雷达信号处理的信息理论与几何方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息几何是在黎曼流形上采用现代微分几何方法来研究统计学问题的基础性、前沿性学科,被誉为是继香农开辟现代信息理论之后的又一新的理论变革,在信息科学与系统理论研究领域展现出了巨大的发展潜力。本文以信息几何理论为基础,探索其在信号处理、尤其是现代雷达信号处理技术中的应用,以全新的视角对雷达信号处理的基础性、科学性问题展开全面、系统的研究,提出了一系列新概念、新思想和新方法。特别地,对雷达系统的信息分辨、信号检测、参数估计、传感器的信息获取、信息累积等科学问题进行了深入研究,提出了一套新的分析方法,同时也为问题的解决提供了崭新的思路和手段。
     第一章为绪论,精炼了信息几何的科学内涵,综述了信息几何理论的发展历史与应用的研究现状,归纳和总结了其中所体现的信息几何的基本思想和基本方法。
     第二章深入浅出地介绍信息几何的基本原理和数学基础,以直观而形象的方式阐述复杂而抽象的理论与方法,为后续各章的研究奠定基础。
     第三章围绕雷达分辨力这一主题,对分辨力的定义、意义、度量及其对目标检测和跟踪性能的影响进行了全面而系统的研究,使分辨理论成为一个体系。首次提出雷达系统“信息分辨力”概念,将雷达波形特征、测量模型和信噪比相结合,统一描述为测量的似然函数,在由似然函数构成的统计流形中度量系统的分辨能力,拓展了Woodward于上世纪50年代提出的基于信号模糊函数的雷达分辨理论,为描述雷达系统的实际分辨能力提供了度量,同时也为衡量检测与跟踪系统的联合分辨提供了依据。由信息分辨力概念得出了一系列重要的结论,丰富了对分辨力的传统认识和理解。基于检测分辨单元,研究了雷达测量→检测分辨→目标跟踪测量数据提取的关键问题。提出了基于误判概率的双源分辨单元定义,分析了信噪比对分辨力的影响、分辨力对检测和跟踪性能的影响,并依据所提分辨单元,研究了测量数据的提取策略,为提升雷达系统的联合检测与跟踪性能及波形优化设计提供了理论支持。
     第四章研究了信号检测的信息几何方法。建立了确定性信号和随机信号检测的信息几何解释。在该框架下,信号有无的两种假设和检测器都可以视为统计流形上的几何对象,而检测问题则转变为对两种假设所对应的概率分布的辨别问题,将检测问题转变为纯粹的几何问题来研究。建立了广义似然比检测(GLRT)的信息几何解释,提出了弯曲指数分布族GLRT的两幅几何图景,并从几何角度探讨了有限样本条件下GLRT可能带来的检测信息损失。提出了微弱信号局部最大势检验(LMP)方法的信息几何解释,建立了LMP检测与统计流形上优化问题之间的联系,提出了扩展的局部最大势检验统计量(ELMP),将经典的仅适用于单参数、单边检验的LMP算法,扩展到多变量、“双边”检验的形式,大大扩展了LMP检验的适用范围。从理论上揭示了检测问题与识别问题的等价关系,将各种检测问题统一到一个几何框架中予以分析和解决,将检测问题的研究提升到了一个新的高度。
     第五章研究了参数估计的信息几何方法。阐述了信息几何关于参数估计信息损失的基本理论,并以实例揭示了由于观测模型的非线性给参数估计带来的固有信息损失,通过计算给出了相比CRLB更确切的估计方差下界。针对弯曲指数分布族的参数估计问题,提出了基于统计流形上自然梯度的迭代最大似然估计(NG-MLE)算法。将非线性估计问题与统计流形上的确定性优化问题相统一,为算法的收敛性提供了明确的几何解释。将NG-MLE算法应用于相位干涉定位系统的目标定位参数估计问题,并建立了定位误差传播的统计模型,提出了一种有效控制定位误差传播的方法,为分析和解决大规模分布式传感器网络逐次定位误差传播问题提供了可选的途径。
     第六章研究了目标跟踪传感器网络的信息几何。面向目标跟踪应用,探究信息几何与目标跟踪传感器网络性能之间的联系,集中研究传感器网络的信息获取能力、信息累积效应以及传感器测量模型的几何表示等基本问题,并对上述成果在目标分辨、状态估计、传感器布站、目标跟踪航迹优化等问题中的应用展开具体研究。针对目标跟踪中的数据关联、目标分辨问题,采用统计流形上的Fisher信息距离、Kullback-Leibler分离度和能量函数来度量传感器测量对邻近目标的区分能力。采用Levi-Civita仿射联络和黎曼曲率张量、Ricci曲率等几何量来表征统计流形的结构,建立了Ricci曲率张量场与传感器信息获取能力以及信息变化率之间的联系。研究了统计流形在欧氏空间中的仿射嵌入表示方法,直观表现传感器测量模型的流形结构,为传感器网络的优化配置提供潜在的方法和应用。研究了目标与传感器之间相对运动形成的信息累积效应,并基于信息累积量最大准则,解决被动目标跟踪传感器的最优机动问题。提出的一整套分析方法为传感器系统的分析与目标跟踪中相关问题的研究提供了理论指导。
     第七章研究了基于信息散度的相位测量模糊鉴别问题。将模糊的相位测量映射到目标状态空间,建立了映射的查找表,通过查找表来求解目标位置估计所涉及的丢番图方程组。针对动目标跟踪中的相位测量模糊问题,提出采用数据关联和滤波技术去除模糊的方法,并给出了运动目标跟踪模糊鉴别的例子。针对微动目标定位中的相位测量模糊问题,分析了微动目标相位测量模糊的可分辨性,推导了目标微动条件下的相位测量概率分布函数,而后基于样本分布与理论分布的KLD距离,提出了微动目标模糊鉴别和定位算法,并给出了算法的流形解释。所提方法与基于流形和流形上距离度量的分类和识别方法具有异曲同工之处,为识别问题的解决提供了借鉴。研究成果为基于连续波相位测量的微动目标定位与跟踪提供了技术途径。
     第八章总结全文,并提出了信息几何在信号处理领域中的若干开放性问题。
     本文研究成果不仅丰富了统计信号处理和雷达信号处理的基础理论,同时也建立了信息几何与更广泛的统计学问题之间的联系,为信息几何在信号处理领域的应用提供了有益的借鉴。
