高功率固体激光振荡器与放大器光束质量控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Investigation on Beam Quality Control in High Power Laser Oscillator and Amplifier
  • 作者:潘孙强
  • 论文级别:博士
  • 学科专业名称:光学工程
  • 学位年度:2013
  • 导师:刘崇 ; 陈军
  • 学科代码:0803
  • 学位授予单位:浙江大学
  • 论文提交日期:2013-10-01
  • 答辩委员会主席:陆璇辉
摘要
本论文的主要内容分为四个部分:端面泵浦固体激光器的热效应研究;端面泵浦固体激光振荡器中的光束质量演变以及球差对谐振腔的影响;端面泵浦固体激光放大器中的光束质量改善技术研究;侧面泵浦固体激光器及其非线性频率变换研究。
     光束质量是激光器的一项重要参数。激光光束质量控制及改善技术的研究一直是高功率激光器研究中的一项重要内容。影响激光光束质量的主要因素是激光晶体的热效应和增益效应。本论文通过研究激光晶体的热效应和增益效应来研究激光光束质量的控制及改善技术。
     首先研究了端面泵浦固体激光器的热效应。从稳态热传导方程与边界条件出发,分别采用解析方法和有限差分法计算了端面泵浦激光晶体的温度分布,进而通过计算晶体内的光程差分布来研究晶体的热透镜效应和热致畸变效应。研究了球差对热透镜焦距的影响,指出同一晶体对不同光斑半径激光的等效热透镜焦距是不一样的。将薄片上的光程差分布按Zernike多项式展开,指出球差是主要的畸变,可以用球差系数表征畸变的大小。提出了一种利用探测光的夫琅禾费衍射图样测量热透镜焦距的新方法,可在激光运行时测量热透镜焦距。实验测量了端面泵浦晶体的热透镜焦距,实验测量值与非稳腔法实验测量值符合得较好。
     在研究热效应的基础上,建立了端面泵浦激光振荡器的理论模型,理论模型中同时考虑了激光晶体的热效应以及增益效应,将谐振腔沿激光传播方向展开,采用分步傅立叶法仿真激光在谐振腔中振荡时的自再现模。仿真计算并实验验证了激光振荡器输出镜和全反镜端的激光光束质量是不一样的,激光从全反镜传播到输出镜时,激光光束质量被改善。提出了当激光通过晶体时,激光自身的负球差可以被晶体的正球差补偿这一光束质量改善机理。同时指出带正球差的会聚激光光束经过传播后,其球差由正球差演变为负球差,解释了激光谐振腔内激光波前负球差的由来。研究了激光晶体球差对谐振腔稳定区的影响,指出球差可导致谐振腔基模和高阶模稳定区的分离,从而可以选择合适的工作点,只有基模可以振荡,而其他高阶模由于高损耗不能振荡,实现了基模振荡输出。采用简单平平腔结构,在泵浦功率为104W时,实现了51.2W高功率基模输出,测得的激光光束质量M2为1.2。
     激光放大器是实现高功率激光输出的重要途径,通常情况下,由于热致畸变效应的存在,放大过程中激光光束质量会持续恶化,放大后的激光光束质量远差于激光振荡器输出的激光光束质量。通过建立端面泵浦激光放大器的理论模型,研究了端面泵浦固体激光放大器中的激光光束质量控制及改善技术。指出在放大过程中,影响放大后激光光束质量的主要因素是信号光的球差。如果信号光的球差是负球差,那么信号光通过放大晶体之后,负球差可以被激光晶体的正球差补偿,从而改善激光光束质量。在单端泵浦放大实验中,实验上实现了光束质量改善。信号光光束质量因子M2为2.2,放大光光束质量因子M2改善为1.4。在双端泵浦单级MOPA实验中,同样实现了光束质量改善,光束质量因子M2从2.71改善为1.67。实验结果和理论仿真结果符合得很好。
     最后研究了侧面泵浦固体激光器及非线性频率变换。研究了热致双折射效应,指出自然双折射晶体不需要考虑热致双折射效应,而光学各向同性晶体必需考虑热致双折射效应。用Nd:YAG双棒串接结构补偿热致双折射效应,同时采用基模动态稳定腔设计,实现了35W基模1064nm激光输出。分别采用腔外四倍频、三倍频的方法实现了1.85W266nm和11W355nm紫外激光输出。同时研究了BBO非线性晶体中的自热效应
This disseratation is composed of four parts:the thermal effects in a diode-end-pumped solid-state laser; the beam quality evolution of the laser field oscillating inside an oscillator&the influence of spherical aberration on the laser resonator; investigation of beam quality improvement in a diode-end-pumped amplifier; side-pumped solid-state laser&nonlinear frequency convertion.
