花楸树遗传资源评价、保存与利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对我国特有的乡土树种花楸树(Sorbus pohuashanensis (Hance) Hedl.)的天然资源,采用文献资料、标本整理以及实地调查的方法,研究了其地理分布、生境条件以及自然更新情况。在此基础上,对来自3个省区(山东省、山西省、河北省)7个群体(群体)171个家系花楸树一年生幼苗形态性状的地理变异进行了分析;采用水平切片淀粉凝胶同功酶电泳技术,对来自4个省区(山东省、山西省、河北省、辽宁省)8个天然群体的遗传多样性和遗传结构进行了研究;进而利用多位点异交率估测程序(MLT)对其中的6个群体的交配系统进行了估测。同时,开展花楸树引种栽培研究,在引种地对其物候表现、生长发育状况进行了观测;分别以露地成年母树和温室内一、二年生幼树萌生的当年生枝条为扦插材料,以不同浓度(500、1000、1500、2000、2500、3000 mg?kg-1)的IBA、NAA、IBA+NAA(10:1)、IBA+NAA(5:1)、IBA+NAA(2:1)、IBA+NAA(1:1)等为外源激素处理插穗,以泥炭+珍珠岩(3:1)、蛭石、河沙为扦插基质,研究花楸树嫩枝扦插繁殖技术。旨在为花楸树遗传资源的评价、保存以及开发利用等提供科学理论依据。通过以上研究,得出以下主要研究结果:
     1.花楸树在我国由主要分布在暖温带落叶阔叶混交林区域,有少部分分布在温带针阔叶混交林区域,属于湿润山地植被带类型。花楸树作为伴生树种散生分布在山地阔叶混交林、山地针阔叶混交林、山地落叶松纯林内或林缘以及山顶灌丛4种植被带(包括12种森林群落)类型中。花楸树垂直分布在海拔500-2200 m范围内,集中分布在海拔1200-2000 m间。除在雾灵山阳坡有分布外,花楸树大多生长在半阳坡、半阴坡、阴坡以及沟谷环境中,其分布区土壤类型以山地棕壤、暗棕壤为主。海拔、气温、空气湿度可能直接影响花楸树的自然分布。其自然更新方式有种子繁殖更新和萌蘖(包括根蘖和桩蘖)繁殖更新两种,以桩蘖为主要的的更新方式。
     2.花楸树各群体内家系子代幼苗的苗期性状变异十分丰富,种群性状间、群体内性状间变异系数的差异明显,花楸树表型10个性状在群体间、群体内家系间的差异均达到极显著水平。群体间平均表型分化系数为34.38%,群体内家系间的变异是花楸树表型变异的主要来源,群体内家系间的变异高于群体间的变异。根据表型多样性综合指标的聚类结果,将花楸树7个群体划分为两大类。群体苗木性状与产地地理气候因子的相关分析发现,苗高与纬度呈显著负相关,产地温度、降雨量则是造成这种负相关主要环境因子;地径则与经度呈正相关,因此初步判断花楸树为经纬向双重变异模式,其中纬度起主要作用。
     3. 4个酶系统10个位点的检测结果表明,参试的8个花楸树天然群体都存在稀有基因;花楸树群体水平上的遗传多样性较高,每位点平均等位基因数(Na)为2.2,多态位点百分率(P)为100%,期望杂合度(He)为0.4240;花楸树8个群体间的遗传多样性差异较小,以Ne、H、Shannon信息指数三个指标对8个群体遗传多样性从高到低次序为河北驼梁山(HBT)>河北雾灵山(HBW)>山西庞泉沟(SXP)>河北白石山(HBB)>山东崂山(SDL)>河北塞罕坝(HBS)>山东泰山(SDT)>辽宁老秃顶(LNL);花楸树群体间遗传分化系数(Fst)为0.0758,群体间总的基因流(Nm)较高,为3.0472,表明花楸树群体间遗传分化程度小,这与群体间较高的遗传一致度(I=0.8585-0.9872)的结果一致;在单个群体中,通过卡方(χ2)检验(P<0.05)显示,花楸树群体有73.62%的群体-位点组合显著偏离哈迪-温伯格平衡,总种群的Fit、Fis分别为-0.3105、-0.4180,表明无论在总体水平还是群体内个体间,花楸树种群表现为杂合体过量的现象。UPGMA聚类结果显示,8个群体的遗传距离与地理距离呈现弱相关性。
     4.花楸树各群体的花粉库与胚珠库中,各位点基因的配子比例不平衡,t检验结果显示,6个群体的雌雄配子比例差异均不显著。各群体多态位点异交率均很高,在0.981以上,多位点异交率与单位点异交率平均值的差值(tm-ts)显示出花楸树各群体都存在轻度的自交或近交。此外,驼梁山群体的子代内异交父本相关系数(rp=0.420)最高,各群体母本异交率(rt)为0.083-0.108。因此,花楸树属于混合交配类型,以杂交为主,表现为高度异交。根据电泳数据计算的近交衰退(δ=1),表明花楸树天然群体的近交衰退相当大。
     5.花楸树在引种地区,物候表现基本正常;在炎热夏季受高温影响,花楸树的叶片易发生日灼,主要发生在6-7月份,遮荫处理可以避免日灼发生;不经任何防寒措施,花楸树可以安全越冬。在大树遮荫条件下,其高生长在4月底出现生长高峰,属于春季生长类型;地径生长高峰出现在5月、6月和8月。花楸树叶片秋季变为红色、黄色,可进行苗期选择。在夏季采取保护措施的条件下,花楸引种平原地区有望成功。
     6.取自成年母树的插穗仅有愈伤组织没有不定根生成,取自一、二年生幼树的插穗平均生根率70.37%以上,不定根平均长度4.85cm以上,不定根数量19条以上;枝条的下部位生根效果明显优于上部位;采穗及扦插时间在春季萌芽后1.5-2个月时为宜;扦插基质选用蛭石或者泥炭土+珍珠岩(3:1) ;外源激素选用IBA+NAA(10:1)或者IBA+NAA(5:1),以1500 mg?kg-1为最佳浓度处理,生根率达90%以上,不定根平均长度在6.67cm以上,不定根数量在34条以上;花楸树嫩枝扦插以皮部生根为主,属于皮部生根类型。
     7.花楸树为高度异交物种,其遗传资源的保存应从源头开始,进行原地保存的同时,多地点或多群体收集种子(或其它繁殖材料),构建种质资源圃,建立种源/家系试验林,选择优良单株营造无性系收集圃,构建种子库开展设施保存,同时还可借助植物园的优势开展资源保存工作。
The natural distribution, habitat conditions and natural regeneration of indigenous tree species, Sorbus pohuashanensis (Hance) Hedl. were studied based on literature, specimen and field investigations. 8 populations were sampled in Shandong, Shanxi, Hebei and Liaoning provinces. 7 populations (171 families in total) of them were used for analysis of geographical variation in 10 morphological and growth traits of 1-year-old seedlings. Genetic structure and diversity of all the 8 populations and mating system of 6 populations were aasayed using isozyme markers. A domestication trial was established in Changping Experiment Nursery of Beijing Municapl Forestry Bureau. Propagation by softwood cutting were also conducted to analyze effects of auxins (types and concentrations), position of cuttings on trees, and rooting conditions. This study is intended to provide guidelines for evaluation, domestication and conservation of the genetic resources of the species. Major results are described as follows:
     1. Most S. pohuashanensis naturally occur in mixed broad-leaved warm temperate forest, and some occur in mixed coniferous and broad-leaved temperate forest, belonging to humid mountain vegetation zone. The habitats can be grouped into 4 vegetation types (including 12 community types): mixed broad-leaved mountain forest, mixed coniferous and broad-leaved mountain forest, pure larch mountain forest and mountain top shrub forest. The altitudinal distribution of the species ranges from 500 to 2200 m with majority occuring between 1200 and 2000m. The species grows mostly in semi-sunny, semi-shade, shade slopes and gullies, however, it grows in sunny slopes in Wulingshan, Hebei province. The brown mountain soil and dark brown soil are the main soil types in the whole natural range of the species. Altitude, temperature and air humidity are likely the main factors affecting the distribution of the species. The species can naturally regenerate through seed and through sprout from roots and stumps. The stump-sprouting is the main pattern of natural regeneration.
