利用液化天然气冷能的海水淡化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LNG的温度很低,含有宝贵低温冷能,所以在其气化时,有很多冷量可以利用,目前,国内外对LNG冷能利用的研究越来越多,有低温发电,冷库,空调,空分,低温粉碎,相变储能等方面。淡水是人类的生存资源,淡水的缺乏已经越来越严重,海水淡化技术受到了广泛的重视,具体分为蒸馏法,膜法和冷冻法三种,其中冷冻法海水淡化技术是需要冷能来使得海水结晶的,由此考虑把LNG冷能和冷冻法海水淡化相结合起来,形成了本论文“利用液化天然气冷能的海水淡化技术与装置的研究开发”。通过理论分析和实验研究,设计的海水淡化装置,实现了节能减排的目标。本文着重进行以下几方面的理论和实验研究,取得了一定的进展和成果。
     (1)选择了三种海水淡化冷冻法进行比选,即直接接触法,真空法和间接法。经过计算分析,得出直接接触法传热效率高,设备尺寸小,不消耗额外的电能,但其结晶过程复杂,技术成熟度低,缺乏基础研究理论知识。真空法是热质交换过程,所需LNG流量较少,但真空泵耗能较大,真空条件难以控制,技术成熟度较低。间接冷冻法技术较为成熟,操作比较简单,有借鉴的成熟产品。所以本实验选用间接冷冻方式来设计样机。
     (2)对中间冷媒进行比选,使得冷媒要满足低温条件下运行,也要满足具体实验的要求,最后选择了环保冷媒R410A。同时根据冷媒在运行时是否发生相变而提出了两种方案,通过软件的模拟分析,有相变流程具有流量小,功耗低的特点,最后选择它作为本课题的流程方案。
     (3)对海水结晶器(制冰桶)进行比选,分析比较了板冰机和片冰机各自的优缺点,片冰机由于具有传热效率高,能连续使得海水结晶,脱冰过程不需要热源等优势而被选用。对整个实验流程中的关键参数进行模拟计算,给出的换热系数随冰层厚度,冰层厚度随时间的关系图,得出在结晶过程中换热系数一直在减小,冰层生长速度也在慢慢减小。
     (4)分别研究了不同冷媒蒸发温度,布水盘喷头数量,海水流量对脱盐效果的影响,实验证明冷媒的蒸发温度越高,喷头数量越多,海水流量越大时,海水形成的冰晶纯度较高,脱盐效果好。本实验装置每消耗1kg液化天然气能获得2kg的冰融水,淡水流量到达了150L/h,充分利用了冷能,达到了节能减排的目标。
LNG has valuable cold energy because its low temperature. when it gasifies, there is a lot of cold energy which can be used. More and more countries pay attention to the research of LNG cold energy utilization, including low-temperature power generation, cold storage, air condition, air separation, cryogenic comminution, phase-change energy storage and so on. Fresh water is a kind of human survival resources. Lack of fresh water has become increasingly serious, so desalination technology has been widely appreciated, which is classified into three methods: distillation, membrane and freezing. In freezing desalination, cold energy is need for water crystallization, so LNG cold energy and freezing desalination method can be combined together. This paper just studies "freezing desalination with LNG cold energy utilization". In the paper, through theoretical analysis and experimental research,a energy-saving seawater desalination device with LNG cold energy utilization is designed. This article focuses on theoretical and experimental research and has some results.
     (1) Comparing three kinds of seawater freezing desalination methods: direct-contacting method, vacuum method and indirect-contacting method. Through calculation and analysis, direct-contacting method has many advantages such as high heat transfer efficiency, small equipment size, consuming no power, but its crystallization process is complex and lack theoretical knowledge in basic research. Vacuum method is a kind of heat and mass transfer process, requiring less flow rate of LNG. However, vacuum bump consumes much energy and vacuum condition is difficult to be controlled. It also lacks theoretical knowledge. Indirect freezing method is more mature, relatively simple, having product reference. Therefore, this experiment uses indirect-contacting method to the design seawater desalination experiment device.
     (2) The middle refrigerant is selected, which must meet the low temperature operating conditions and specific experiment requirements. R410A is finally selected as middle refrigerant which is a kind of environmentally friendly refrigerant. At the same time, two cycle schemes are presented in accordance with the phase of middle refrigerant, which are non-phase-change process and phase-change process. Through software simulation and analysis, the phase-change process has advantages: small flow rate and low power consumption. So the phase-change process is finally selected as experiment process.
     (3) Seawater crystallizers (ice-making buckets) are compared and selected, including plate ice machine and tube ice machine. Through analysis and comparison, the plate ice machine has advantages: high heat transfer efficiency, continuous crystallization, removing ice without heat source. So it is chose as seawater crystallizer. Otherwise, the key parameters of entire experimental process is simulated and calculated. The diagrams of heat transfer coefficient vs. ice and ice thickness vs. time are given. The diagrams show that heat transfer coefficient and ice growth rate always reduces.
