微波功率SiGe HBT关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波功率晶体管对军事电子系统中固态发射机的功能、性能及应用范围起到了重要的推动和支撑作用。对L及其以下波段的固态发射机,Si BJT(双极晶体管)是首选器件,但是Si BJT的微波功率、增益及效率随工作频率的升高而急剧下降,使其频率应用范围受到限制。GaAs器件频率特性好,增益和效率高,在S波段以上被采用,然而它的功率密度较低,成本较高,限制了应用。
     SiGe HBT(异质结双极晶体管)功率特性与Si BJT相当,频率特性远优于SiBJT。不但可以在S及其以下波段替代Si BJT,而且可以其优良的功率增益和效率等特性替代GaAs HBT应用到Si BJT难以胜任的S以上波段。同时,SiGe HBT应用于固态发射机,还可以提高其性能,使雷达等系统的设计和应用更加灵活。S波段功率晶体管研制和生产的难度是国内外所公认的。目前,国外S波段100W级Si BJT已经商品化,SiGe HBT还处于探索阶段。国内S波段100W级Si BJT技术尚待成熟,SiGe HBT尚未涉足。
     本论文对S波段功率SiGe HBT理论和技术进行了开拓和探索性的研究工作,设计并研制出了S波段100W SiGe HBT。论文主要开展了以下研究工作:
     1) SiGe材料的物理参数模型
     基于SiGe HBT器件结构设计和电学特性研究,建立了表征SiGe HBT交、直流特性所需的SiGe材料物理参数模型,其中包括SiGe材料禁带宽度模型、有效态密度模型、本征载流子浓度模型、重掺杂禁带变窄模型、迁移率模型以及基区中Ge和杂质分布模型等。
     2)微波功率SiGe HBT直流参数模型
     基于Si/SiGe异质发射结,建立了发射结电流注入比模型。基于SiGe HBT结构及其物理参数,建立了影响电流增益的基区空穴反注入电流模型,中性基区复合电流模型,空间电荷区俄歇复合电流模型以及空间电荷区SRH(肖克莱-里德-霍尔)复合电流模型,在此基础上建立了电流增益模型。同时在建立了SiGe HBT集电极电流密度模型基础上,建立了基区扩展临界电流密度模型。对电流增益和基区空穴反注入电流、集电极电流及基区扩展临界电流密度等进行了模拟分析。
     3)微波功率SiGe HBT交流参数模型
     建立了SiGe HBT特征频率和功率增益模型。频率特性主要由发射极延迟时间、基区渡越时间、集电结耗尽层延迟时间和集电极延迟时间决定。为此,在研究分析可动电荷对势垒电容影响的基础上,建立了SiGe HBT发射结势垒电容和集电结势垒电容模型,并据此建立了包括基区扩展效应在内的发射极延迟时间模型。建立了SiGe HBT基区渡越时间模型,该模型考虑了电流密度及基区掺杂和Ge组分所引起的各种物理效应,适于基区掺杂和Ge组分为均匀和非均匀分布,以及器件在小电流到大电流密度下的应用。建立了适于Ge组分不同剖面分布的SiGe HBT基区渡越时间模型,通过模拟分析获得了最小基区渡越时间的Ge组分剖面分布函数。建立了不同集电极电流密度、包括基区扩展效应条件下的集电结耗尽层延迟时间模型。基于集电区有效宽度,建立了集电极延迟时间模型。并对以上模型进行了模拟分析。
     4)微波功率SiGe HBT等效电路模型
     SiGe HBT等效电路更能够体现器件微观结构对器件的电学特性的影响。基于SiGe HBT的器件物理,在分析研究SiGe HBT微观结构、工作机理和载流子分布及输运的基础上,建立了考虑SiGe HBT各种效应(包括厄利效应、速度饱和效应、基区扩展效应及自热效应等)的大信号等效电路模型以及相应的参数模型。
     该模型物理意义清晰,拓扑结构简单。通过PSpice软件器件方程开发包DEVEQ,将该模型嵌入PSpice软件中,实现对SiGe HBT器件的模拟分析。对器件的交直流分析结果与理论分析结果相一致,并且与文献报道的结果符合得较好。
     5)微波功率SiGe HBT结构优化
     根据S波段100W SiGe HBT电学参数设计要求,基于SiGe材料的物理参数、SiGe HBT异质结构以及器件的实现工艺,优化了器件发射区、基区和集电区的厚度、掺杂浓度、Ge组分及分布等纵向结构参数。优化了器件发射区的长度、宽度,基区与发射区的间距,发射极镇流电阻以及多层金属化电极的结构等横向结构参数。得到了优化的发射区和基区的面积比。
     6)微波功率SiGe HBT工艺设计与实现
     根据SiGe HBT频率和功率的设计要求,以及应变SiGe材料特殊的制备工艺,优化了制备SiGe HBT芯片的工艺流程。建立了离子注入工艺中目标浓度和深度的估算模型。基于器件的结构参数,优化并实现了浅结的离子注入和快速退火工艺。基于SiGe HBT大电流的工作条件,优化了器件的多层金属化结构(Pt/Ti-W/Pt/Au),实现了多层金属化结构的溅射、电镀及反溅等工艺。
     通过流片试验,制备出了功率SiGe HBT管芯,并进行了测试,测试结果如下:BVEBO=6.5V, BVCBO=75V, BVCEO=35V,β~25。
     7)微波功率SiGe HBT内匹配与功率合成
     建立了S波段功率SiGe HBT管芯输入输出阻抗模型,并对器件管芯的输入输出阻抗进行了估算。优化了S波段功率SiGe HBT的输入输出匹配网络,研究了匹配元件和匹配网络对器件性能的影响。建立了金属引线电感量模型及金属引线间的互感模型。研究了多胞芯片的功率合成技术及功率分配不均匀现象的成因,建立了功率偏差模型。
     在前述研究工作的基础上,在国内首次研制出了S波段100W SiGe HBT器件,
     经测试分析,器件达到设计要求,测试结果如下:工作电压30V;工作频率2.7GHz--3.1GHz;脉冲占空比1%--5%;输出功率>100W;功率增益=5dB。
In the military electronic system, the microwave power transistor plays an important role in promoting and underpinning the performance and application of solid transmitters. The Si BJT (Bipolar Junction Transistor), applied in transmitters below L band, is the first choice, but the RF power, gain and efficiency of Si BJT are acutely decreasing with the increasing of work frequency, which limits its application on high frequency. The GaAs HBT's frequency characteristics is good, its gain and efficiency are high, and is adopted in S-band and beyond. But its power density is low, in addition to its high cost, which limits its applications.