     2. Analysis of variance showed that there are significant differences between population and between families within popuation for morphological and growth traits. The mean phenotypic differentiation coefficient for the 10 traits is 34.38%, indicating that the variance from families within population is the main part of the phenotypic variation. According to the result of cluster analysis based on several phenotypic diversity indices, the 7 populations can be divided into two groups. Correlation between the growth of seedlings and the geographical and climatic factors was calculated. A significant negative correlation was found between the height growth and the latitude. Temperature and mean annual rainfall are the main factors that affected the population variation. However, a significant positive correlation was found between the ground diameter and the longitude. A primary opinion is that the provenance variance of the species is influenced by both the latitude and the longitude, and the latitude plays the major role.
     3. Genetic structure and diversity of the 8 populations of the species were studied at 10 loci encoding 4 enzymes using horizontal starch gel electrophoresis, Rare alleles were found in each of the 8 populations sampled. The levels of genetic diversity were high at species level with the mean number of alleles per locus Na=2.2, the percentage of polymorphic loci P=100%, and the mean expected heterozygosity He=0.4240. The 8 populations were ranked as HBT>HBW>SXP>HBB>SDL>HBS>SDT>LNL according to He. And same order applies to Ne and Shannon′s information index. A low Level of genetic differentiation among populations was detected (Fst=0.0758) and a higher estimate of gene flow (Nm=3.0472) coincided with a high level of genetic identity (I) among the populations (from 0.8585 to 0.9872). Wright’s F-statistics analysis indicated an excessive of heterozygotes both at population level (Fis=﹣0.4180) and at total population level (Fit=﹣0.3105). The results ofχ2-test (P<0.05) indicated that 73.2% of population-loci departed the Hardy-Weinberg equilibrium. The UPGMA cluster analysis suggested that the genetic distances among population were weakly correlated with their geographic distances.
     4. The horizontal starch gel electrophoresis for polymorphic loci of isozymes was used to exame the genotypes in 6 populations, sampled in Laoshan and Taishan, in Shandong province, Pangquangou, in Shanxi province, Tuoliangshan and Baishishan, in Hebei province, Laotuding, in Liaoning province. Mating system was also analysed using MLT software. The 8 polymorphic loci selected for analysis were Pgm-1、Pgm-2、Pgm-3、Pgi-1、Pgi-2、Pgd-1、Pgd-2、Pgd-3. The results indicated that the gametes ratio of each locus in pollen and ovule pools was imbalance in the 6 populations. The male to female gametes ratio of the six populations was not significantly different shown t-test. The outcrossing rates of polymorphic loci were above 0.981. The margin of multi-locus and single-locus outcrossing rate (tm-ts) showed that slight inbreeding existed in the each population of the species. In addition, the correlation of outcrossed paternity within progeny arrays (rp=0.420) of the Tuoliangshan population was the highest and the outcrossing rate of female parents (rt) of all the 6 populations ranged from 0.083 to 0.108. Therefore, S. pohuashanensis, having a mixed mating model, is a highly outcrossing species. The inferred inbreeding depression (δ= 1) from the electrophoresis data indicated that the natural populations of the species suffered serious inbreeding depression.
