RP-3 was invertigated. The thermal oxidation deposition of n-dodecane and RP-3 increase slowly when temperature rises, and reach the maximum when dissolving oxygen (exposed in air about 70ppm) was exhaisted. Then it reduces gradually with increase of temperature, and becomes stable at a value in the transition region. The apparent activation energy of RP-3 is 80.15kJ/mol and it is higher than that of n-dodecane 36.91kJ/mol, indicating a better performance of RP-3 in thermal stability.
     There are two kinds of deposition formed in supercritical thermal cracing: amorphous carbon and filamentous carbon. Filamentous carbon formed by the metal catalysis is the main source of the deposition in the thermal cracking regime. By the annlysis of total deposition, apparent activation energy of n-dodecane, RP-3 and surrogate JP-7 were 260kJ/mol, 285kJ/mol and 399kJ/mol, demonstrating an order of the thermal stabily from high to low: surrogate JP-7, RP-3, n-dodecane. The apparent activation energys obtained by the similar analysis in filamentous carbon deposition are 371 kJ/mol, 402 kJ/mol and 550 kJ/mol. Comparison of the two sets of apparent activation energies shows that filamentous carbon was formed at a higher temperature.
引文
[1]Edwards, T., Recent Research Results in Advanced Fuels, ACS. DIV. Pet Chem, 1996, 41(2), 481-487
    [2]Chung, H.S., Chen, C.S.H., Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels, Energy and Fuels 1999, 13, 641-649
    [3]Maurice, L.Q., Lander, H., Advanced Aviation Fuels: A Look Ahead Via A Historical Perspctive, Fuel 2001, 80, 747-756
    [4]Maurice, L.Q., Corporaqn, E., 'Controlled' Chemically Reacting Fuels: A New Beginning, ISABE, papers, 14th, Florence, Italy, Sept, 5-10, 1999, 314-324
    [5]张云川,中国航空航天业发展回顾与展望,国防科技工业,2006,(11):10-11
    [6]Bruno, C., Filippi, M., Hydrocarbon Fuels Reforming for Hypersonic Propulsion,ISABE, papers, 14th, Florence, Italy, Sept, 5-10, 1999, 347-356
    [7]Yanovskiy, L.S., Sapgir, G.B., Endothermic Fuels:Some Aspects of Fuels Decomposition and Combustion at Air Flows,ISABE,papers,14th,Florence,Italy,Sept,5-10,1999,734-740
    [8]Maurice, L., Edwards, T., Liquid Hydrocarbon Fuels for Hypersonic Propulsion,Progress in Astronautics and Aeronautics Vol. 189, 2000, 757-775
    [9]顾维藻,刘文艳,王志峰,组合式发动机进气道的冷却研究,工程热物理学报,1997,18(3),18-22
    [10]贺芳,禹天福,李亚裕,吸热型炭氢燃料的研究进展,导弹与航天运载技术,2005,1,26-29
    [11]Ianovski, S.,Leonid(Russia), Endothermic Fuels for Hypersonic Aviation, Present -ed at an AGARD Meeting on Fuels and Combustion Technology for Advanced Aircraft Engines, May 1993, 441-447
    [12]Sobel, David, R., Spadaccini, et.al, Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion, Presented at the International Gas Turbine and Aero engine Congress & Exposition, Houston, Texas, 1995, June 5-8
    [13]Robert, R.C., Ralph, F.A., Endothermic Reaction Apparatus and Method. US Patent 5567398.1996-10-22.
    [14]Robert, R.C., Stephen, H., Michael, K.R, Endothermic Reaction Process.US Patent 5565009.1996-10-15.