     SiGe HBT (Heterojunction Bipolar Transistor) holds a similar power characteristic to Si BJT and also has a much superior frequency characteristic than Si BJT does. SiGe HBT could not only replace the Si BJT in S-band and under, and could also replace GaAs HBT up to S-band, since it holds good characteristics of power, gain and efficiency, in which condition Si BJT could not work. SiGe HBT could be sued to improve the performances of the solid transmitters, and the could help radar system to get more flexible design and application. The difficulty of development and fabrication of S-band power transistor is widely acknowledged in the domestic and overseas. At the present time, the technology of S-band 100W Si BJT have been commercialized and technology of SiGe HBT is still in the coures of exploration developing. While in domestic, technology of S-band 100W of Si BJT is developing, and the technology of SiGe HBT has not yet steped in.
     In this disseration, technologies and theories of S-band power SiGe HBT are thoroughly developed. The research work holds exploration, and is a novel research field. The S-band 100W SiGe HBT is developed. The main area and contents of this disseration are as follows.
     1) Models of physical parameter
     Based on the design of SiGe HBT structure and study of electrical characteristics, the models of physical parameters of SiGe material are established, which character DC and AC characteristics of SiGe HBT, and they includ the model of forbidden band width, the model of availability state density, the model of intrinsic carrier concentration, the model of mobility, the model of forbidden band becoming narrow by heavy doping, the model of Ge and impurity profile in the base of SiGe material, and so on.
     2) Model of DC parameter on microwave power SiGe HBT
     Based on the hetero-emitter-junction of Si/SiGe, the model of emitter junction current injection ratio is established. Based on the structure characteristic and physical parameter of SiGe HBT, the models of the hole reversed injection current, the neutral base region recombination current, the space-charge region Augre recombination current and the space-charge region SRH (Shockley-Read-Hall) recombination current are established, on the basis of which the model of current gain is established. And combining all models, the model of the base extending critical current density of SiGe HBT is setup. And the models of current gain, the hole reversed injection current, the collector current density and base extending critical current density of SiGe HBT are simulated and analyzed.
     3) Model of AC parameter of microwave power SiGe HBT
     The model of frequency characteristic and the model power gain are established. The frequency characteristic is dominated by the sum of emitter delay time, the base transit time, the collector depletion-layer transit time and the collector transit time. Based on study and analyse of influence of mobil charge on capacitance, the model of the emitter junction barrier capacitance and the model the collector junction barrier capacitance are established. And on the basis of these, the model of the emitter delay time is established, including base extending effect. The model of the base transit time is established. Various physical effects caused by doping and Ge fraction in base and current density are considered in the model. The model is suitable for uniform and exponential base doping with different Ge profiles in the base, and different current densities. An analytical model for the base transit time in SiGe HBT with an arbitrary base Ge profile is developed and the optimum base Ge composition profile function for minimizing the base transit time is also obtained by simulation and analysis. The models of collector depletion-layer transit time, considering the collector current densities and base extension effect, are established. Based on stuctural characteristic of SiGe HBT, the model of collector transit time is established. And these models are simulated and analyzed.
     4) Model of large signal equivalent circuit of microwave power SiGe HBT
     The model of large signal equivalent circuit of SiGe HBT could indicate the influence of micro-structure on electricity characteristic. Based on physical conceptions, microscopic structure, work mechanism, carryers distribution and transport of SiGe HBT, the model of large signal equivalent circuit for SiGe HBT and relevant model parameters are established. The Early effect, the velocity saturation, the base extending effect and the self-heating effect are taken into account in this equivalent circuit model.
     The model holds the features of definite physical meaning and simple topology. And these models are embedded in the Pspice by its DEVEQ. The model is simulated and analyzed in DC and AC by the Pspice, and the simulation results accord with that of other literatures.
     5) Optimization of microwave power SiGe HBT structure
     According to design requirement of electrical parameters of S-band 100W SiGe HBT chip, based on the SiGe material physical parameters, the hetero-emitter-junction and the achievable technology of SiGe HBT, the vertical structure parameters are optimized, including the thickness of emitter, base and collector region, the doping concentration, the Ge profiles in the base of SiGe HBT. And the planar structure parameters are optimized, including the length and the width of emitter and base, the space between emitter and base, the ballast resistor of the emitter and the multi-layer metal electrode structure of SiGe HBT. The ratio of the emitter region area and the base region area is optimized.
     6) Technology design and realization of microwave power SiGe HBT
     Based on design requirement of frequency and power of microwave power SiGe HBT and specific fabrication technology of strained SiGe material, the process flow of SiGe HBT fabrication is optimized. The estimated models of depth and concentration of ion-implant is established. Based on the geometric structure of SiGe HBT, the technology of ion-implant and short annealing are optimized. Based on the work condition of SiGe HBT, the layer structure of multi-layer metal electrode and achievement process of sputter and electroplating are optimized.
     The chip of HBT is firstly fabricated in domestic, and the chip is tested, and meets follows:BVEBO=6.5V, BVCBO=75V, BVCEO=35V,β~25.
     7) Internal matching and power combination of microwave power SiGe HBT
     The models of input and output resistance of S-band power SiGe HBT chip are established, and input and output resistance are estimated. The input and output internal matching networks are optimized. The influence of element of internal matching networks on performance of HBT is studied. And the models of inductance introducted by metal leading wire and mutual-inductance between two metal leading wires are established. The reason leading non-uniform distribution of power in power combination is studied, and the estimated model of power deviation is established. And the power combination technology is studied.