     Beam quality is a critical parameter for a laser. Control and improvement of laser beam quality are necessary. Laser beam quality is affected by the thermal effects and gain effects of the laser crystal. In this dissertation, the influence of thermal effects and gain effects on the laser beam quality is investigated, in order to improve laser beam quality.
     Firstly, the thermal effects in a diode-end-pumped solid-state laser are studied. The crystal's temperature distribution is solved from the heat conduction equation using analytical method and finite difference method. The optical path difference (OPD) of the laser crystal is calculated, and the thermal lens effect and thermally induced aberrations are investigated. The influence of spherical aberration on the focal length of thermal lens is studied. A laser with different beam radius passing through a thermal lens has different focal length. With the decomposition of the OPD distribution over the slices in terms of the Zernike polynomials, it finds out that the main aberration is spherical aberration. The thermally induced aberrations can be represented by spherical aberration coefficient. A new method using the diffraction pattern of a probe laser to measure the focal length of a thermal lens is proposed, which can be used when the laser is on operation.
     Based on the study of thermal effects, a theoretical model of end-pumped laser oscillator is developed, considering both thermal effects and gain effects. The stable transverse mode oscillating in the resonator is simulated. The discrepancy of the beam quality at two cavity mirrors is discovered. The beam quality improvement in a laser oscillator is confirmed experimentally and theoretically. The beam quality improvement is attributed to the thermally induced aberrations. A laser with negative spherical aberration is compensated by the thermally induced aberrations of the laser cystal, when it passes through the laser crystal. The influence of spherical aberration on resonator's stable zones is also studied. The spherical aberration induced stable zones separatioin of different order's transverse modes is pointed out. Fundmental mode operation can be achieved by choosing proper working point. An experimental setup of a diodes dual-end pumped Nd:YVO4laser is built up.51.2W fundamental mode operation is achieved with a pump power of104W, and the beam quality factor M2=1.2.
     Laser amplifier is an effective approach for high power laser output. However, the beam quality of the amplified laser is always worse than that of the input laser because of thermally induced aberrations. The beam quality improvement in a laser amplifier is investigated using a theoretical model of end-pumped laser amplifier. The importance of the spherical aberrtion of the input laser on the beam quality of amplified laser is discovered. An input laser with negative spherical aberration is compensated by the thermally induced aberrations of the laser cystal when it is amplified, and the laser beam quality is improved. Both in the single-end pumped and dual-end pumped laser amplifier experiments, the beam quality improvements are confirmed. The beam quality facter M2is improved from2.2to1.4in a single-end pumped laser amplifier. The beam quality facter M2is improved from2.71to1.67in a dual-end pumped laser amplifier. The experimental and numerical simulation results are in good agreement.
     Finally, side-pumped solid-state laser and nonlinear frequency convertion are studied. The thermally induced birefringence is investigated. A two-rod fundamental mode dynamic stable laser resonator is built up, and35W fundamental mode operation is achieved. Using external cavity nonlinear frequency conversion,1.85W266nm and11W355nm ultraviolet laser output are obtained. The thermal effect of the BBO nonlinear optical crystal is also studied.
引文
[1]Maiman T H. Stimulated optical radiation in ruby[J]. Nature,1960,187:493-494.
    [2]Maiman T H, Hoskins R H, D'Haenens I J, et al. Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby[J]. Physical Review,1961,123(4):1151.