    [15]Yu, J., Eser, S., Supercritical-Phase Thermal Decomposition of Jet Fuel Components: Mixture Studies. Presented before the Div. of Fuel Chem. Inc. ACS, 1998, 43(1-2), 80-84
    [16]刘治中,许世海,姚如杰,液体燃料的性质与应用,中国石化出版社,2000,84-90
    [17]Edwards, T., Liquid Fuel and Propellants for Aerospace Propulsion: 1903-2003, Journal of Propulsion and Power, 2003, vol.19,no.6
    [18]范启明,米镇涛,高超音速推进用吸热型烃类燃料的热稳定性研究Ⅰ.热氧化与热裂解沉积,燃料化学学报,2002,30(1):78-82
    [19]Figueiredo, J.L., Reactivity of Coke Deposited on Metal Surface, Materials and Corrosion, 1999, 50, 696-699
    [20]Wickham, D.T, Atria J V, Engel J R, Formation of Carbonaceous Deposits in a Model Jet Fuel under Pyrolysis Conditions, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1998, 43(3): 428-432
    [21]Jones, E.G., Balster, W.J., Phenomenological Study of the Formation of Insolubles in a Jet-A Fuel. Energy & Fuels. 1993,7(6),968-977
    [22]William, F.T., Deposit Formation from Deoxygenated Hydrocarbons.II. Effect of Trace Sulfur Compounds. Ind. Eng. Chem., Prod. Res. Develop., 1976, 15(1), 64-68
    [23]Edwards, T., Zabarnick, S., Supercritical Fuel Deposition Mechanisms.Ind. Eng. Chem. Res. 1993, 32, 3117-3122
    [24]Edwards, T., Anderson, S.D., Preliminary Results of High Temperature JP-7 Cracking Assessment. Symposium on Structure of Jet Fuels III Presented before The Division of Petroleum Chemistry, Inc. American Chemical Society, San Francisco Meeting, April 5-10,1992:549-559
    [25]Phillip, E.S., Pyrolysis Kinetics and Mechanisms for Polycyclic Perhydroarenes Bearing Long N-Alkyl Chaines.Presented before the Div. of Fuel Chem. Inc. ACS, 1998, 43(1-2), 8-11
    [26]Lander, H.R., Nixon, A.C., Endothermic Fuels for High Mach Vehicles, ACS. DIV. Pet. Chem., April 5-10, 1987, 504-511
    [27]John, M.A., James, J.S., Michael, M.C., Suppression of Pyrolytic Degradation of N-Alkanes in Jet Fuels by Hydrogen-Donors. Presented before the Div. of Fuel Chem. Inc. ACS, 1999, 44(1), 194-198
    [28]Lander, H.R., Nixon, A.C., Endothermic Fuels for High Mach Vehicles, ACS. DIV. Pet. Chem., April 5-10, 1987, 504-511
    [29]Venkataraman, A., Altin, O., Eser,S., Analysis of solid deposits from thermal stressing of n-dodecane and a JP-8 fuel on different tube surfaces in a batch reactor , Prepr.Pap. -Am. Chem.Soc ., Div.Pet.Chem. 1998 , 43 (3),419-422
    [30]John, M.A., James, J.S., Michael, M.C., Chemical Interactions Between Linear and Cyclic Alkanes during Pyrolytic Degradation of Jet Fuels. Presented before the Div of Fuel Chem. Inc. ACS, 1999, 44(1), 199-203
    [31]Grant, E.J., Lori, M.B., Autoxidation of Dilute Jet-Fuel Blends. Energy & Fuels, 1999, 13(4), 796-802
    [32]Kay, I.W., Peschke, W.T., Guile, R.N., Hydrocarbon-Fueled Scramjet Combustor Investigation, Journal of Propulsion and Power. 1992, 18(2), 507-512
    [33]Bruce, B., Romilla, Model Studies Directed at the Development of New Thermal Oxidative Stability Enhancing Additives for Future Jet Fuels, Energy & Fuels. 1997, 11(2), 396-401
    [34]Chung, H.S, Chen, C.S.H, Kremer.R.A, Recent Developments in High-Energy Liquid Hydrocarbon Fuels. Energy & Fuels. 1999, 13(3), 641-649.
    [35]Grant, E., Jones., Walter, J.B., Lori,M.B., Aviation Fuel Recirculation and Surface Fouling. Energy & Fuels. 1997, 11(6), 1303-1308
    [36]Yu, J., Eser, S., Thermal Decomposition of n-Alkandes under Supercritical Condi- tion, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 488-492
    [37]Eser, S., Schobert, .H. H., et al., Pyrolytic Degradation Studies of a Coal-Derived and a Petroleum Derived Aviation Jet Fuel, Energy Fuels, 1993, 7 (2): 234-243
    [38]邹仁鋆,石油化工裂解原理与技术,北京:化学工业出版社,1982,51-128。
    [39]范启明,高超音速推进用吸热型烃类燃料的氧化与裂解过程研究:[博士学位论文],天津:天津大学,2002
    [40]Goel, P.A., Bochman, L., Bridging Batch and Flow Reactor Studies of Jet Fuel Degradation, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1998, 43(3): 82-386
    [41]Andresen, J.J., Strohm, J.J., Song, C., Study on The Formation of Aromatic Compounds during Thermal Degradation of Naphthenic Jet Fuel in the Pyrolytic Regime by NMR and HPLC. Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 478-483