     Based on preview research, the S-band 100W SiGe HBT are firstly developed in domestic, which are tested, and meet follows: Working voltage 30 V Working frequency 2.7GHz—3.1GHz Impulse duyt ratio 1%--5% Input power>100W Power gain≥5dB.
引文
[1-1]Michael Hanczor and Mahesh Kumar. "12kW S-Band Solid-State Transmitter for Modern Radar Systems". IEEE Transisactions on Microwave Theory and Techniques.1993,41 (12):22-37
    [1-2]Mahesh Kumar, Michael Hanczor, H. Voigt et al. "22-kW Next Generation Low Cost S-Band Solid State Transmitter for Surveilance and Air traffic Control Radars",1995, IEEE MTT-S Digest, P1601
    [1-3]Don Keller, "High-Power Transistor Boosts Aircraft Radar",Microwaves & RF. July 2000, P114
    [1-4]Octavius Pitzalis JR. "Status of Power Transistors",Microwave Journal. Feb.1977, P30
    [1-5]郑新“有源全固态相共振雷达的发射系统”,军事微波技术第一届全国学术会议,1996,12.P57
    [1-6]郑新,“S波段雷达中功率功放组件”,军事微波技术第一届全国学术会议,1996,12.P60
    [1-7]Walter E. Poole. "S-Band transistors for Radar Applications", Microwave Journal. Mar.1983, P85
    [1-8]Jeff Burger, Jim Curtis, Aram Mhkitarian et al. "Recent Advances in Pulsed Transistor Technology", Military Microwaves.1990, P147
    [1-9]王因生、林川、王佃利等,“L波段150W宽带脉冲功率晶体管”,固态电子学研究与进展,1997,17(2):114-120
    [1-10]M.A. Green, R.D. Godfrey, "Super gain silicon MIS heterojunction emitter transistors," IEEE Electron Device Lett., EDL-4,p.225,1983.
    [1-11]Kyungho Lee, Kwangsik Choi, Sang-Ho Kook, et al. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model, Electron Devices, IEEE Transactions on,52 (3): 375-384
    [1-12]胡辉勇,张鹤鸣,戴显英等“含有δ-掺杂层的SiGe pMOS量子阱沟道空穴面密度研究”,物理学报,2004,53(12):4314-4318
    [1-13]Hu Huiyong, Zhang Heming, Dai Xianying, et al."The Growth of Strained Si1-xGex layer by UV/UHV/CVD", Chinese Journal of Semiconductors,2005,26 (4):641-644
    [1-14]刘道广,郝跃,徐世六等“基于自对准和空气桥工艺的SiGe HBT研究”,西安电子科技大学学报,2005,32(3):432-434
    [1-15]胡辉勇,张鹤鸣,戴显英等"SiGe HBT发射极延迟时间模型研究”,半导体学报,2005,26(7):1384-1389
    [1-6]Hu Hui-Yong, Zhang He-Ming, Dai Xian-Ying, et al. "Model of Transit Time for SiGe HBT Collector Junction Depletion-Layer", Chinese Physics,2005,14 (7):1439-1443
    [1-17]黄大鹏,戴显英,张鹤鸣等"SiGe HBT超自对准结构模拟研究”,微电子学,2005,35(4):221-231
    [1-18]胡辉勇,张鹤鸣,戴显英等“应变Si调制掺杂NMOSFET电子面密度模型”,电子学报,2005,33(11):2056-2058
    [1-19]Banerjee B. Venkataraman S. Enhai Zhao et al. Modeling of broadband noise in complementary (npn+pnp) SiGe HBTs, IEEE Radio Frequency integrated Circuits (RFIC) Symposium,2005. Digest of Papers.12-14 June 553-556
    [1-20]Cheung T.S.D. Long J.R. A 21-26-GHz SiGe bipolar power amplifier MMIC, Solid-State Circuits, IEEE,40 (12):2583-2597
    [1-21]Johansen T.K. Vidkjaer J. Krozer V. et al.Analysis and design of wide-band SiGe HBT active mixers, Microwave Theory and Techniques, IEEE Transactions on,53 (7):2389-2397
    [1-22]Niu, G. Noise in SiGe HBT RF technology:physics, modeling, and circuit implications, Proceedings of the IEEE,93 (9):1583-1597
    [1-23]Joodaki M. Small-signal characterization of SiGe-HBT f/sub T/-doubler up to 120 GHz, Electron Devices, IEEE Transactions on,52 (9):2108-2111
    [1-24]Tilke A.T. Lenk A. Muhle U. et al. Visualizing the doping profile of a silicon germanium HBT with polysilicon emitter using electron holography, Electron Devices, IEEE Transactions on,52 (6):1067-1071
    [1-25]Zhenqiang, Ma Ningyue, Jiang Guogong Wang, An 18-GHz 300-mW SiGe power HBT, Electron Device Letters, IEEE,26 (6):381-383
    [1-26]Yi-jan Emery Chen, Wei-Min Lance Kuo, Zhenrong Jin, et al. A low-power ka-band Voltage-controlled oscillator implemented in 200-GHz SiGe HBT technology, Microwave Theory and Techniques, IEEE Transactions on,53 (5):1672-1681
    [1-27]Banerjee B. Venkataraman S. Yuan Lu Cryogenic operation of third-generation,200-GHz peak-f/sub T/, silicon-germanium heterojunction bipolar transistors, Electron Devices, IEEE Transactions on,52 (4):585-593
    [1-28]Basaran U. Wieser N. Feiler, G. et al. Small-signal and high-frequency noise modeling of SiGe HBTs, Microwave Theory and Techniques, IEEE Transactions on,53 (3):Part 1,919-928
    [1-29]Guofu Niu, Jin Tang, Zhiming Feng, et al. Scaling and technological limitations of 1/f noise and oscillator phase noise in SiGe HBTs, Microwave Theory and Techniques, IEEE Transactions on,53 (2):506-514
    [1-30]Carta C. Carls J. Bachtold W. A low-power tunable SiGe HBT LNA for wireless LAN applications, Wireless and Micrwave Technology,2005. The 2005 IEEE Annual Conference,6-7 April 4 pp
    [1-31]徐剑芳,李成,赖虹凯“微波大功率SiGe HBTI拘研究进展及其应用”,微电子学,2005,35(5):521-526
    [1-32]肖波,”新结构微波功率SiGe HBT仿真研究”,北京工业大学,2003,6
    [1-33]薛春来,成步文,姚飞等“高频大功率Si1-xGex/Si HBT研究进展”,纳米器件与技术,2004年第9期,P14-21