Information Geometry is the fundamental and cutting-edge discipline which studiesstatistical problems on Riemannian manifolds of probability distributions using the methodsof Differential Geometry. It is identified as the second generation of modern InformationTheory pioneered by Shannon and exhibits great potential for development in the field ofinformation science and systems theory. The underlying thesis is to explore the applications ofinformation geometry to signal processing, especially to radar signal processing, and studiesthe fundamental and scientific problems in radar signal processing from a bran-new viewpoint.In particular, the scientific problems such as information resolution of radar systems, signaldetection, parameter estimation, the information gathering capacity and accumulativeinformation of sensor networks are explored in depth, with the development of a new set ofanalysis methods as well as a new set of methods to deal with the existing problems.
     The first chapter refines the scientific content of information geometry and elaborates thehistory and applications of information geometry as well as its basic ideas and basic methods.
     The second chapter introduces the principles and mathematical foundations of infor-mation geometry and provides a basis for the following chapters.
     The third chapter explores the definition, significance and measure of radar resolution aswell as its influence on the performance of target detection and tracking. A new concept calledinformation resolution for a sensor measurement system, which is defined in the frameworkof information geometry, is proposed. In particular, the information resolution of radarsystems is generalized from the work on existing radar resolution pioneered by Woodwardand defined on statistical manifolds where the intrinsic geometrical structure of waveform,measurement and noise models of the underlying sensing devices are convenientlycharacterized in terms of the Fisher information metric. Information resolution provides ametric to measure the practical resolution capacity of radar systems as well as the resolutionof joint detection-tracking systems. A set of important conclusions of information resolutionenriches the conventional understanding of radar resolution. Based on resolution cells fortarget detection, the key problems of radar measurement, detection and resolution, as well asthe measurement extraction schemes are studied. A definition of detection-based radarresolution, called differential resolution, is developed to describe the system’s capacity todistinguish two closely spaced targets. The SNR effects on resolution are analyzed and themeasurement-extraction scheme based on the differential resolution cell is discussed andsimulations show that an enhanced tracking performance can be obtained by such adevelopment.