     5. The phenology and growth pattern on 2-year-old seedlings of S. pohuashanensis were studied. The results showed that S. pohuashanensis could grow well in shaded conditions and its phenology was normal in the introductional experimental site during the 2 years of observation. In open field, the leaves of the seedlings are subject to sunburn in hot summer, mainly in 6-7 month, and shading can be used to avoid sunburn. Under the shade of big trees, the peak shoot growth was in late April. The diameter growth peaked in May, June and August respectively. The leaf color gradually turns into red or yellow in autumn, selection can be made to develop varibilities with different leaf colors. High temperature and sunborn are probably the main factors restraining the growth in summer in the low altitudes.
     6. Using different types of auxins (IBA, NAA, IBA+NAA (10:1), IBA+NAA (5:1), IBA+NAA (2:1) and IBA+NAA (1:1)), with different concentrations (500, 1000, 1500, 2000, 2500 and 3000 mg?kg-1), and different types of rooting media (vermiculite, peat+perlite (3:1) and sand), the rooting ability of cuttings collected from field-grown and greenhouse-grown S. pohuashanensis was studied. Rooting rate, length and number of adventitious roots were measured. Only callus but no adventitious roots were found for the cuttings collected from lateral branches at the top of adult tree. However, the adventitious roots were visible for the cuttings collected from 1-2-year-old saplings, with larger rooting rate (above 70.37%), length (above 4.85 cm) and number (above 19) of adventitious roots. The softwood cuttings collected from the lower part of stems was obvious better than that from the upper parts. Cuttings should be taken early in the season before they were not completedly lignified, about 1.5-2 months after bud shooting. The rooting of softwood cutting was improved by a basal dip in IBA+NAA (10:1) and IBA+NAA (5:1). The vermiculite or peat+perlite (3:1) was the appropriate rooting media. The best rooting rate (above 90%), the largest length (above 6.67cm) and numbers of adventious roots (above 34) were obtained following the 1500 mg?kg-1 treatments.
     7. The results indicate that S. pohuashanensis is a predominantly outcrossing species. For any genetic resource conservation programe, sampling of seeds (or propagation materials) from more populations with a smaller number of trees at each site is preferable except for in situ conservation. Conservation stands/gene banks, provenance/families trials, clone banks and seed banks shoud be established. While some botanical gardens and arboretums are also proposed to conserve the genetic resources of the species.
引文
[1]郑勇奇.野生植物资源保护与可持续利用研究.北京:中国农业出版社. 2008, 3-4
    [2] Phipps J B, Robertson K R, Smith P G. A checklist of the subfamily Maloideae (rosaceae). Canadian Journal of Botany, 1990, 68(1010): 2209-2269
    [3]郑万钧.中国树木志(第二卷).北京:中国林业出版社. 1985, 1009
    [4]姚崇怀,陈志远.湖北保康山区野生观果树种资源初析.湖北林业科技, 1995, (4): 13-16
    [5]张智婷,孙立文,郝明亮,等.优美的园林风景树---百花花楸.河北林业科技, 2005, (4 ): 90
    [6]孙秀殿.花楸的利用与栽培.特种经济动植物, 1999, (4): 32
    [7]罗大庆,郑维列.西藏色及拉山区野生果类资源及其利用前景.果树科学, 1998, 15(3): 283-288
    [8] RaspéO, Findlay C, Jacquemart A L. Sorbus aucuparia L. Journal Ecology 2000, 88(214): 910-930
    [9] McAllister H. Sorbus filipes. The Board of Trustees of the Royal Botanic Gardens,Kew. London. 2005, 209-212
    [10] Straley G B. Sorbus reducta. American Nurseryman, 1988, 168(4): 178
    [11] Nikolic M, Ogasanovic D, Stmiisavljevic M. Selection of service tree (Sorbus domestica L.). Acta horticulturae, 1998, 484: 101-104