    [1-34]Jeng S J, Jagannathan B, Rieh J S, et al. A 210GHzfT SiGe HBT with non-self-aligned structure. IEEE Electron Device Lettet,2001,22 (11):542-544
    [1-35]Rieh J S, Jagannathan B, Chen H, et al. SiGe HBTs with cutoff frequency of 350GHz. IEEE IEDM.2002.771-774
    [1-36]Akil K.Sutton, Becca M.Haugerud, Yuan Lu, et al. "Proton Tolerance of Fourth-Generation 350GHz UHV/CVD SiGe HBTs", IEEE Transaction Science,2004,51(6)
    [1-37]Kroemer H. Theory of a wide-gap emitter for transistors. Proc IRE,1957,45:1535-1537
    [1-38]Kasoer E, Herzog H J, Kibbel H. A one-dimensional SiGe superlattice grown by UHV epitaxy. J Appl Phys,1975,8:1541-1548
    [1-39]People R. Indirect bandgap of coherently strained Si1-xGex bulk alloys on<001>silicon substrates. Physical Review B,1985,32:1405-1408
    [1-40]Meyerson B S. Low-temperature silicon epitaxy by UHV/CVD. Appl Phys Lett,1986, 148:797-799
    [1-41]Iyer S S, Pattern G L, Delage S L, et al.Silicon-germanium base heterojunction bipolar transistors by MBE. Tech Dig. IEEE IEDM,1987.874-876
    [1-42]King C A, Hoyt J L, Gronent C M, et al. Si/Si1-xGex/Si HBT produced by limited reaction processing. IEEE Elect Dev Lett,1989,10:52-54
    [1-43]Patton G L, Comfort J H, Meyerson B S, et al.75GHzfT SiGe base HBT. IEEE Elect Dev Lett, 1990,11:171-173
    [1-44]Comfort J H, Patton G L, Cressler J D, et al. Profile leverage in a self-aligned epitaxial Si or SiGe-base bipolar technology. IEEE IEDM.1990.21-24
    [1-45]Harame D L, Crabbe E F, Cressler J D, et al. A high-performance epitaxial SiGe-base ECL BiCMOS technology. IEEE IEDM.1992.19-22
    [1-46]Harame D L, Stork J M C, Meyerson B S, et al. Optimization of SiGe HBT technology for high speed analog and mixed-signal application. IEEE IEDM.1993.71-74
    [1-47]Kasper E, Gruhle A, Kibbel H. High speed SiGe-HBT with very low base sheet resistivity. IEEE IEDM.1993.79-81
    [1-48]Crabbe E F, Meyerson B S, Stork JMC,et al. Vertcal profile optimization of very high frequency epitaxial Si-and SiGe-base bipolar transistors. IEEE IEDM.1993.83-86
    [1-49]Harame D L, Schonenberg K, Gilbert M, et al. A 200mm SiGe-HBT technology for wireless and mixed signal applications. IEEE IEDM.1994.437-440
    [1-50]Lanzerotti L D, Stamour A, Liu C W, et al. Si/Si1-x-yGexCy/Si HBT. IEEE Electron Device Lettet,1996,17:334-337
    [1-51]Schuppen A, Gerlach S, Dietrich H, et al.1-W SiGe power HBTs for mobile communications. IEEE Microwave Guided Wave Letter,1996,6 (9):341-343
    [1-52]Potyraj P A, Petrosky K J, Hobart K D, et al. A 230-W S-band SiGe HBT. IEEE Trans Microwave theory Tech,1996,44:2392-2397
    [1-53]Washio K, Ohue E, Oda K, et al. A selective-epitaxial SiGe HBT with SMI electrodes featuring 9.3-ps ECL-gate delay. IEEE IEDM.1997.795-798
    [1-54]蒋昌凌,SiGe半导体技术新进展,半导体情报,2002,37(3):26.
    [1-55]盛柏桢,程文芳,国外SiGe器件及其应用,微电子技术,2002,30(2):144.
    [1-56]Washio, K., Ohue, E., Shimamoto, H. et al. A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications, IEEE Transactions on Electron Devices 2002,49 (2),:271-278
    [1-57]Wei-Min Lance Kuo, Cressler, J.D., Chen, Y.-J.E. et al.An inductorless Ka-band SiGe HBT ring oscillator;, IEEE Microwave and Wireless Components Letters,200515 (10):682-684
    [1-58]Johnson E O. Physics limitations on f requency andpower parameters of t ransistor. RCA Rev, 1965,26 (2):1632177.
    [1-59]Ng K K, Frei M R, King A, et al. Reevaluation of the BVCEO×fT limit on Si bipolar transistors. IEEE Trans Elec Dev,1998,45 (8):1854-1855.
    [1-60]Mohammadi S, Ma Z Q, Park J, et al. Si/SiGe Power HBTs for X-to K-band Applications.2002 IEEE MTT-S International.2002 289-292
    [1-61]Ma Z Q, Mohammadi S, Bhattacharya P, et al. Ku-band (12.6GHz) SiGe/Si high-power heterojunction bipolar transistors. Electronic Letter,2001,37(18):1-2
    [1-62]Ma Z Q, Mohammadi S, Bhattacharya P, et al.A 180mW 18GHz SiGe Power Heterojunction Bipolar Transistors. IEEE Topical Workshop on Power Amplifiers for Wire-less Communications, La Jolla, CA, Setember.2001.10-11
    [1-63]Ma Z Q, Mohammadi S, Bhattacharya P. A high-power and high-gain X-band Si/SiGe/Si heterojunction bipolar transistors. IEEE MTT,2002,50 (4):1101
    [2-1]Samir Iqbal, "Strained Si/Strained SiGe Heterostructures" Term Paper ECE-654
    [2-2]SP Home "Strained Layers in SiGe" http://www.sp.phy.cam.ac.uk/~dp109/SiGe.html
    [2-3]Clifford A. King "SiGe Bipolar Transistors for High Speed Optical Networking and Wireless Communication Applications", Bell Labs, Lucent Technologies, Murray Hill, NJ
    [2-4]http://www.ioffe.ru/SVA/NSM/Semicond/SiGe/basic.html
    [2-5]Vijay S. Patri, M. Jagadesh Kumar, Profile design considerations for minimizing base time in SiGe HBT's, IEEE Trans. On Electron Devices,1998,45 (98):1725-1730.