    [42]John, M., James, J., Song, c., et al. Relationship between the Formation of Aromatic Compounds and Solid Deposition during Thermal Degradation of Jet Fuels in the Pyrolytic Regime, Energy Fuel, 2001, 15(3): 714-723
    [43]Minus, D.K., Corporan, E., Aromatic Species Formation in Thermally Stressed Jet fuel, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 484-487
    [44]Daisuke, N., Tomoya, S., Kinetic Study of Model Reaction in the Gas Phase at Early Stage of Coke Formation, Ind.Eng.Chem.Res, 1992, 31: 14-19
    [45]Spadaccini, L., Sobel, D.R., Huang, H., Deposit Formation and Mitigation in Aircraft Fuels, ASME paper 99-GT-217
    [46]Atria, J.V., Cermignani, W., Schobert, H.H., Nature of High Temperature Deposits from n-Alkanes in Flow Reactor Tubes, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 493-497
    [47]Glassman, I., Brezinsky, k., Fuels Combustion Research, AFOSR Final Report for Grant 91-0431
    [48]Wickham, D.T., Engel, J R., Karpuk, M E, Additives to Prevent Filamentous Coke Formation in Endothermic Heat Exchangers, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 459-464
    [49]Jafar, T., Mojtaba, S., Aligholi, NIAEI., Coke Formation Mechanisms and Coke inhibiting methods in pyrolysis Furnaces, Journal of Chemical Engineering of Japan, 2002, 35(10): 923-937
    [50]Gergoua, K., Arumugam, R., Chang, P., et. al, Effects of Solid Carbon Surfaces on Thermal Decomposition of n-Dodecane, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 513-517
    [51]Xie, C.G., Zhang, Z.G., Catalyst hydrothermal deactivation and coke formatin in catalytic pyrolysis process for ethylene production, PREPRINTS, ACS Division of Petroleum Chem., March 26-31, 2000: 317-319
    [52]Hiroyuki, Y., Sato, T., Deactivation of noble metal catalysts for aromatic hydrogenation, PREPRINTS, ACS Division of Petroleum Chem., March 26-31, 2000: 320-322
    [53]Maurice, L., Edwards, T., Liquid Hydrocarbon Fuels for Hypersonic Propulsion,Progress in Astronautics and Aeronautics, 2000, 189: 757-775
    [54]Schobert, H.H., Beaver, B., Rudnick, L.R., Progress Toward Development of Coal-based JP-900 Jet Fuel, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem , 2004, 49(4): 493-497
    [55]Yu,J., Eser, S., Near-critical and supercritical regions: product distributions and reaction mechanisms, Ind. Eng. Chem. Res. 1997, 36: 574-584
    [56]Yu, J., Eser, S., Kinetics of supercritical-phase thermal decomposition of C10-C14 normal alkanes in C10-C14 normal alkanes and their mixtures, Ind. Eng. Chem. Res. 1997, 36: 585-591
    [57]Yu, J., Eser, S., Thermal decomposition of jet fuel model compounds under near-Critical and supercritical comditions. 1. n-butylbenzene and n-butylcyclohexane, Ind. Eng. Chem. Res. 1998, 37: 4591-4600
    [58]Yu, J., Eser,S., Thermal decomposition of jet fuel model compounds under near-critical and supercritical comditions. 2. decalin and tetralin, Ind. Eng. Chem. Res. 1998, 37: 4601-4608
    [59]Yu, J., Eser, S., Supercritical-phase thermal decomposition of binary mixtures of jet fuel model compounds, Fuel, 2000, 79(7): 759-768
    [60]Wei, C.L., Song, C., Pyrolysis of alkylcyclohexanes in or near the supercritical phase. Product distribution and reaction pathways, Fuel Processing Technology, 1996, 48(1): 1-27
    [61]Bruno, C., Filippi, M., Hydrocarbon Fuels Reforming for Hypersonic Propulsio, ISABE papers, 14th, Florence, Italy, 1999, 314-324
    [62]周震寰,甲基环己烷和十氢萘的超临界可控吸热过程研究:(博士学位论文),天津:天津大学图书馆,2003
    [63]孙青梅,新型航空燃料临界性质测定与估算:(硕士学位论文),天津:天津大学图书馆,2006
    [64]Coordinating Research Council,lnc.,“Thermal Oxidation Stability of Jet Fuels-A Literature Survey,”CRC Report No.509,Apr.1979.
    [65]Marteney, P.J., Spadaccini, L.J.,“Thermal Decomposition of Aircraft Fuel,”Transactions of the ASME, Vol.108,October 1986.
    [66]王静,航空燃料超临界热裂解过程中抑焦技术的研究:(硕士学位论文),天津:天津大学图书馆,2006.
    [67]Hazlett, R.N.,“Thermal Oxidation Stability of Aviation Turbine Fuels,”ASTM Publication Code Number 31-001093-12, December 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700