    [12] Kucherov E V. Seasonal rhythm of growth and f ruit yield of Sorbus aucuparia in Bashkotostan. Rastiel' nye Resursy, 1999, 35(3): 56-61
    [13] Saebo A, Johnsen O. Growth and morphology differ between wind-exposed families of Sorbus aucuparia L. Journal of Arboriculture, 2000, 26(5): 255-263
    [14] Vegvari G. Sorb apple(Sorbus domestica L.)selection in Hungary. Acta Horticulturae, 2000, 538: 155-158
    [15] Zerbe S. On the ecology of Sorbus aucuparia (Rosaceae) with special regard to germination, establishment and growth. journal of Polish Botanical, 2001, 46(2): 229-239
    [16] JoséJ A, Carlos A, Carmen N, et al. The Genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa: Morphological Analysis and Systematics. Systematic Botany, 1998, 23(2): 189-212
    [17] Phipps J B, Robertson K R, Rohrer J R, et al. Origins and evolution of subfam. Maloideae (Rosaceae). Systematic Botany, 1991, 16(2): 303-332
    [18] Lee R. Sorbus reconsidered. The American Gardener, 1999, 78(5): 30-35
    [19] Oster U, Blos I, Rudiger W. Natural inhibitors of germination and growth. IV. Compounds from fruit and seeds of mountain ash (sorbus aucuparia). Zeitschrift fur Naturforschung, 1987, 42(11-12): 1179-1184
    [20] Basharuddin J, Smith M L. After-ripening requirement, dormancy and germination in rowan( Sorbus aucuparia L.). in: Edwards D G W. Dormancy and barriers to germination: Proceedings of an international symposium of IUFRO Project Group P2.04-00 (Seed Problems), Victoria, British Columbia Canada: 1993: 1-5
    [21] Paulsen T R, Hogstedt G. Passage through bird guts increases germination rate and seedling growth in Sorbus aucuparia. Functional Ecology, 2002, 16(5): 608-616
    [22] Airillage I, Segura J. Adventitious shoot regeneration from hypocotyls cultures of service tree (S .domestica). Scientia Horticulturae, 1992, (3): 371-373
    [23] Madjidian M R P. Investigation on the germination and propagation of service tree (Sorbus torminalis ( L). crantz) in the western part of Hyrcanian forests of Iran. Iranian Journal of Natural Resources, 2000, 53(2): 131-139
    [24] Yagihashi T, Hayashida M, Miyamoto T. Effects of bird ingestion on seed germination of Sorbus commixta. Oecologia, 1998, 114(2): 209-212
    [25]姜楠,张颖,李长莉,等.百华花楸播种育苗及一年生苗的管理.林业实用技术, 2004, (4): 25-26
    [26]梁华,李玉石,郭立红,等.花楸播种育苗技术.山东林业科技, 1999, (4): 23
    [27]陈荣伟,徐熙伟,赵波平,等.花楸播种育苗技术.山东林业科技, 2004, (3): 43
    [28]杜丽艳,张春涛,左洪文,等.花楸育苗技术.林业实用技术, 2004, (3): 29
    [29]王乐祥,于建军,冯最文.花楸育苗技术.吉林林业科技, 1989, (6): 13,16
    [30]姜雁,李近雨.花楸育苗及引种试验初报.河北林业科技, 1998, (4): 1-4
    [31]姜雁,杨靖宇.花楸引种试验的阶段总结.河北林业科技, 2001, (6): 17-19
    [32]孙轶,孟淑英,宋瑛,等.水榆花楸的播种育苗技术.辽宁林业科技, 2003, (2): 41,45
    [33]牟兆军.无毛花楸.特种经济动植物, 2001, (4): 25
    [34]边彪,孟好军.天山花楸种子育苗技术.甘肃科技, 2004, 20(10): 179-180
    [35]范文龙,马国录,齐培风,等.野生天山花楸的育苗技术.青海农林科技, 2003, (1): 68,71
    [36] Khromova T V, Petrova I P. Improving procedures for propagating Sorbus by cutting. Byulleten'Glavnogo Botanicheskogo Sada, 1988, 148: 29-35
    [37] Hansen O B. Propagating Sorbus aucuparia L. and Sorbus hybrida L. by softwood cuttings. Scientia Horticulturae, 1990, 42: 169-175
    [38] Arrillaga I, Marzo T, Segura J. Micropropagation of juvenile and adult Sorbus domestica L. Plant cell, Tissue and Organ Culture, 1991, 27(3): 341-348
    [39] Bengtsson R.观赏花楸新品种(肖承刚译). BoutBaumsch(德), 1997, 49(8): 422
    [40]张水荣.全光照喷雾扦插快速育苗技术.林业科技通讯, 1994, (1): 40-41
    [41]苏喜廷,王国义,张淑华,等.黑龙江省主要阔叶树种绿枝扦插的效果.东北林业大学学报, 2005, 33(5): 13-14,18
    [42]王国义,于树成,闫洪霞,等.黑龙江省主要阔叶树种绿枝扦插试验.吉林林业科技, 2004, 33(22): 17-19,44
    [43]于树成,张淑华,闫红霞,等.黑龙江省主要阔叶树种绿枝扦插效果初步分析.林业勘查设计, 2003, (1): 25-27
    [44]高惠,刘培义.花楸的扦插繁殖试验初报.吉林林业科技, 1997, (3): 29-30