    [2-6]F. M. Bufler, P.Graf, "Low-and high-field electron-transport parameters for unstranied and strained Si1-xGex", IEEE Electron Devices Letters,1997,18, pp264-266.
    [2-7]L.E.Kay, T.w. Tawy, Moate Corlo culation of straiued and unstrainedelection mobilities in Si1-xGex using an improved vonizeed-imparity mode, J.Appl. Phys.1991,70 (3):1483-1488.
    [2-8]Branimir Pejcinovic, Leonard E.Kay, Ting-Wei Tang, David Navorison of Si BJT's and Si1-xGex HBT's," IEEE Trans. On Electron Devices,1989,36 (10):pp2129-2136.
    [2-9]陈治明,王建农,《半导体器件的材料物理学基础》,科学出版社,第四章
    [2-10]David M.Richey, John D.Cressler, Alvin J.Joseph, "Scaling Issues and Ge Profile Optimization in Advanced UHV/CVD SiGe HBT's", IEEE Trans. On Electron Devices,1997, 44(3):431-440.
    [2-11]Vijay S. Patri, M. Jagadesh Kumar, "Profile Design Considerations for Minimizing Base Transit Time in SiGe HBT's", IEEE Trans. On Electron Devices,1998,45(8):1725-1730,
    [2-12]D. M. Caughey, R. E. Thomas, "Carrier Mobilities in Silicon Empirically Related to Doping and Field, "Proc.IEEE,1967,55, pp.2192-2193,
    [2-13]R. Braunstein, A.R. Moore and F.Herman, "Intrinsic optical absorption in germanium-silicon alloys", Phys. Rev.1958,109(3):695-710,
    [2-14]J. C. Bean, T. T. Sheng, "Pseudomorphic growth of GeSi on Si by MBE", Appl. Phys. Lett.1983,44(1):102-104,
    [2-15]R. People, J. C. Bean, "Modulation doping in GeSi/Si strained-layer heterostructures", Appl. Phys. Lett.,1984,45(11):1231-1233.
    [2-16]R. People and J. C. Bean, "Calculation of critical layer thickness versus lattice mismatch for GeSi/Si heterostructures", Appl. Phys. Lett.,1985,47(3):322-324.
    [2-17]J. C. Bean, "silicon-based semiconductor heterostuctures:column Ⅳ bandgap engineering". Proc. Of IEEE,1992,80(4):571-587.
    [2-18]Solid-state Electronics,1990,33,199.
    [2-19]E. J. Prinz, P. M. Garone, "the effect of base-emitter spacers and strain-dependent densities of states in Si/Si1-xGex/Si heterojunction bipolar transistors", IEEE IEDM,1989, pp639-642.
    [2-20]Clifford A. King, Judy L. Hoyt, "Bandgap and transport properties of Sil-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors", IEEE Trans. On Electron Devices,1989,36 (10):2093-2104.
    [2-21]Appl. Phys. Lett.1986,48,539
    [2-22]Y. V. Mamontov, M. Willander, "Simulation of bandgap narrowing and incomplete ionization in strained SiGe alloys on<001>Si substrate", Solid-State electonics,38(3):599-607, 1995.
    [2-23]J. Poortmans, S. C. Jain, "Theoretically calculation and experimental evidence of the real and apparent bandgap narrowing due to heavily doping in p-type Si and strained SiGe layers", Solid-State Electronics,1993.36(12):1763-1771,
    [2-24]S. C. Jain, T. J. Gosling, "The combined effects of strain and heavy doping on the indirect bandgap Si and SiGe alloys", Solid-State Electronics,1991.34(5):445-452,
    [2-25]Z.matutinovic-krstelj, V. Venkataraman, "Base resistance and effective bandgap reduction in npn Si/SiGe/Si HBTs with heavy base doping, IEEE Trans, Electron Devices,1996. 43(3):457-465,
    [2-26]P.Ashburn, H. Boussetta. "Electrical determination of bandgapnarrowing in bipolar transistors with epitaxial Si, epitaxial SiGe, and ion implanted base", IEEE Trans. Electron Devices,1996.43(5):774-783,
    [2-27]S. C. Jain, D G. Roulston, "A simple expression for bandgap narrowing(BGN) in heavily doped Si, Ge, GaAs and GeSi strained layers", Solid-State Electronics,1991,34(5):453-465,
    [2-28]刘恩科、朱秉升、罗晋生等《半导体物理》,国防工业出版社
    [2-29]Slotboom J W, de Graff H C. Measurement of Bandgap Narrowing in Si Bipolar Transistors. Solid-State Electronics,1976,19(10):857-862
    [3-1]U.Erben, M.Wahl, A.Schuppen, H.Schumacher,"Class-A SiGe HBT Power Amplifiers at C-Band Frequencies",MICROWAVE AND GUIDED WAVE LETTERS,1995,5 (12)
    [3-2]Gary L.Patton, James H Comfort, Bernard S. Meyerson, et al. "75-GHzfT SiGe-Base Heterojunction Bipolar Transistors",IEEE Elec. Devi. Lett.1990,11 (4)
    [3-3]A.Gruhle, H.Kibbel, U.Erben, E.Kasper, "91GHz SiGe HBTs Grown by MBE", Electronics Letters,1993,29 (4):
    [3-4]邹德恕,徐晨,陈建新等,“fT为15GHz的SiGe/Si HBT",半导体技术,2000,25(5A)
    [3-5]邹德恕,陈建新,徐晨等,“77K下电流增益为2.6万的SiGe/Si HBT",半导体技术,2001,26(3)
    [3-6]王哲,亢宝位,肖波等,"SiGe异质结微波功率晶体管”,微波学报,2002,18(4)
    [3-7]虞丽生,《半导体异质结物理》,北京:科学出版社,第二章
    [3-8]张屏英,周佑谟,《晶体管原理》,上海:上海科学技术出版社,第四章
    [3-9]刘道广,郝跃,徐世六等,“基于MBE的fmax为157GHz的SiGe HBT器件”,半导体学报,2005,26(3):529-531
    [3-10]Andreas Schuppen, Harry Dietrich, "High Speed SiGe Heterobipolar Transistor", Journal of Caystal Growth,1995,57:194-201
    [3-11]H.U. Schreiber, "High-Speed Double Meas Si/SiGe Heterobipolar Transistor Fabricated by Self-alignment Technology", Electronics Letters 27th,1992,28 (5)
    [3-12]张屏英,周佑谟,《晶体管原理》,上海:上海科学技术出版社,第二章
    [3-13]林大松,SiGe HBT建模及模拟技术研究,西安电子科技大学,微电子学院,2001
    [3-14]林大松,张鹤鸣,戴显英等"SiGe HBT基区渡越时间模型”,西安电子科技大学学报,2001,28(4):456-461
    [3-15]C. A. King, J. L. Hoyt, Si/Si1-xGex heterojunction bipolar transistors produced beam epitaxy, IEEE Electron Device Lett.1988,19 (4):165-167,.