    [3]Maiman T H. Stimulated optical emission in fluorescent solids. I. theoretical considerations[J]. Physical Review,1961,123(4):1145-1150.
    [4]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].科学出版社,2007.
    [5]Koechner W. Solid-state laser engineering[M]. Springer,2006.
    [6]Cousins A K. Temperature and thermal stress scaling in finite-length end-pumped laser rods[J]. Quantum Electronics, IEEE Journal of,1992,28(4):1057-1069.
    [7]Pfistner C, Weber R, Weber H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods[J]. Quantum Electronics, IEEE Journal of,1994,30(7):1605-1615.
    [8]Tidwell S C, Seamans J F, Bowers M S, et al. Scaling CW diode-end-pumped Nd:YAG lasers to high average powers[J]. Quantum Electronics, IEEE Journal of,1992,28(4):997-1009.
    [9]Kurtev S Z, Denchev O E, Savov S D. Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation[J]. Applied optics,1993,32(3):278-285.
    [10]Weber R, Neuenschwander B, Mac Donald M, et al. Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods[J]. Quantum Electronics, IEEE Journal of,1998,34(6):1046-1053.
    [11 Steffen J, Lortscher J, Herziger G. Fundamental mode radiation with solid-state lasers[J]. Quantum Electronics, IEEE Journal of,1972,8(2):239-245.
    [12]Metcalf D, Giovanni P D, Zachorowski J, et al. Laser resonators containing self-focusing elements[J]. Applied optics,1987,26(21):4508-4517.
    [13]董延涛,赵智刚,刘崇,等.热效应对固体激光器偏振特性和基模输出特性的影响[J][J].中国激光,2009,36(7):1759-1765.
    [14]Eichler H J, Haase A, Menzel R, et al. Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier[J]. Journal of Physics D:Applied Physics,1993,26(11):1884.
    [15]Seidel S, Schirrmacher A, Mann G, et al. Optimized resonators for high-average-power high-brightness Nd:YAG lasers with birefringence compensation:Optoelectronics and High-Power Lasers & Applications, 1998[C]. International Society for Optics and Photonics.
    [16]刘崇,葛剑虹,项震,等.热透镜的球差效应对大基模体积激光谐振腔模式的影响[J].物理学报,2008,57(3):1704-1708.
    [17]Martinez-Herrero R, Mejias P M, Hodgson N, et al. Beam-quality changes generated by thermally-induced spherical aberration in laser cavities[J]. Quantum Electronics, IEEE Journal of, 1995,31(12):2173-2176.
    [18]Montmerle Bonnefois A, Gilbert M, Thro P, et al. Thermal lensing and spherical aberration in high-power transversally pumped laser rods[J]. Optics communications,2006,259(1):223-235.
    [19]Shi-Yong X, Yuan-Fu L, Qing-Lei M, et al. High power high beam quality diode-pumped 1319-nm Nd: YAG oscillator-amplifier laser system[J]. Chinese Physics B,2010,19(6):64208.
    [20]Xu L, Zhang H, Mao Y, et al. High-average-power and high-beam-quality Innoslab picosecond laser amplifie[J]. Applied Optics,2012,51(27):6669-6672.
    [21]Hong H L, Liu Q, Huang L, et al. Numerical and experimental results of wavefront aberration caused in a high power laser amplifier[J]. Laser Physics Letters,2013,10(2):25002.
    [22]Hodgson N, Weber H. Optical Resonators:Fundamentals, Advanced Concepts, Applications[M]. Springer,2005.
    [23]Poprawe R, Gillner A, Hoffmann H, et al. Disk, fiber, rod, slab:new laser concepts open new application perspectives:Photonics, Devices, and Systems Ⅳ,2008[C]. International Society for Optics and Photonics.
    [24]Poprawe R, Loosen P, Hoffmann H. Development trends of new high-power laser sources:Lasers and Applications in Science and Engineering,2005 [C]. International Society for Optics and Photonics.
    [25]Huber G, Krankel C, Petermann K. Solid-state lasers:status and future [Invited][J]. JOSA B, 2010,27(11):B93-B105.