    [45]王爱芝,沈海龙,黄剑,等.花楸嫩叶和茎段的愈伤组织诱导.东北林业大学学报, 2005, 33(2): 12-14
    [46]安洁,刘军.石灰花楸的快繁技术研究.四川农业大学学报, 2004, 22(3): 222-224
    [47]姚莉莉,赵海泓,申立营,等.西伯利亚花楸组培快繁技术体系的研究.辽宁农业科学, 2005, (6): 19-21
    [48] Demesure B, GuerrouéB L, Lucchi G, et al. Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science, 2000, 57: 63-71
    [49] Leszek B,£ukasz M, Kosi?ski P. Isozyme polymorphism and genetic structure of the population of Sorbus torminalis (L.) Crantz from the Byty? Forest (Poland). Journal of Applied Genetics 2004, 45(3): 321-324
    [50] RaspéO, Jacquemart A-L. Allozyme diversity and genetic structure of European populations of Sorbus aucuparia L. . Heredity, 1998, 81(5): 537-545
    [51] Oddou-Muratorio S, Aligon C, Decroocq S, et al. Microsatellite primers for Sorbus torminalis and related species. Molecular Ecology, 2001, 1(4): 297-299
    [52] RaspéO, Saumitou-Laprade P, Cuguen J, et al. Chloroplast DNA haplotype variation and population differentiation in Sorbus aucuparia L. (Rosaceae: Maloideae) Molecular Ecology, 2000, 9(8): 1113-1122
    [53] Robertson A, Newton A C, Ennos R A. Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Molecular Ecology, 2004, (13): 123-134
    [54] Nelson-Jones E, Briggs D, Smith A. The origin of intermediate species of the genus Soubus. Theoretical and Applied Genetics, 2002, 105(6-7): 953-963
    [55] Oddou-Muratorio S, Houot M L, Demesure-Musch B, et al. Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. I. Evaluating the paternity analysis procedure incontinuous populations. Molecular Ecology, 2003, (12): 3427-3439
    [56] S?b? A, ?ystein J. Growth and Morphology Differ Between Wind-Exposed Families of Sorbus Aucuparia (L.). Journal of Arboriculture, 2000, 26(5): 255-263
    [57]刘登义,沈浩,杨月红,等.黄山花楸种群遗传多样性研究.应用生态学报, 2003, 14(12): 2141-2144
    [58] Kullman L. Temporal and spatial aspects of subalpine populations of sorbus aucuparia L. in Sweden. Annales Botanici Fennici 1986, 23(4): 267-275
    [59] ?ywiec M, LedwońM. Spatial and temporal patterns of rowan (Sorbus aucuparia L.) regeneration in West Carpathian subalpine spruce forest. Plant Ecology, 2008, 194(2): 283-291
    [60] Motta R. Ungulate impact on rowan (Sorbus aucuparia L.) and Norway spruce (Picea abies (L.) Karst.) height structure in mountain forests in the eastern Italian Alps. Forest Ecology and Management, 2003, 181(1-2): 139-150
    [61] Pías B, Guitián P. Breeding system and pollen limitation in the masting tree Sorbus aucuparia L. (Rosaceae) in the NW Iberian Peninsula. Acta Oecologica, 2006, 29(1): 97-103
    [62] Kelly D. The evolutionary ecology of mast seeding. Trends Ecol. Evol., 1994, 9(12): 465-470
    [63] Kellly D, Sork V L. Mast seeding in perennial plants: why, how, where? Annual Review of Ecology and Systematics, 2002, (33): 427-447
    [64] Kobro S, S?reide L, Dj?nne E, et al. Masting of rowan Sorbus aucuparia L. and consequences for the apple fruit moth argyesthia conjugella Zeller. Population Ecology, 2003, 45(1): 25-30
    [65] Kj?rup R K, Johannes K. Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis. Acta Oecologica, 2004, 25(3): 211-218
    [66] Sperens U. Is fruit and seed production in Sorbus aucuparia L. (Rosaceae) pollen limited? Ecoscience, 1996, 3(3): 325-329
    [67] Sperens U. Long-term variation in, and effects of fertilizer addition on, flower, fruit and seed production in the tree Sorbus aucuparia L. (Rosaceae). Ecography, 1997, 20(6): 521-534
    [68] Sperens U. Fruit production in the tree Sorbus aucuparia L. (Rosaceae) and predispersal seed predation by the apple fruit moth (Argyesthia conjugella Zell.). Oecologia, 1997, 110(3): 368-373