    [3-16]C. A.-King, J. L. Hoyt, Band gap and transport properties of Si/Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors, IEEE Trans. Electron Devices,1989,36 (10):2093-2103,.
    [3-17]Z. A. Shafi, C. J. Gibbings. The importance of Neutral Base Recombination in Compromising the Gain of Si/SiGe Heterojunction Bipolar Transistors,IEEE Trans. On Electron Devices,1991, 38 (8):1973-1975,.
    [3-18]T.Chani, J. L. Hoyt, Effect of oxygen on minority-carrier life and recombination currents in SiGe heterostucture devices,Appl. Phys. Lett.1991,58(12):1317-1319,.
    [3-19]Z. A. Shafi, C. J. Gibbings, et al. The importance of neutral base recombination in compromising the gan of Si/SiGe HBTs,IEEE Trans. Electron Devices,1991,38(8):1973-1976,.
    [3-20]Liang-Hung Lu,"Development of SiGe HBT's and Micromachined Passive Components for Monolithic Microwave Integrated Circuits", Ph.D Electrical Engineering the University of Michigan,1998
    [3-21]浙江大学半导体器件教研室编《晶体管原理》,国防工业出版社,第一章
    [3-22]钱伟,金晓军等,不同偏压下SiGe HBT Early电压的理论研究,半导体学报,1998,19(4),261-265
    [4-1]张屏英周佑谟1984晶体管原理(上海:上海科技出版社)第135页
    [4-2]胡辉勇、张鹤鸣、戴显英等"SiGe HBT发射极延迟时间模型研究”,半导体学报,2005,26(7):1384-1389
    [4-3]郭宝增."Si/Si1-xGex应变层异质结双极晶体管(HBT)交直流特性的仿真研究”,半导体学报,1998,19(10):764
    [4-4]GIannaccone, F.crupi, B.neri. "On the Consistent Modeling of Band-Gap Narrowing for Accurate Device-level Simulation Of Scaled SiGe HBTs". IEEE Electron Devices,2003,50(5):1363
    [4-5]J.B.Scott. "New Method to Measure Emitter Resistance of Heterojunction Bipolar Transistors". IEEE Electron Devices,2003,50(9):1970
    [4-6]G.Zohar, S.Cohen, V.Sidovor, A.Gavrilov, et al. "Reduction of Base-Transite Time of InP-GaInAs HBTs Dues to Electron Injection From an Energy Ramp and Base-Composition Grading". IEEE Electron Devices,2004,51(5):658
    [4-7]J.S. Yuan. "Modeling Si/Si1-xGex Heterojunction Bipolar Trausistors". Solid-State Electronics, 1992,35(7):921.
    [4-8]M.Hattendorf, D.Scott, QingHong Yang, et al. "Method to Determin Intrinsic and Extrinsic Base-Collector Capacitance of HBTs Directly from Bias-Dependent S-Parameter Data". IEEE Electron Device Letters,2001,22(3):116
    [4-9]Kunihiro Suzuki. "Emitter and Base Transit Time of Polyscrystalline Silicon Emitter Contact Bipolar Transistors". IEEE Transactions on Electron Devices,2004,38(11):2512
    [4-10]D. Rosenfeld, S.A. Alterovitz. "The Effect of Strain on the Base Resistance and Transit Time of Ungraded and Compositional-Graded SiGe HBTs". Solid-State Elect.1994,37(1):119
    [4-11]林大松、张鹤鸣、戴显英等"SiGe HBT基区渡越时间模型”,西安电子科技大学学报,2001,28(4):456-461
    [4-12]张鹤鸣,戴显英,林大松等"SiGe HBT基区渡越时间与基区Ge组份剖面优化”,西安电子科技大学学报,2000,27(3):305-308
    [4-13]T.C.Lu and J.B.kuo,An Analytical SiGe-Base HBT Model and its Effects on a BiCMOS Inverter Circuit, IEEE Trans. Electron Devices,1994,41(2):272-276.
    [4-14]Cressler J D, Comfort J H. "On the Profile Design and Optimization of Epitaxial Si-and SiGe-Base Bipolar Technology for 77K Applications—Part Ⅰ:ransistor DC Design Considerations", IEEE Trans on Electronic Devices,1993,40 (3):525-541
    [4-15]S.S. Winterton, C.J.Peters, "Composition Grading for Base Transit Time Minimization In SiGe-Base Heterojunction Bipolar Transistors", Solid-state Electronics,1993,36(8):1161-1164.
    [4-16]N.Rinaldi, Analytical Relations for the Base Transit Time and Collector Current in BJTs and HBTs, Solid-state Electronics,1997,41(8):1153-1158.