    [26]LaFortune K N, Hurd R L, Fochs S N, et al. Technical challenges for the future of high energy lasers: Lasers and Applications in Science and Engineering,2007[C]. International Society for Optics and Photonics.
    [27]Didierjean J, Herault E, Balembois F, et al. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals[J]. Optics express,2008,16(12).
    [28]Morikawa J, Leong C, Hashimoto T, et al. Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis[J]. Journal of Applied Physics, 2008,103(6):63522.
    [29]Sato Y, Taira T. The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method[J]. Optics Express,2006,14(22):10528-10536.
    [30]Wang C X, Wang G Y, Hicks A V, et al. High-power Q-switched TEM00 mode diode-pumped solid state lasers with> 30W output power at 355nm:Lasers and Applications in Science and Engineering,2006[C]. International Society for Optics and Photonics.
    [31]McDonagh L, Wallenstein R, Knappe R, et al. High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm[J]. Optics letters,2006,31(22):3297-3299.
    [32]McDonagh L, Wallenstein R. Low-noise 62 W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888 nm[J]. Optics letters,2007,32(7):802-804.
    [33]McDonagh L, Wallenstein R, Knappe R.47 W,6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00Nd:YVO4 oscillator[J]. Optics letters,2006,31(22):3303-3305.
    [34]Frede M, Wilhelm R, Brendel M, et al. High power fundamental mode Nd:YAG laser with efficient birefringence compensation[J]. Opt. Express,2004,12(15):3581-3589.
    [35]Frede M, Wilhelm R, Kracht D, et al. Nd:YAG ring laser with 213 W linearly polarized fundamental mode output power[J]. Opt. Express,2005,13:7516-7519.
    [36]Xu Y, Xu J, Guo Y, et al. Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM00 mode output[J]. Applied optics,2010,49(24):4576-4580.
    [37]Ma J, Zhong G, Wu J, et al.124W diode-side-pumped Nd:YAG laser in dynamic fundamental mode[J]. Optics & Laser Technology,2010,42(4):552-555.
    [38]Zhao Z, Dong Y, Liu C, et al. Diodes-double-end-pumped high efficiency continuous wave 36 W TEMOO mode Nd:GdVO4 laser[J]. Laser physics,2009,19(11):2073-2076.
    [39]Zhao Z, Dong Y, Liu C, et al. A 15.1 W continuous wave TEMOO mode laser using a YVO4/Nd:YVO4 composite crystal[J]. Laser physics,2009,19(11):2069-2072.
    [40]Chen Y, Lan Y P, Wang S C. Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser with a planar cavity [J]. Optics Letters,2000,25(14):1016-1018.
    [41]侯军燕,舒仕江,汪岳峰,等.激光二极管双端抽运高功率高光束质量Z型折叠腔Nd:YVO 4激光器[J].光学学报,2010(8):2299-2305.
    [42]赵智刚,董延涛,潘孙强,等.50 W量级双端抽运Nd:YVO4基模固体激光振荡器[J].中国激光,2011,38(9):902001.
    [43]Hong H, Huang L, Liu Q, et al. Compact high-power, TEM00 acousto-optics Q-switched Nd:YVO4 oscillator pumped at 888 nm[J]. Applied Optics,2012,51(3):323-327.
    [44]Yan X, Liu Q, Fu X, et al. High repetition rate dual-rod acousto-optics Q-switched composite Nd:YV04 laser[J]. Optics Express,2009,17(24):21956-21968.
    [45]Yan X P, Liu Q, Gong M, et al. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing[J]. Laser Physics Letters, 2009,6(2):93.
    [46]Yan X, Liu Q, Fu X, et al. Comparative investigation on performance of acousto-optically Q-switched dual-rod Nd:YAG-Nd:YV04 laser and dual-rod Nd:YVO4- Nd:YVO4 laser[J]. Applied optics, 2010,49(22):4131-4138.
    [47]Yan X, Liu Q, Huang L, et al. A high efficient one-end-pumped TEM00 laser with optimal pump mode[J]. Laser Physics Letters,2008,5(3):185.