    [69]张红星,张硕新,雷瑞德.火地塘油松群落中9种植物光合特性研究.西北林学院学报, 2005, 20(1): 20-24
    [70]任军,范丽颖,郭继勋,等.花楸幼苗光合特性及其影响因子分析.东北师大学报(自然科学版), 2006, 38(2): 96-100
    [71]朱俊义.花楸(Sorbus pohuashanensis)导管分子穿孔板的类型及演化.植物研究2002, 22(3): 285-287
    [72]徐志华.果树检疫病虫--苹果棉蚜.河北林业科技, 1987, (1): 42-44
    [73]郦子华.家茸天牛的初步研究.新疆农业科学, 1978, (3): 27
    [74]邹学忠,吴月亮,张云江.赴日本进行珍贵阔叶树种栽培技术交流考察报告.辽宁林业科技, 2001, (5): 36-38,41
    [75] Labuda R, Krivánek L, Tan?inováD, et al. Mycological survey of ripped service tree fruits (Sorbus domestica L.) with an emphasis on toxinogenic fungi. International Journal of Food Microbiology, 2005, 99(2): 215-223
    [76]《山西植物志》编辑委员会.山西植物志(第二卷).北京:中国科学技术出版社. 1998, 239
    [77]《内蒙古植物志》编辑委员会.内蒙古植物志(第三卷).呼和浩特:内蒙古人民出版社. 1989, 81-83
    [78]周以良,聂绍荃,张艳华,等.黑龙江植物志(第六卷).哈尔滨:东北林业大学出版社. 1998, 121-123
    [79]《山东树木志》编写组.山东树木志.济南:山东科学技术出版社. 1984, 365-366
    [80]孙立元,任宪威.河北树木志.北京:中国林业出版社. 1997, 247-249
    [81]贺士元,邢其华,尹祖棠,等.北京植物志.北京:北京出版社. 1993, 368-370
    [82]彭东辉,张启翔,郑世群,等.福建茫荡山保护区野生蕨类资源及其园林应用.福建林学院学报, 2006, 26(4): 308-313
    [83]张川红,郑勇奇,李继磊,等.北京地区火炬树的萌蘖繁殖扩散.生态学报, 2005, 25(1): 978-985
    [84]中国植被编辑委员会.中国植被.北京:科学出版社. 1980, 731-799
    [85]王德艺,李东义,冯学全.暖温带森林生态系统.北京:中国林业出版社. 2003, 1-3
    [86]吴征镒,陈心启.中国植物志(第一卷).北京:科学出版社. 2004, 1-77
    [87]中华人民共和国气候图集编委会.中华人民共和国气候图集.北京:气象出版社. 2002, 8-13
    [88]傅立国,陈谭清,郎楷永,等.中国高等植物(第六卷).青岛:青岛出版社. 2003, 537
    [89]沈海龙,杨玲,张建瑛,等.花楸树种子休眠影响因素与萌发特性研究.林业科学, 2006, 42(10): 133-138
    [90]葛颂.用同工酶研究马尾松群体的遗传结构.林业科学, 1988, 24(4): 399-409
    [91]黄燕,吴平. SAS统计分析及应用.北京:机械工业出版社. 2006
    [92]黄少伟,谢维辉.实用SAS编程与林业实验数据分析.广州:华南理工大学出版社. 2001
    [93] Hamrick J L, Godt M J W. Allozyme diversity in plant species. in: Brown A H D, Clegg M T, Kahler A L, et al. Plant population Genetics, Breeding and Genetic Resources, Sundrland, MA: Sinauer Associates, 1989: 43-63
    [94]赵冰,张启翔.腊梅种质资源表型多样性.东北林业大学学报, 2007, 35(5): 10-13,35
    [95]吴琼,孙坤,张辉,等.山西省中国沙棘天然居群表型多样性研究.西北师范大学学报(自然科学版), 2007, 3(43): 78-84
    [96]丛桂芝,何琼,车风斌,等.新疆伊犁野生樱桃李表型多样性的聚类分析及优良品系的形态特征.东北林业大学学报, 2007, 35(12): 13-14,24
    [97]刘静,周庆和,孙海伟,等.新疆野生苹果表型多样性研究.果树学报, 2004, 21(4): 285-288
    [98]王德莲,李忠超,葛学军.云南穗花杉的遗传多样性研究.热带亚热带植物学报, 2005, 13(2): 143-148
    [99] Daniel Z V, Daniel P. Patterns of morphological variation and diversity of Cocos nucifera (Arecaceae) in Mexico. American Journal of Botany, 1998, 85(6): 855-865
    [100]李文荣,齐力旺.山西华北落叶松地理种源苗期生长与性状变异的分析.山西农业大学学报(自然科学版), 1994, 14(4): 339-345
    [101]朱翔,李忠. 2年生白桦种源的地理变异.东北林业大学学报2001, 29(6): 7-10
    [102]李因刚,周志春,金国庆,等.乳源木莲苗生长和形态的地理种源分化.林业科学研究, 2007, 20(1): 35-39
    [103]张萍,金国庆,周志春,等.木荷苗木性状的种源变异和地理模式.林业科学研究, 2004, 17(2): 192-198
    [104]焦月玲,周志春,余能健,等.三尖杉苗木生长和形态种源差异.林业科学研究, 2006, 19(4): 452-456
    [105]贺超英,陈益泰.桤木种源苗期生长和固N能力的变异.林业科学研究, 2002, 15(6): 680-686
    [106] Perret M, Arnold C, Gobat J-M, et al. Relationships and genetic diversity of wild and cultivated grapevines (Vitis vinifera L.) in central Europe Based on microsatellite markers. Acat Hort., 2000, 528: 155-158
    [107]卢欣石,何琪.种群遗传异及基因多样度分析.草业学报, 1999, 8(3): 76-82
    [108]唐炎林,苏智先,张军.遗传多样性的检测途径及其对濒危植物保护的意义.内江师范学院学报, 2004, l9(2): 38-41
    [109] Bower A D, Ecological genetics and effects of inbreeding and white pine blister rust on genetic structure of whitebark pine. (Pinus albicaulis Engelm.), in The faculty of Graduate Studies. 2006, The university of British Columbia: Columbia.
    [110] Barbier E B, Schulz C E. Wildlife, biodiversity and trade. Environment and Development Economics, 1997, 2(2): 145-172
    [111]周延清. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社. 2005
    [112]李俊清,李景文,崔国发编著.保护生物学.北京:中国林业出版社. 2002
    [113]王中仁.植物等位酶分析.北京:科学出版社. 1996
    [114]葛颂.遗传多样性及其检测方法.北京:科学出版社. 1994
    [115]吴超,花楸树群体遗传结构及种子休眠机理研究. 2007,中国林业科学研究院硕士学位论文.