    [4-17]J.Song, J.S.Yuan. Optimum Ge Profile for Base Transit Time Minmization of SiGe HBT, Solid-state Electronics,1997,41(12):1957-1959.
    [4-18]Slotboom J W, De Graff H C. ""Measurement of Bandgap Narrowing in Si Bipolar Transistors". Solid-State Electronics,1976,19(10):857-862
    [4-19]Patri V S, Kumar M J. "Profile Design Considerations for Minimizing Base Trasit Time in SiGe HBT's" IEEE Trans on Electronic Devices,1998,45 (8):1725-1730
    [4-20]L E Kay, T WawyMonte. Carlo calculation of strained and unstraned electron mobilities in Si1-xGex using an improved ionized-imparity model.J.Apple.Phys.,1991; 70(3):1483-1488
    [4-21]Rinaldi N. "Analytical Relations for the Base Transit Time and Collector Current in BJTs and HBTs", Solid-State Electronics,1997,41 (10):1153-1158
    [4-22]吕懿、张鹤鸣、戴显英等"SiGe HBT势垒电容模型”,物理学报,2004,52(9):3239-3244
    [4-23]Liu X Q et al 2002 Acta Phys. Sin.512340
    [4-24]Hu Hui-Yong, Zhang He-Ming, Dai Xian-Ying, et al."Model of Transit Time for SiGe HBT Collector Junction Depletion-Layer", Chinese Physics,2005,14 (7):1439-1443
    [4-25]陈治明王建农1999半导体器件的材料物理学基础(北京:科学出版社)第221页
    [4-26]Liang-Hung Lu,2001, "Development of SiGe HBT's and Micromachined Passive Components for Monolithic Microwave Integrated Circuits", Ph.D Electrical Engineering the University of Michigan
    [4-27]Rosenfeld D AlterovitzSolid-State Elect.1994,37:119
    [4-28]Patton G L, Comfort J H, Meyerson B S IEEE Electron Device Letters.1990,11:171
    [4-29]E. J. Zhu. "Applications of the Polysilicon Emitter for Super-Grain and Microwave-Power Transistor",35th Electronic Components Conference,1985, P392
    [5-1]Clemens N.Rheinfelder, Frank J.Beiwanbger, "Nonlinear Modeling of SiGe HBTs up to 50 GHz", IEEE transaction on microwave theory and techniques,1997,45 (12):2503-2508
    [5-2]Victor M.Bright, Thomas J.Jenkins, James A.Fellows, "An accurate Physics-based broadband heterojunction bipolar transistor model for spice-assisted microwave circuit design", IEEE MTT-S Digest,1994,P1265-1267.
    [5-3]颜渝瑜、钱晓州,适合器件设计和电路模拟的SiGe HBT物理模型,微电子学,1997,27(4):232-242
    [5-4]George M.Kull, Laurence W.Nagel, Shiuh Wuu Lee, et al. "A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects", IEEE Transactions on Electron Devices, 1985,32 (6):1103-1113.
    [5-5]http://www.hbt.ucsd.edu/
    [5-6]Alexandru A. Ciubotaru, Ronald L.Carter, "Capacitance Topology for High Frenquency Moodeling of Bipolar Transistors", IEEE MTT-S Digest,1997, p1477-1480.
    [5-7]M.Schroter, "RF-Modeling of Bipolar Transistors with HICUM, Chair for Electron Devices and Integrated Circuits University of Technology Dresden Germany", Lausanne, Feb.24,2000
    [5-8]J.C.J. Paasschens and W.J. Kloosterman, "The Mextram Bipolar Transistor Model level 504", Nat.Iab.Unclassified Report,NL-UR 2000/811.Koninklijke Philips Electronics N.V.2000/2001.
    [5-9]张屏英周佑谟1984晶体管原理(上海:上海科技出版社)第135页
    [5-10]Chetan D.parikh, Fredrik A. Lindholm, "A New Charge-Control Model for Single-and Double-Heteriojunction Bipolar Transistor". IEEE transaction on electron Devices,1992,39(6): 1303-1310
    [5-11]虞丽生,半导体异质结物理.科学出版社1990 P87
    [5-12]Wagner S., Palankovski V., Rohrer G., et al. Direct Extraction Feature for Scattering Parameters of SiGe-HBTs, Applied Surface Science,,2004,224:365
    [5-13]B. R. Ryum, Ibrahim M. Abdel-Motaleb, "A Gummel-Poon Model for Abrupt and Graded Heterojunction Bipolar Transistor (HBTs)". Solid State Electronics,1990,33(7):869-880
    [5-14]Colin C. Me Andrew, Laurence W. Nagel, "Early Effect Modeling in SPICE. IEEE Journal of Solid-State Circuits",1996 31(1):136-138
    [5-15]Martin Linder. "DC Parameter Extraction and Modeling of Bipolar Transistors. Stockholm: KTH", Royal Institute of Technology Department of Microelectronics and Information Technology Device Technology Laboratory,2001
    [5-16]吕懿,张鹤鸣,戴显英等“考虑势垒区可动电荷的SiGe HBT势垒电容分析”,西安电子科技大学学报,2004,31(6):837-840
    [5-17]Arnost Neugroschel, Guoxin Li, Chih-Tang Sah, "Low Frequency Conductance Voltage Analysis of Si/SiGe/Si Heterojunction Bipolar Transistors", IEEE Transactions on ED,2000,47 (1)
    [5-18]J.R.A.Beale, J.A.G.Slatter, "The equivalent circuit of a transistor with a lightly doped collector operating in saturation", Solid State Electron,1968,11:241-252,.