    [48]Wang Y, Gong M, Huang L. High-pulse-stability double-end continuous-grown YVO4/Nd: YVO4/YVO4 acousto-optically Q-switched laser at high repetition rates[J]. Laser Physics, 2010,20(6):1316-1319.
    [49]Fan T Y, Sanchez A. Coherent (phased array) and wavelength (spectral) beam combining compared: Lasers and Applications in Science and Engineering,2005[C]. International Society for Optics and Photonics.
    [50]Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2005,11(3):567-577.
    [51]Desfarges-Berthelemot A, Kermene V, Sabourdy D, et al. Coherent combining of fibre lasers [J]. Comptes Rendus Physique,2006,7(2):244-253.
    [52]Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications [J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2007,13(3):487-497.
    [53]Ostermeyer M, Kappe P, Menzel R, et al. Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system[J]. Applied optics,2005,44(4):582-590.
    [54]Minassian A, Thompson B A, Smith G, et al. High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2005,11(3):621-625.
    [55]Luther-Davies B, Kolev V Z, Lederer M J, et al. Table-top 50-W laser system for ultra-fast laser ablation[J]. Applied Physics A,2004,79(4-6):1051-1055.
    [56]Lin H, Li J, Liang X.105 W,<10 ps, TEM 00 laser output based on an in-band pumped Nd:YVO 4 Innoslab amplifier[J]. Optics Letters,2012,37(13):2634-2636.
    [57]McDonagh L, Wallenstein R, Nebel A. 111 W,110 MHz repetition-rate, passively mode-locked TEM00 Nd:YVO4 master oscillator power amplifier pumped at 888 nm[J]. Optics letters,2007,32(10):1259-1261.
    [58]Yarrow M J, Kim J W, Clarkson W A. High power single-frequency continuous-wave and pulsed Nd: YVO4 master oscillator power amplifier:Advanced Solid-State Photonics,2006 [C]. Optical Society of America.
    [59]Kim J W, Yarrow M J, Clarkson W A. High power single-frequency continuous-wave Nd:YVO4 master-oscillator power amplifier[J]. Applied Physics B,2006,85(4):539-543.
    [60]Yarrow M J, Kim J W, Clarkson W A. High power, long pulse duration, single-frequency Nd:YVO4 master-oscillator power-amplifier[J]. Optics communications,2007,270(2):361-367.
    [61]Winkelmann L, Puncken O, Kluzik R, et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B,2011,102(3):529-538.
    [62]彭润伍,郭林,张小富,等Nd:YVO4和Nd:YAG混合放大皮秒激光器[J].中国激光,2009,36(s 1):30.
    [63]麻云凤,余锦,牛岗,等21 W,56 MHz Nd:YV04皮秒脉冲激光放大器[J].中国激光,2013,40(3):302010.
    [64]黄科,樊仲维,余锦,等.LD端面泵浦Nd:YVO4激光放大器的理论及实验[J].激光与红外,2011,41(8):861-866.
    [65]Liu Q, Yan X, Gong M, et al.103 W high beam quality green laser with an extra-cavity second harmonic generation[J]. Optics Express,2008,16(19):14335-14340.
    [66]Yan X, Liu Q, Fu X, et al. A 108 W,500 kHz Q-switching Nd:YVO4 laser with the MOPA configuration[J]. Optics Express,2008,16(5):3356-3361.
    [67]Fu X, Liu Q, Yan X, et al.120 W high repetition rate Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumped seed laser[J]. Applied Physics B,2009,95(1):63-67.
    [68]Liu Q, Yan X, Fu X, et al.183 WTEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz[J]. Optics express,2009,17(7):5636-5644.
    [69]Liu Q, Yan X P, Fu X, et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz[J]. Laser Physics Letters,2009,6(3):203.
    [70]Ya X, Liu Q, Gong M, et al. High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation[J]. Applied Physics B,2009,95(2):323-328.
    [71]Yan X, Liu Q, Chen H, et al.35.1 W all-solid-state 355 nm ultraviolet laser[J]. Laser Physics Letters, 2010,7(8):563-568.