    [116] Yeh F C, Yang R C, Boyle T. POPGENE, version 1.32 ed., Software Microsoft Window-Based Freeware for Population Genetic Analysis. Edmonton, Alta: University of Alberta. 1997
    [117] Sun M, Wong K C, Joe S Y, et al. Reproductive biology and population genetic structure of Kandelia candel (Rhizophoraceae), a Viviparous Mangrove Species. American Journal of Botany, 1998, 85(11): 1631-1637
    [118]赵阿曼,刘志民,康向阳,等.西藏特有植物砂生槐天然群体遗传多样性研究.生物多样性, 2003, 11(2): 91-99
    [119]付增娟.黑荆和银荆的生物入侵研究:中国林科院硕士论文. 2005
    [120]何田华,葛颂.植物种群交配系统、亲本分析以及基因流动研究.植物生态学报, 2001, 25(2): 144-154
    [121]陈小勇,宋永昌.黄山钓桥青冈种群的交配系统与近郊衰退.生态学报, 1997, 17(5): 462-468
    [122] Karron J D, Thumser N N, Tucker R, et al. The influence of population density on outcrossing rates in Mimulus ringen. Heredity, 1995, (75): 612-617
    [123] Cruzan M B. Genetic markers in plant evolutionary ecology. Ecology, 1998, 79(2): 400-412
    [124] Micales J A, Bonde M R. Isozymes: Methods and Applications. in: Singh R P, Singh, Uma S. . Molecular methods in plant pathology, CRC Press, Inc., 1995: 115-130
    [125] Hamrick J L, Godt M J W, Sherman-Broyles S L. Factors influencing genetic diversity in woody plant species. New Forests, 1992, 6: 95-124
    [126]康明,黄宏文.湖北海棠的等位酶变异和遗传多样性研究.生物多样性, 2002, 10(4): 376-385
    [127] Hamrick J L. Isozymes and the analysis of genetic structure in plant populations. in: Soltis D E, Soltis P S. Isozymes in Plant Biology, London: Chapman and Hall, 1990: 87-105
    [128] Sato T, Isagi Y, Sakio H, et al. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 2006, 96: 79-84
    [129] Crawford D J. Enzyme Electrophoresis and Plant Systematics. in: Soltis D E, Soltis P S. Isozymes in Plant Biology, Portland: Dioscorides Press, 1989: 146-164
    [130]何承忠.毛白杨遗传多样性及起源研究:北京林业大学博士学位论文. 2005
    [131] Drummond B S C S, Phylogenetic relationships, mating systems, and population structure in Lupinus (Leguminosae), in A dissertation submitted to the faculty of the Graduate School of Arts and Sciences. 2006, Georgetown University: Washington D. C.
    [132]王崇云,党承林.植物的交配系统及其进化机制与种群适应.武汉植物学研究, 1999, 17(2): 163-172
    [133]曾燕如,徐岳雷,翁志远,等.林木群体中的交配系统.浙江林业科技, 2002, 22(6): 42-45
    [134] Li Q J, Kress W J. Mating system and stigmatic behaviour during flowering of Alpinia kwangsiensis (Zingiberaceae). Plant Systematics and Evolution, 2002, 231(1-2): 23-32
    [135] Marshall T C, Slate J, Kruuk L E, et al. Statistical confidence for likelihood-based paternity inference in natural population. Molecular Ecology, 1998, 7(5): 639-655
    [136] Godt M J W, Hamrick J L. Patterns and Levels of Pollen-Mediated Gene Flow in Lathyrus latifolius. Evolution, 1993, 47(1): 98-110
    [137] Levin D A. Plant outliers: an ecogenetic perspective. American Naturalist, 1995, 145(1): 109-118
    [138] Ivey C T, Wyattr R. Family outcrossing rates and neighborhood floral density in natural populations of swamp milkweed (Asclepias incarnata):potential statistical artifacts. Theoretical and Applied Genetics, 1999, 98(6-7): 1063-1071
    [139] Melende-Ackerman E J, Ackerman J D. Density-dependent variation in reproductive success in a terrestrial orchid. Plant Systematics and Evolution, 2001, 227(1-2): 27-36
    [140] David J C, Vicki L H. Genetic divergence and the mating system in the endangered and geographically restricted species, Lambertia orbifolia Gardner (Proteaeae). Heredity, 1999, 83(4): 418-427
    [141] Seltmann P, Cocucci A, Renison D, et al. Mating system, outcrossing distance effects and pollen availability in the wind-pollinateed treeline species Polylepis australis BITT. (Rosaceae). Basic and Applied Ecology, 2008, 9(1): 1-9
    [142]李永峰,高洪斌,杨文华等.甜菜良种繁育有关理论与技术分析Ⅲ.良繁群体的交配系统与遗传潜力.中国甜菜, 1995, (2): 7-12
    [143]汪小凡,陈家宽.长喙毛茛泽泻(泽泻科)的交配系统研究.云南植物研究, 1998, 20(3): 315~320
    [144]汪小凡,陈家宽.矮慈姑的传粉机制与交配系统.云南植物研究, 1999, 21 (2): 225-231
    [145]汪小凡,陈家宽.野慈姑自然群体异交率的定量估测.遗传, 1999, 22(5): 316-318
    [146]汪小凡,陈家宽.小慈姑的开花形态、传粉机制与交配系统.植物生态学报, 2001, 25(2): 155-160
    [147]赖焕林,王明庥.马尾松人工群体交配系统研究.林业科学, 1997, 33(3): 219-224