    [5-19]Gummel H K, Poon H C, "An intergel charge control model of bipolar transistor", Bell System Tech Journal,1970;49:827
    [5-20]Alexandru A. Ciubotaru. Ronald L.Carter, "Capacitance Topology for High Frequency Modeling of Bipolar Transistor", IEEE MTT-S Digest,1997,1477-1480
    [5-21]Colin C.McAndrew,a complete and consistent electrical/thermal HBT model.,IEEE 1992 Bipolar Circuit and Technology Meeting 10.1,p200-203
    [5-22]P.Chris Grossman, John Choma, large signal modeling of HBT's including selfheating and transit time effects, IEEE Transactions on microwave theory and techniques,1992,40 (3)
    [5-23]Ke Lu, Philip Perry, Thomas J.Brazil, A new spice-type heterojunction bipolar transistor model for DC, microwave small-signal and large-signal circuit simulation,1994 IEEE MTT-S Digest, p1579-1582.
    [5-24]Fujiang Liu, Tianshu Zhou, Extraction of VBIC Model for SiGe HBTs Made Easy by Going through Gummel-Poon Model, header for SPICE use.
    [5-25]Hartmut Stubing, Hans-Martin Rein,A Compact Physical Large-Signal Model for High-Speed Bipolar Transistors at High Current Densities,Part Ⅱ:Two-Dimensional Model, IEEE Transactions on ED,1990,23 (4)
    [5-26]J.J.Liou,J.S.Yuan, "Physics-Based Large-Signal Heterojunction Bipolar Transistor Model for Circuit Simulation", IEE Proceedings-G,1991, V.138,No 1,.
    [6-1]张屏英,周佑谟,《晶体管原理》,上海科学技术出版社,第七章
    [6-2]Y. V. Mamontov, M. Willander, et al."Simulation of bandgap narrowing and incomplete ionization in strained SiGe alloys on<001>Si substrate", Solid-State electonics,1995,38(3):599-607
    [6-3]J. Poortmans, S. C. Jain. "Theoretically calculation and experimental evidence of the real and apparent bandgap narrowing due to heavily doping in p-type Si and strained SiGe layers", Solid-State Electronics,1993,36(12):1763-1771
    [6-4]S. C. Jain, T. J. Gosling, et al. "The combined effects of strain and heavy doping on the indirect bandgap Si and SiGe alloys", Solid-State Electronics,1991,34(5):445-452
    [6-5]Z.matutinovic-krstelj, V. Venkataraman, et al. "Base resistance and effective bandgap reduction in npn Si/SiGe/Si HBTs with heavy base doping", IEEE Trans, Electron Devices, 1996,43(3):457-465
    [6-6]P.Ashburn, H. Boussetta, et al. "Electrical determination of bandgapnarrowing in bipolar transistors with epitaxial Si, epitaxial SiGe, and ion implanted base", IEEE Trans. Electron Devices,1996,43(5):774-783
    [6-7]S. C. Jain, D G. Roulston, et al. "A simple expression for bandgap narrowing(BGN) in heavily doped Si, Ge, GaAs and GeSi strained layers", Solid-State Electronics,1991, 34(5):453-465,
    [6-8]U.Erben, M.Wahl, A.Schuppen, H.Schumacher, "Class-A SiGe HBT Power Amplifiers at C-Band Frequencies", Microwave and Guided Wave Letters,1995,5 (12)
    [6-9]Garyl. Patton, James H Comfort, Bernard S. Meyerson, et al."75-GHzfT SiGe-Base Heterojunction Bipolar Transistors", IEEE Elec. Devi. Lett.1990,11(4)
    [6-10]A.Gruhle, H.Kibbel, U.Erben and E.Kasper, "91GHz SiGe HBTs Grown by MBE", Electronics Letters,1993,29 (4):
    [6-11]邹德恕,徐晨,陈建新等,“fT为15GHz的SiGe/Si HBT",半导体技术,2000,5(5A):
    [6-12]邹德恕,陈建新,徐晨等,“77K下电流增益为2.6万的SiGe/Si HBT",半导体技术,2001,26(3):
    [6-13]王哲,亢宝位,肖波,吴郁,程序,"SiGe异质结微波功率晶体管”,微波学报,2002,18(4):
    [6-14]浙江大学半导体器件教研室,晶体管原理,北京:国防工业出版社,1980
    [6-15]戴显英,王伟,张鹤鸣等“四探针法测量应变Si1-xGex掺杂浓度”,西安电子科技大学学报,2003,30(2):255-258(280)
    [6-16]戴显英,张鹤鸣,王伟等“应变Si1-xGex材料掺杂浓度表征技术研究”,半导体学报,2003,24(9):P946-950
    [6-17]刘道广,"SiGe与Si兼容工艺技术研究”,电子科技大学
    [7-1]Peter Van Zant,“芯片制造-半导体工艺制程实用教程”,电子工业出版社,2004,北京,P129
    [7-2]Michael Quirk, Julian Serda“半导体制造技术”电子工业出版社,2004,北京
    [7-3]庄同曾,“集成电路制造技术-原理与实践”,电子工业出版社,1987,北京,P190
    [8-1]1413所情报室,“国外微波品体管的发展状况”,1979,No.5,P33
    [8-2]Don Keller, "High-Power Transistor Boosts Aircraft Radar",Microwaves & RF. July 2000, P114
    [8-3]郑为民,“微波功率管的进展”,半导体情报,1976,V.1(134),P8
    [8-4]G.W. Schreyer. "Ahigh preformance S-Band Radar Transistor", Microwave Journal. March, 1981, P85
    [8-5]R. Allison. "Silicon Bipolar Microwave Power Transistors", MTT-27, No.5, May 1979, P415
    [8-6]A. A. Tanielian et al.“960—1215兆赫兹1000瓦峰值脉冲功率放大器”,半导体情报,1978,No.6(157),P14[王长河等译自《AD-A030367))]
    [8-7]《电子工业生产技术手册》编委会。电子工业生产技术手册(8)半导体与集成电路卷。国防工业出版社,1992年5月第一版,P619
    [8-8]李春发.微波晶体管管壳电参数分析,半导体情报,1979,3:18
    [8-9]Mahesh Kumar, Michael Hanczor, H. Voigt, et al. "22-kW Next Generation Low Cost S-Band Solid State Transmitter for Surveilance and Air traffic Control Radars",1995, IEEE MTT-S Digest, P1601
    [8-10]林川,王志楠,王因生,"800MHz 800W固态脉冲功放组件”,固态电子学研究与进展,2000,20(4):343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700