     The fourth chapter studies the information geometric methods of signal detection. Aconcise geometric interpretation of deterministic and random signal detection in the theory ofinformation geometry is established. In such a framework, both hypotheses and detector canbe treated as geometrical objects on the statistical manifold of a parameterized family ofprobability distributions. Both the detector and detection performance are elucidated geometrically in terms of the Kullback-Leibler divergence. Then, the generalized likelihoodratio test (GLRT) for composite hypothesis testing problems is considered from a geometricviewpoint. Two pictures of the GLRT for curved exponential families are presented, based onwhich the performance deterioration when performing the GLRT under finite number ofsamples is discussed. Further more, a concrete geometric interpretation of the locally mostpowerful (LMP) test for weak signal detection is presented. In particular, the LMP test isidentified as the norm of natural whitened gradient on the statistical manifold, which indicatesthat the LMP test pursues the steepest learning directions from the null hypothesis to theempirical distribution of the observed data on the manifold. Due to this nicety, an immediateextension of the LMP test, called the ELMP test which removes the scalar and the one-sidedrestrictions in the LMP test, is proposed. The above analyses reveal equivalence between thedetection problems and the discrimination problems and provide a unified geometricframework for the analysis of detection problems, which extends the existing analyses to anew level.
     The fifth chapter investigates information geometric methods of parameter estimation.Firstly, the basic theory of information geometry on information loss of parameter estimationis summarized and examples of the inherent information loss caused by the nonlinearity ofmeasurement model are presented, while a tighter lower bound of the error variance withrespect to the well-known Cramér-Rao Lower Bound (CRLB) is calculated. Secondly, anatural gradient-based maximum likelihood estimator (NG-MLE) on statistical manifolds isproposed to deal with the nonlinear parameter estimation problem of curved exponentialfamilies. We demonstrate that the nonlinear estimation problem can be simply viewed as adeterministic optimization problem with respect to the structure of a statistical manifold. Inthis way, information geometry offers an elegant geometric interpretation for the definitionand convergence of the estimator. The theory is interpreted via the analysis of a distributedmote network localization problem where the Radio Interferometric Positioning System(RIPS) measurements are used for free mote location estimation. The analysis resultspresented demonstrate the advanced computational philosophy of the proposed methodology.Moreover, a noisy measurement model that takes the location uncertainties of anchor nodesinto account in the node localization process has been derived, which effectively deals withthe problem of progressive localization when the localization error is nonlinearly propagatedover the sensor network.
     The sixth chapter studies the information geometry of target tracking sensor networks.The connections between information geometry and performance of sensor networks fortarget tracking are explored to pursue a better understanding of placement, planning andscheduling issues. Firstly, the integrated Fisher information distance (IFID) between the statesof two targets is analyzed by solving the geodesic equations and is adopted as a measure oftarget resolvability by the sensor. The differences between the IFID and the well knownKullback-Leibler divergence (KLD) are highlighted. We also explain how the energyfunctional, which is the “integrated, differential” KLD, relates to the other distance measures.Secondly, the structures of statistical manifolds are elucidated by computing the canonical Levi-Civita affine connection as well as Riemannian and scalar curvatures. We show therelationship between the Ricci curvature tensor field and the amount of information that canbe obtained by the network sensors. Thirdly, an analytical presentation of statistical manifoldsas an immersion in the Euclidean space for distributions of exponential type is given. Thesignificance and potential to address system definition and planning issues using informationgeometry, such as the sensing capability to distinguish closely spaced targets, calculation ofthe amount of information collected by sensors and the problem of optimal scheduling ofnetwork sensor and resources, etc., are demonstrated. Finally, the cumulative effect ofinformation when there is relative motion between the target and sensor is discussed. Theaccumulative information is used as a criterion for the sensor trajectory scheduling problem inbearings-only tracking.
     The seventh chapter explores the target tracking and localization problem in the presenceof phase measurement ambiguities. The main focus of this chapter is to deal with theambiguities caused by phase measurements and to elucidate how to identify and remove theseambiguities in tracking and localization context. Specifically, we combine the aboveapproaches in terms of creating mappings between target location and phase measurementspaces so that the nonlinear and indeterminate Diophantine problem reduces to the acquisitionof a finite set of possible target locations over a region of interest. Then firstly, we show thatwhen the target motion is significant between data sampling intervals the location ambiguitycan be resolved over time via known target-in-cluster tracking techniques. Secondly, when thetarget is undergoing micromotions which results in the same collection of candidate locationsfrom phase measurements over time, the location ambiguity can be resolved using a novelphase distribution discrimination method. In this method a probability density function of theambiguous phase-only measurement is derived that takes both sensor noise and target motiondistributions into account based on directional statistics. Optimal locations are inferred fromsuch distributions. The inference algorithm is interpreted from the viewpoint of manifoldlearning, which provides a reference for solving identification problems based on manifold.