     (4) The experiments study that different parameters affect rate of desalination, including refrigerant evaporation temperature, the number of seawater distribution nozzles and seawater flow rate. The experiments show that higher refrigerant evaporation temperature, more seawater distribution nozzles and bigger seawater flow rate will lead to higher purity of ice. In this study, 2kg ice melt water can be got by consuming 1kg LNG. Freshwater flow reaches 150L/h. Cold energy is been fully used and the requirements of energy-saving and emission-decreasing are achieved.
引文
[1]朱刚,顾安忠.液化天然气冷能的利用.能源工程, 1999, (3):1-2
    [2]曹文胜,林文胜,吴集迎.液化天然气(LNG)的冷量利用.制冷, 2005, 24(4):16-19
    [3]顾安忠,鲁雪生,汪荣顺等.液化天然气技术.北京:机械工业出版社, 2004
    [4]曹式芳.海水淡化技术的发展.天津化工, 2002, (02):6-8
    [5]刘冬雪,陈东,谢继红.一种连续式冷冻法海水淡化方法及其特性分析.能源工程,2007, (04):41-44
    [6]童金忠,葛文越.海水淡化主要方法介绍和比较.中国建设信息, 2007, (3):41-45
    [7] A. A. Madani. Economics of desalination for three plant sizes. Desalination, 1990, 78(2):187-200
    [8]宋玉田,田志刚,韩仲凯.低温海水淡化技术研究。水资源与水环境, 2007, 49:40-41
    [9]解利昕,李凭力,王世昌.海水淡化技术现状及各种淡化方法评述.化工进展, 2003, 22(10):1081-1084
    [10]熊日华,王世昌.海水淡化中的替代型能源.化工进展, 2003, 22(11):1139-1142
    [11]林斯清.海水和苦咸水淡化.水处理技术, 2001, 27(1):57-62
    [12]宿翠霞,倪华秋,李凌霄等.海水淡化技术及其应用现状.中国资源综合利用, 2009, 27(7):31-32
    [13]熊日华,王世.海水淡化中的替代型能源.化工进展, 2003, 22(11):1139-1142
    [14]于德贤,于德良,韩彬等.膜蒸馏海水淡化研究.膜科学与技术, 2002, 22(1):17-20
    [15]谭永文,谭斌,王琪.中国海水淡化工程进展.水处理技术, 2007, 3(3):1-3
    [16]张宁,苏营营,苏华等.冷冻离心法处理浓海水研究.盐业与化工, 2008, 37(4):25-27
    [17]林斯清.海水和苦咸水淡化.水处理技术, 2001, 27(1): 57-62
    [18]李凭力,马佳,解利昕等.冷冻法海水淡化技术新进展.化工进展, 2005, 24(7):749-753
    [19]陆柱,徐立冲.冷冻脱盐技术的现状及发展趋势.水处理技术, 1994, 20(3):140-145
    [20] S. Sideman etc. Direct Contact Heat Transfer with Change of Phase.Ⅲ. Analysis of the Transfer Mechanism of Drops Evaporating in Immiscible Liquid Media, Israel Journal of Technology, 1964, 2(2):234-241
    [21] S. Sideman, Y.Taitel. Direct-Contact Heat Transfer with Change of Phase: Evaporation of Drops in an Immiscible Liquid Medium, Int. J. Heat Mass Transfer, 1964, 7: 1273-1289
    [22] S. Sideman etc. Direct Contact Heat Transfer with Change of Phase: Effect of the Initial Drop Size in Three-Phase Heat Exchangers, A.I.Ch.E. Journal, 1965, (6):1081-1087
    [23] Prakash, Pinder. Direct Contact Heat Transfer Between Two Immiscible Liquids During Vaporization-PartⅠ:Measurement of Heat Transfer Coefficient, The Canadian Journal of Chemical Engineering, 1967, 45: 210-214
    [24] Prakash, Pinder.Direct Contact Heat Transfer Between Two Immiscible Liquids During Vaporization-PartⅡ:Total Evaporation Time , The Canadian Journal of Chemical Engineering, 1967, 45:15-220
    [25] P. Battya etc. A Theoretical Analysis of Direct Contact Evaporation in Spray Column, Int. Comm. Heat Transfer, 1983, 10:33-543
    [26] P. Battya, Vijay R. Raghavan etc. ametric Studies on Direct Contact Evaporation of a Drop in an Immiscible Liquid, Int. J. Heat Mass Transfer, 1984, 27 (2):263-273
    [27] K. N. Seetharamu , P. Battya. Direct Contact Evaporation between Two Immiscible Liquids in a Spray Column, Journal of Heat Transfer, 1989, 111:780-785
    [28]刘冬雪,陈东,谢继红.一种连续式冷冻法海水淡化方法及其特性分析.能源与环境, 2007, (4):41-44
    [29] E.G. Cravalho, J.J. McGrath, W.M. Toscano. Thermodynamic analysis of the regasification of LNG for the desalination of sea water. Cryogenics, 1977, 17( 3): 135-139
    [30] Attilio Antonelli. Desalinated water production at LNG-terminals. Desalination, 1983, 45, (2): 383-390