    [148]张冬梅,李悦,沈熙环,等.去劣疏伐对油松种子园交配系统及遗传多样性影响的研究.植物生态学报, 2001, 25(4): 483-487
    [149]张冬梅,张华新,沈熙环,等.油松种子园交配系统的时空变化研究.林业科学, 2004, 40(1): 70-77
    [150] Hu X S. Richard A. Ennos, Scoring the mating systems of natural populations of three larix taxa in China: L. gmeliniiL (Rupr.) Rupr., L. olgensis Henry and L. principis-rupperchii Mayr. Scientia Silvae Sinicae, 1999, 35(1): 21-31
    [151]李斌,顾万春.白皮松交配系统及其种内遗传多样性分量比的研究.林业科学研究, 2004, 17(1): 19-25
    [152] Zheng Y Q, Ennos R A. Genetic variability and structure of natural and domesticated populations of Caribbean pine (Pinus caribeaea Morelet). Theor Appl Genet, 1999, 98(5): 765-771
    [153]陈小勇,历宁,沈浪.浙江天同国家森林公园红凉伞交配系统研究.植物生态学报, 2001, 25(2): 161-165
    [154]陈小勇,林鹏.厦门木麻黄种群交配系统及近交衰退.应用生态学报, 2002, 13(11): 1377-1380
    [155]葛菁萍,林鹏.红树植物木榄(Bruguieragymnorrhiza)种群的交配系统.植物生态学报, 2001, 25(1): 50-56
    [156]郭华,王孝安,笑娅萍.植物交配系统及其在植物保护中的应用.西北植物学报, 2003, 23(5): 852-859
    [157]张大勇,姜新华.植物交配系统的进化、资源分配对策与遗传多样性.植物生态学报, 2001, 25(2): 130-143
    [158] Ritland K. Extensions of models for the estimation of mating systems using n independent loci. Heredity, 2002, 88: 221-228
    [159]何亚平,刘建全.植物繁育系统研究的最新进展和述评.植物生态学报, 2003, 27(2): 151-163
    [160] Philip M S, David N K. Inbreeding, outbreeding and heterosis in the yellow pitcher plant, Sarracenia flava (Sarraceniaceae) in Virginia. American Journal of Botany, 2000, 87: 1628-1633
    [161] Dudash M R, Fenster C B. The role of breeding system and inbreeding depression in the maintenance of an outcrossing mating strategy in Silene virginica (Caryophyllaceae). American Journal of Botany, 2001, 88: 1953-1959
    [162] Ritland K. Inferences about inbreeding depression based 0n changes of the inbreeding coefficient. Evolution, 1990, 44(5): 1230-1241
    [163] Morgante M, Vendramin G G, Olivier A M. Mating systems in Pinus leucodermis Ant. : detection of self-fertilization in natural populations. Heredity, 1991, 67: 196-203
    [164] Apsit V J, Nakamura R R, Wheeler N C. Differential male reproductive success in Douglas fir. Theor appl Genet, 1989, 77(5): 681-684
    [165] Mandal A K, Ennos R A. Mating system analysis in a natural population of Acacia nilotica Subspecies kraussiana. Forest Ecology and Management, 1995, 79(3): 235-240
    [166]赖焕林.通过种子分析估算交配系统参数的误差.南京林业大学学报, 1995, 19(4): 71-74
    [167] Charlesworth D, Charlesworth B. Inbreeding Depression and its Evolutionary Consequences. Annual Review of Ecology and Systematics, 1987, 18: 236-268
    [168] Barrett S C H, Eckert C G. Variation and evolution of mating systems in seed plants. Biological approaches and evolutionary trends in plants, ed. Kawano S. London: Academic Press. 1990, 229-254
    [169] Chen X Y, Lin P, Lin Y M. Mating Systems and Spontaneous Mutation Rates for Chlorophyll-Deficiency in Populations of the Mangrove Kandelia Candel. Heredity, 1996, 125(1): 47-52
    [170]朱慧芬,张长芹,龚洵.植物引种驯化研究概述.广西植物, 2003, 23(1): 52-60
    [171]张日清,何方.植物引种驯化理论与实践述评.广西林业科学, 2001, 30(1): 1-6
    [172]王豁然,江泽平.论中国林木引种驯化策略.林业科学, 1995, 31(4): 367-370
    [173]孙时轩.造林学.北京:中国林业出版社. 1995, 145-172
    [174]陈有民.园林树木学.北京:中国林业出版社. 1990, 78
    [175]师晨娟,刘勇,胡长寿.青海云杉硬枝扦插繁殖研究.江西农业大学学报(自然科学版), 2002, 24(2): 259-263
    [176]查振道,贾晓卫. 60个树种全光照喷雾扦插育苗试验.陕西林业科技, 2001, (4): 10-12, 38
    [177]梁玉堂,龙庄如.树木营养繁殖原理和技术.北京:中国林业出版社. 1993, 3-15
    [178]李进.促进园林树木扦插繁殖生根的方法与技术.新疆师范大学学报(自然科学版), 2002, 21(1): 44-50
    [179]庄倩,刘玮,李长海.花楸种子及嫩枝扦插繁殖技术.林业科技通讯, 2006, 31(3): 11, 44
    [180]杨晓盆,王跃进.植物生长调节剂对叶子花扦插生根效应的研究.山西农业大学学报, 1999, 19(3): 238-240
    [181] Zobel B, Talbert J. Applied forestr tree improvement. New York: Wiley. 1984., 459-477
    [182]沈熙环.森林遗传育种资源的保存策略.林业科技开发, 2007, 21(3): 1-4
    [183]程诗明,苦楝聚合群体遗传多样性研究与核心种质构建. 2005,中国林科院博士论文.
    [184]顾万春,王棋,游应天,等.森林遗传资源学概论.北京:中国科学技术出版社. 1998
    [185]李迪民,陈坚.天山花楸水提取液药理学研究.中草药, 1995, 26(6): 302-304
    [186]李迪民,陈坚,王岩.天山花楸醇提取物药理作用的研究.西北药学杂志, 1999, 14(1): 14
    [187]于明,李铣.花楸属植物化学成分药理作用及其研究进展.辽宁中医学院学报, 2004, 5(6): 364-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700