    [72]Liu Q, Chen H, Yan X, et al.36.5 W high beam quality 532nm green laser based on dual-rod AO Q-switched resonator[J]. Optics Communications,2011,284(13):3383-3386.
    [73]Hong H, Liu Q, Huang L, et al. High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm[J]. Applied Physics Express, 2012,5(9):2705.
    [74]Newman R. Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs[J]. Journal of Applied Physics,1963,34(2):437.
    [75]Lavi R, Jackel S, Tzuk Y, et al. Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level[J]. Applied Optics,1999,38(36):7382-7385.
    [76]Lavi R, Jackel S. Thermally boosted pumping of neodymium lasers[J]. Applied Optics, 2000,39(18):3093-3098.
    [77]Lavi R, Jackel S, Tal A, et al.885 nm high-power diodes end-pumped Nd:YAG laser[J]. Optics communications,2001,195(5):427-430.
    [78]Lupei V, Pavel N, Sato Y, et al. Highly efficient 1063-nm continuous-wave laser emission in Nd:GdVO4[J]. Optics letters,2003,28(23):2366-2368.
    [79]Sato Y, Taira T, Pavel N, et al. Laser operation with near quantum-defect slope efficiency in Nd:YVO under direct pumping into the emitting level[J]. Applied physics letters,2003,82:844.
    [80]Zhu P, Li D, Hu P, et al. High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm[J]. Optics letters,2008,33(17):1930-1932.
    [81]Goldring S, Lavi R, Tal A, et al. Characterization of radiative and nonradiative processes in Nd:YAG lasers by comparing direct and band pumping[J]. Quantum Electronics, IEEE Journal of,2004,40(4):384-389.
    [82]Frede M, Wilhelm R, Kracht D.250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level[J]. Optics letters,2006,31(24):3618-3619.
    [83]Sangla D, Castaing M, Balembois F, et al. Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm[J]. Optics letters,2009,34(14):2159-2161.
    [84]Delen X, Balembois F, Musset O, et al. Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 and 914 nm[J]. JOSA B,2011,28(1):52-57.
    [85]Chang L, Yang C, Yi X J, et al.914 nm LD end-pumped 31.8 W high beam quality EO Q-switched Nd: YVO4 laser without intracavity polarizer[J]. Laser Physics,2012,22(9):1369-1372.
    [86]Y F L A X. Highly efficient Nd:LuVO 4 laser by direct in-band diode pumping at 915 nm[J]. Laser Physics Letters,2010,7(7):487.
    [87]Sangla D, Balembois F, Georges P. Nd:YAG laser diode-pumped directly into the emitting level at 938 nm:Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009. European Conference on,2009[C]. IEEE.
    [88]Lu Y F, Zhang X H, Xia J, et al.1064 nm Nd:YAG laser intracavity pumped at 946 nm and sum-frequency mixing for an emission at 501 nm[J]. Laser Physics Letters,2010,7(5):335.
    [89]Zel'Dovich B Y, Popovichev V I, Ragul'Skii V V, et al. Connection between the wavefronts of the reflected and exciting light in stimulated Mandel'stam-Brillouinscattering[J]. Sov. Phys. JETP Lett., 1972,15:109.
    [90]Nosach O Y, Popovichev V I, Ragul'Skii V V, et al. Cancellation of phase distortions in an amplifying medium with a'Brillouin mirror[J]. Sov. Phys. JETP Lett.,1972,16:435.
    [91]Damzen M J, Green R, Syed K S. Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms [J]. Optics letters,1995,20(16):1704-1706.
    [92]Mailis S, Hendricks J, Shepherd D P, et al. High-phase-conjugate reflectivity (< 800%) obtained by degenerate four-wave mixing in a continuous-wave diode-side-pumped Nd:YVO4 amplifier[J]. Optics letters, 1999,24(14):972-974.
    [93]Camacho-Lopez S, Damzen M J. Self-starting Nd:YAG holographic laser oscillator with a thermal grating[J]. Optics letters,1999,24(11):753-755.