     The eighth chapter makes a summary of the thesis, while several open problems ofinformation geometry in applications of signal processing are proposed.
     In conclusion, the studies and results in this paper not only enrich the basic theory ofstatistical signal processing and radar signal processing, but also establish comprehensiveconnections between statistics and information geometry, and provides an exemplification ofadvantages of the geometrical perspective on studying statistical problems.
引文
[1] Barbaresco F. Geometric science of information: Modern geometric foundation of radarsignal processing[C]. The8th International IEEE Conference on Communications,Bucharest, Romania,2010.
    [2] Amari S. Information geometry of statistical inference-an overview[C]. IEEE Infor-mation Theory Workshop, Bangalore, India,2002:86-89.
    [3] Gianfelici F, Battistelli V. Methods of information geometry (Amari S, Nagaoka H,American Mathematical Society and Oxford University Press,2000)(book review)[J].IEEE Transactions on Information Theory,2009,55(6):2905-2906.
    [4] Costa S I R, Santos S A, Strapasson J E. Fisher information matrix and HyperbolicGeometry[C]. Proceedings of IEEE ISOC ITW2005on Coding and Complexity,2005:34-36.
    [5] Amari S, Nagaoka H. Methods of Information Geometry[M]. New York: OxfordUniversity Press,2000.
    [6] W, H:ù.…-A1/40–,′…–é#[J].+O((*6–,1999,15(2):243-248.
    [7] Rao C R. Information and accuracy attainable in the estimation of statistical parame-ters[J]. Bulletin of the Calcutta Mathematical Society,1945,37:81-91.
    [8] Chentsov N N. Statistical Decision Rules and Optimal Inference[M]. Rhode Island,USA: American Mathematical Society,1982(Originally published in Russian, Moscow:Nauka,1972).
    [9] Efron B. Defining the curvature of a statistical problem (with applications to secondorder efficiency)[J]. The Annals of Statistics,1975,3(6):1189-1242.
    [10] Amari S. Differential-Geometrical Methods of Statistics (Lecture Notes in Statistics)[M].Berlin, Germany: Springer,1985.
    [11] Nagaoka H, Amari S. Differential geometry of smooth families of probability distribu-tions[R]. METR, University of Tokyo, Japan,1982.
    [12] Amari S, Kurata K, Nagaoka H. Information geometry of Boltzmann machines[J]. IEEETransactions on Neural Networks,1992,3(2):260-271.
    [13] Amari S. Information geometry of the EM and em algorithms for neural networks[J].Neural Networks,1995,8(9):1379-1408.
    [14] Amari S. Natural gradient works efficiently in learning[J]. Neural Computation,1998,10(2):251-276.
    [15] Ikeda S, Tanaka T, Amari S. Stochastic reasoning, free energy, and information geome-try[J]. Neural Computation,2004,16:1779-1810.
    [16] H;E¤1.*,…′/455–L N.èD0|[D]. G ü: G ü FJ W–,2005.
    [17]Yang Z, Laaksonen J. Principal whitened gradient for information geometry[J]. Neural Networks,2008,21(2-3):232-240.
    [18]Amari S, Han T S. Statistical inference under multiterminal rate restrictions:A differen-tial geometric approach[J]. IEEE Transactions on Information Theory,1989,35(2):217-227.
    [19]Kass R E, Vos P W. Geometrical Foundations of Asymptotic Inference[M]. New York: Wiley,1997.
    [20]Amari S, Kawanabe M. Information geometry of estimating functions in semi paramet-ric statistical models[J]. Bernoulli,1997,3:29-54.
    [21]Amari S. Information geometry on hierarchy of probability distributions [J]. IEEE Transactions on Information Theory,2001,47(5):1701-1711.
    [22]Takeuchi J, Amari S. a-parallel prior and its properties [J]. IEEE Transactions on Information Theory,2005,51(3):1011-1023.
    [23]Ihler A T, Fisher J W, Willsky A S. Nonparametric hypothesis tests for statistical dependency[J]. IEEE Transactions on Signal Processing,2004,52(8):2234-2249.
    [24]Eguchia S, Copas J. Interpreting Kullback-Leibler divergence with the Neyman-Pearson Lemma[J]. Journal of Multivariate Analysis,2006,97:2034-2040.