    [31]黄美斌,林文胜,顾安忠等. LNG冷能用于冷媒直接接触法海水淡化.化工学报, 2008, 59(S2):204-209
    [32] Song M, Steiff A, Weinspach P M. Direct-contact heat transfer with change of phase: a population balance mode, Chemical Engineering Science, 1999, 54(17):3861-3871
    [33] Song M, Steiff A, Weinspach P M. The analytical solution for a model of direct contact evaporation in spray columns. International Communications in Heat and Mass Transfer, 1996, 23(2):263-273
    [34] Song M, Steiff A, Weinspach P M. Parametric analysis of direct contact evaporation process in a bubble column. International Journal of Heat and Mass Transfer, 1998, 41(17):3861-3871
    [35]沈清清,林文胜,顾安忠等.利用LNG冷能的间接冷淡法海水淡化流程及初步分析.低温超导, 2009,37(4): 10-13
    [36]叶铁林.化工结晶过程原理及运用.北京工业大学出版社,北京, 2006
    [37]高从堦,陈国华.海水淡化技术与工程手册.化学工业出版社,北京, 2004
    [38]张媛媛.自然冷冻法淡化海水的研究.苏州科技学院.苏州, 2008
    [39]张宁.高盐度浓海水的冷冻脱盐技术研究.中国科学院研究生院(海洋研究所).山东, 2008
    [40]刘凌,薛毅,张瑾.冷冻浓缩技术的应用于研究简介.化学工业与工程, 1999, 16(3):151-156
    [41]于涛,马军.冷冻浓缩水处理工艺中冰晶纯度影响因素分析.哈尔滨商业大学学报(自然科学版), 2005, 21(5):572-578
    [42]杨桂林,陈智和,何醒民.温差冷冻海水淡化法.工程设计与研究. 2008, 124(1):33-37
    [43]王俊鹤,李鸿瑞等.海水淡化.科学出版社,北京, 1978:91-97
    [44] Matthew s J S, Coggeshall N D. A nal Chem,1959, 31: 1124。[*]Dickinson J D, Eaborn C. Chemistry and Industry, 1956, 11 (9) : 959
    [45]徐立冲,陆柱,夏建萍.真空冷冻法海水淡化技术研究.净水技术, 1994, 50(4):3-6
    [46] N.J.J. Huige, H.A.C. Thijssen etc. Production of large crystals by continuous ripening in a stirrer tank, Journal of Crystal Growth, 1972, 13-14: 483-487
    [47] Signe Kjelstrup Ratkje, Ola Flesland. Modelling the freeze concentration process by irreversible thermodynamics. Journal of Food Engineering, 1995, 25( 4): 553-568
    [48] Xiao Dong Chen, Ping Chen, Kevin W. Free. A note on the two models of ice growth velocity in aqueous solutions derived from an irreversible thermodynamics analysis and the conventional heat and mass transfer theory. Journal of Food Engineering, 1997, 31( 3):395-402
    [49] Yoshihito Shirai, Minato Wakisaka, Osato Miyawaki etc. Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator. Water Research, April 1999, 33(5): 1325-1329
    [50] Ping Chen, Xiao Dong Chen, Kevin W. Free. An experimental study on the spatial uniformity of solute inclusion in ice formed from falling film flows on a sub-cooled surface. Journal of Food Engineering, 1999, 39( 1):101-105
    [51] Ping Chen, Xiao Dong Chen, Kevin W. Free. Solute inclusion in ice formed from sucrose solutions on a sub-cooled surface—an experimental study. Journal of Food Engineering, 1998,38( 1): 1-13
    [52] Minato Wakisaka, Yoshihito Shirai, Shigeru Sakashita. Ice crystallization in a pilot-scale freeze wastewater treatment system. Chemical Engineering and Processing, 2001, 40(3):201-208
    [53] Frank G. F. Qin, Xiao Dong Chen, Mohammed M. Farid. Growth kinetics of ice films spreading on a subcooled solid surface. Separation and Purification Technology, 2004, 39(1-2):109-121
    [54] J.D. Zhao, N. Liu, Y.M. Kang. Optimization of ice making period for ice storage system with flake ice maker. Energy and Buildings, 2008, 40(9): 1623-1627
    [55] Frank G. F. Qin, Andrew B. Russell, Xiao Dong Chen etc. Ice fouling on a subcooled metal surface examined by thermo-response and electrical conductivity. Journal of Food Engineering, 2003, 59(4): 421-429
    [56]杨世铭,陶文铨.传热学.第三版,高等教育出版社.北京, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700