    [94]Trew M, Crofts G J, Damzen M J, et al. Multiwatt continuous-wave adaptive laser resonator[J]. Optics letters,2000,25(18):1346-1348.
    [95]Thompson B A, Minassian A, Damzen M J. Operation of a 33-W, continuous-wave, self-adaptive, solid-state laser oscillator[J]. JOSA B,2003,20(5):857-862.
    [96]Eremeykin O N, Antipov O L, Minassian A, et al. Efficient continuous-wave generation in a self-organizing diode-pumped Nd:YVO4 laser with a reciprocal dynamic holographic cavity[J]. Optics letters, 2004,29(20):2390-2392.
    [97]Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination:a passive technique for laser power scaling[J]. Optics letters,2010,35(7):1082-1084.
    [98]Ojima Y, Nawata K, Omatsu T. Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror[J]. Optics express,2005,13(22):8993-8998.
    [99]Nawata K, Ojima Y, Okida M, et al. Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror[J]. Optics Express,2006,14(22):10657-10662.
    [100]Omatsu T, Nawata K, Okida M, et al. MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO4 bounce amplifier[J]. Optics Express,2007,15(15):9123-9128.
    [101]Shiba N, Morimoto Y, Furuki K, et al. Picosecond master-oscillator, power-amplifier system based on a mixed vanadate phase conjugate bounce amplifier[J]. Optics Express,2008,16(21):16382-16389.
    [102]Nawata K, Okida M, Furuki K, et al. Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier[J]. Optics Express,2009,17(23):20816-20823.
    [103]Nawata K, Okida M, Miyamoto K, et al.105 W pico-second Nd:YVO 4 bounce amplifier system with a photorefractive phase conjugate mirror:Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010 Conference on,2010[C]. IEEE.
    [104]Nawata K, Okida M, Miyamoto K, et al.105 W Pico-Second Nd:YVO4 Bounce Amplifier System with a Photorefractive Phase Conjugate Mirror:Conference on Lasers and Electro-Optics,2010[C]. Optical Society of America.
    [105]周涛,陈军,唐淳,等.LD抽运高重复频率四通放大MOPA系统中的光纤相位共轭研究[J].中国激光,2004,3 1(4):441-444.
    [106]周涛,陈军,唐淳,等.主振荡功率放大激光器中锥度光纤相位共轭镜的实验研究[J].中国激光,2005,32(4):471-474.
    [107]赵智刚,崔玲玲,童立新,等.带固体相位共轭镜的全固态脉冲抽运高重复频率大能量单纵模MOPA激光器[J].中国激光,2010,37(12):2949.
    [108]赵智刚,董延涛,潘孙强,等.用于千赫兹高能量MOPA激光系统的大口径锥度光纤相位共轭镜特性研究[J].中国激光,20 11,38(4):33-39.
    [109]Liu C, Zhao Z, Chen J, et al. Large aperture tapered fiber phase conjugate mirror in MOPA laser systems with high repetition rate and high pulse energy[J]. Optics Communications,2011,284(4):1029-1033.
    [110]Zhao Z, Dong Y, Pan S, et al. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate[J]. Optics Express,2012,20(2):1896-1902.
    [111]童立新,高清松,陈晓琳,等.高重复频率融石英棒受激布里渊散射相位共轭实验研究:第十七届全国激光学术会议论文集,2005[C].
    [112]汪莎,陈军,童立新,等.熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究[J].物理学报,2008,57(3):1719-1724.
    [113]LaFortune K N, Hurd R L, Johansson E M, et al. Intracavity adaptive correction of a 10-kw solid state heat-capacity laser:Lasers and Applications in Science and Engineering,2004[C]. International Society for Optics and Photonics.
    [114]Poyneer L A, Palmer D W, LaFortune K N, et al. Experimental results for correlation-based wavefront sensing:Optics & Photonics 2005,2005[C]. International Society for Optics and Photonics.
    [115]LaFortune K N, Hurd R L, Brase J M, et al. Intracavity adaptive correction of a high-average-power solid state heat-capacity laser:Lasers and Applications in Science and Engineering,2005[C]. International Society for Optics and Photonics.