    [25]Sung Y, Tong L, Poor H V. Neyman-Pearson detection of Gauss-Markov signals in noise:closed-form error exponent and properties [J]. IEEE Transactions on Information Theory,2006,52(4):1354-1365.
    [26]Westover M B. Asymptotic geometry of multiple hypothesis testing[J]. IEEE Transac-tions on Information Theory,2008,54(7):3327-3329.
    [27]Varshney K R. Bayes risk error is a Bregman divergence[J]. IEEE Transactions on Signal Processing,2011,59(9):4470-4472.
    [28]Unnikrishnan J, Huang D, Meyn S P, et al. Universal and composite hypothesis testing via mismatched divergence[J]. IEEE Transactions on Information Theory,2011,57(3):1587-1603.
    [29]Myung I J, Balasubramanian V, Pitt M A. Counting probability distributions-Differen-tial geometry and model selection[J]. Proceedings of the National Academy of Sciences of the USA (PNAS),2000,97(21):11170-11175.
    [30]Johnson J K. Min-Max Kullback-Leibler model selection[R]. Project for convex analy-sis course, MIT,2002.
    [31]Snoussi H, Mohammad-Djafari A. Information geometry and prior selection[C]. AIP Conference Proceedings,2003:307-327.
    [32]杨坚,罗四维,刘蕴辉.一种基于广义KL距离和几何曲率的模型选择准则[J].电子学报,2005,33(12):2272-2277.
    [33]吕子昂,罗四维,杨坚等.模型的固有复杂度和泛化能力与几何曲率的关系[J].计算机学报,2007,30(7):1094—1103.
    [34] Amari S. Differential geometry of a parametric family of invertible linearsystems-Riemannian metric, dual affine connections and divergence[J]. MathematicalSystems Theory,1987,20(1):53-82.
    [35] Ohara A, Kitamori T. Geometric structures of stable state feedback systems[J]. IEEETransactions on Automatic Control,1993,38(10):1579-1583.
    [36] Zhong F, Sun H, Zhang Z. An Information geometry algorithm for distributioncontrol[J]. Bulletin of the Brazilian Mathematical Society,2008,39(1):1-10.
    [37] Zhang Z, Sun H, Zhong F. Geometric structures of stable output feedback systems[J].Kybernetika,2009,45(3):387-404.
    [38] Petz D, Sudar C. Geometries of quantum states[J]. Journal of Mathematical Physics,1996,37(6):2662-2673.
    [39] Tanaka T. Information geometry of mean field approximation[J]. Neural Computation,2000,12(2):1951-1968.
    [40] Gibilisco P, Isola T. Wigner-Yanase information on quantum state space: the geometricapproach[J]. Journal of Mathematical Physics,2003,44(9):3752-3762.
    [41] Gibilisco P, Isola T. On the monotonicity of scalar curvature in classical and quantuminformation geometry[J]. Journal of Mathematical Physics,2005,46(2).
    [42] Gibilisco P, Isola T. Uncertainty principle and quantum Fisher information[J]. Annals ofThe Institute of Statistical Mathematics,2008,59:147-159.
    [43] Wu L, Sun H, Zhang Z. Geometrical description of denormalized thermodynamic man-ifold[J]. Chinese Physics B,2009,18(9):3790-3794.
    [44] Bates D M, Hamilton D C, Watts D G. Calculation of intrinsic and parameter-effectscurvatures for nonlinear regression models[J]. Communications in Statistics-Simula-tion and Computation,1983,12(4):469-477.
    [45] Hanzon B. A differential-geometric approach to approximate nonlinear filtering[M].Geometrization of Statistical Theory, Dodson C, Lancaster: ULMD Publications,1987,219-223.
    [46] Darling R W R. Geometrically intrinsic nonlinear recursive filters I-algorithms[R].Department of Statistics, UC Berkeley,1998.
    [47] Grenander U, Miller M I, Srivastava A. Hilbert-Schmidt lower bounds for estimators onmatrix Lie groups for ATR[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1998,20(8):790-802.
    [48] Srivastava A. A Bayesian approach to geometric subspace estimation[J]. IEEE Transac-tions on Signal Processing,2000,48(5):1390-1400.
    [49] Manton J H. Optimization algorithms exploiting unitary constraints[J]. IEEE Transac-tions on Signal Processing,2002,50(3):635-650.
    [50] Srivastava A, Klassen E. Bayesian and geometric subspace tracking[J]. Advances inApplied Probability,2004,36(1):43-56.