    [116]Goodno G D, Komine H, McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics letters,2006,31(9):1247-1249.
    [117]Redmond S, McNaught S, Zamel J, et al.15 kW near-diffraction-limited single-frequency Nd:YAG laser:Conference on Lasers and Electro-Optics,2007[C]. Optical Society of America.
    [118]Goodno G D, Komine H, McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers[J]. Optics letters,2006,31(9):1247-1249.
    [119]McNaught S J, Komine H, Weiss S B, et al.100 kW coherently combined slab MOP As:Conference on Lasers and Electro-Optics,2009[C]. Optical Society of America.
    [120]Filgas D, Clatterbuck T, Cashen M, et al. Recent results for the Raytheon REL1 program:Proc. of SPIE Vol,2012[C].
    [121]Yang P, Ao M, Liu Y, et al. Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients [J]. Optics Express,2007,15(25):17051-17062.
    [122]Yang P, Ning Y, Lei X, et al. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J]. Optics Express, 2010,18(7):7121-7130.
    [123]Lei X, Wang S, Yan H, et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization[J]. Opt. Express20 (20),2012:22143-22157.
    [124]Yan X, Liu Q, Fu X, et al. Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers[J]. JOSA B, 2010,27(6):1286-1290.
    [125]Gong M L, Qiu Y T, Liu Q, et al. Beam quality improvement by amplitude gain control in power amplifier system[J]. Laser Physics Letters,2012,9(12):838.
    [126]Gong M L, Qiu Y, Huang L, et al. Beam quality improvement by joint compensation of amplitude and phase[J]. Optics letters,2013,38(7):1101-1103.
    [127]Innocenzi M E, Yura H T, Fincher C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers[J]. Applied Physics Letters,1990,56(19):1831-1833.
    [128]Fan S, Zhang X, Wang Q, et al. More precise determination of thermal lens focal length for end-pumped solid-state lasers[J]. Optics communications,2006,266(2):620-626.
    [129]Sabaeian M, Nadgaran H, Mousave L. Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser[J]. Applied optics,2008,47(13):2317-2325.
    [130]Peng X, Asundi A, Chen Y, et al. Study of the Mechanical Properties of Nd:YVO4 Crystal by use of Laser Interferometry and Finite-Element Analysis[J]. Applied optics,2001,40(9):1396-1403.
    [131]Yan X, Gong M, He F, et al. Numerical modeling of the thermal lensing effect in a grazing-incidence laser[J]. Optics Communications,2009,282(9):1851-1857.
    [132]Neuenschwander B, Weber R, Weber H P. Determination of the thermal lens in solid-state lasers with stable cavities[J]. Quantum Electronics, IEEE Journal of,1995,31(6):1082-1087.
    [133]Chenais S, Druon F, Balembois F, et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW[J]. Optical materials,2003,22(2):129-137.
    [134]Pfistner C, Weber R, Weber H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods[J]. Quantum Electronics, IEEE Journal of,1994,30(7):1605-1615.
    [135]Xiong Z, Li Z G, Moore N, et al. Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers[J]. Quantum Electronics, IEEE Journal of,2003,39(8):979-986.
    [136]Yan X, Liu Q, Wang D, et al. Combined guiding effect in the end-pumped laser resonator[J]. Optics express,2011,19(7):6883-6902.
    [137]Xiang Z, Wang D, Pan S, et al. Beam quality improvement by gain guiding effect in end-pumped Nd: YVO4 laser amplifiers[J]. Optics express,2011,19(21):21060-21073.
    [138]Steffen J, Lortscher J, Herziger G. Fundamental mode radiation with solid-state lasers[J]. Quantum Electronics, IEEE Journal of,1972,8(2):239-245.
    [139]Magni V. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability[J]. Applied Optics,1986,25(1):107-117.
    [140]Cerullo G, De Silvestri S, Magni V, et al. Output power limitations in CW single transverse mode Nd: YAG lasers with a rod of large cross-section[J]. Optical and quantum electronics,1993,25(8):489-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700