    [51] Mallick M, La Scala B F, Arulampalam M S. Differential geometry measures of non-linearity for the bearing-only tracking problem[C]. Proc. SPIE,2005:288-300.
    [52] Smith S T. Covariance, subspace, and intrinsic Cramér-Rao bounds[J]. IEEE Transac-tions on Signal Processing,2005,53(5):1610-1630.
    [53] Xavier J, Barroso V. Intrinsic variance lower bound (IVLB)-An extension of the Cra-mér-Rao bound to Riemannian manifolds[C].2005IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP '05), Philadelphia, Pennsylvania,2005:1033-1036.
    [54] Frasca M. A class of Cramér-Rao optimal estimators for analysis of clutter[C].Proceedings of the6th European Radar Conference, Rome, Italy,2009.
    [55] Barbaresco F. Innovative tools for radar signal processing based on Cartan's geometry ofSPD matrices&information geometry[C].2008IEEE Radar Conference, Rome, Italy,2008.
    [56] Cheng Y, Wang X, Moran B. Sensor network performance evaluation in statistical man-ifolds[C]. Proceedings of the13th International Conference on Information Fusion, Ed-inburgh, Scotland,2010.
    [57] Cheng Y, Wang H, Li X, et al. The geometry of deterministic and random signaldetection[J]. submitted to IEEE Transactions on Signal Processing,2011.
    [58] Gong M, Jiao L, Bo L, et al. Image texture classification using a mani-fold-distance-based evolutionary clustering method[J]. Optical Engineering,2008,47(7):1-10.
    [59] Goh A, Vidal R. Unsupervised Riemannian clustering of probability densityfunctions[M]. in ECML PKDD, Lecture Notes in Artificial Intelligence, Daelemans W,Springer-Verlag Berlin Heidelberg,2008,377-392.
    [60] Carter K M, Raich R, Finn W G, et al. FINE: Fisher information nonparametric embed-ding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(11):2093-2098.
    [61] Zou J, Liu C, Zhang Y. Histogram-based Fisher information embedding for manifoldsclustering and visualization[C]. Proceedings of the2009Chinese Conference on PatternRecognition (CCPR2009), Nanjing, China,2009:1-5.
    [62] Peter A M, Rangarajan A. Information geometry for landmark shape analysis: Unifyingshape representation and deformation[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(2):337-350.
    [63] Garcia V, Nielsen F. Simplification and hierarchical representations of mixtures ofexponential families[J]. Signal Processing,2010,90(12):3197-3212.
    [64] Cont A, Dubnov S, Assayag G. On the information geometry of audio streams withapplications to similarity computing[J]. IEEE Transactions on Audio, Speech andLanguage Processing,2011,19(4):837-846.
    [65] Li Q, Georghiades C N. On a geometric view of multiuser detection for synchronousDS/CDMA channels[J]. IEEE Transactions on Information Theory,2000,46(7):2723-2731.
    [66] Richardson T. The geometry of turbo-decoding dynamics[J]. IEEE Transactions on In-formation Theory,2000,46(1):9-23.
    [67] Regalia P A, Walsh J M. Optimality and duality of the Turbo decoder[J]. Proceedings ofThe IEEE,2007,95(6):1362-1377.
    [68] Haenggi M. A geometric interpretation of fading in wireless networks: theory andapplications[J]. IEEE Transactions on Information Theory,2008,54(12):5500-5510.
    [69] Lenglet C, Rousson M, Deriche R, et al. Statistics on the manifold of multivariatenormal distributions: theory and application to diffusion tensor MRI processing[J].Journal of Mathematical Imaging and Vision,2006,25:423-444.
    [70] Pennec X. Intrinsic statistics on Riemannian manifolds: Basic tools for geometricmeasurements [J]. Journal of Mathematical Imaging and Vision,2006,25(1):127-154.
    [71] Astola L, Florack L. Sticky Vector Fields, and Other Geometric Measures on DiffusionTensor Images[C].2008IEEE Computer Society Conference on Computer Vision andPattern Recognition Workshops (CVPR Workshops), Anchorage, AK, USA,2008.
    [72] Dryden I L, Koloydenko A, Zhou D. Non-Euclidean statistics for covariance matriceswith applications to diffusion tensor imaging[J]. The Annals of Applied Statistics,2009,3(3):1102-1123.
    [73] Brody D C, Hughston L P. Interest rates and information geometry[J]. Proceedings ofthe Royal Society London A,2001,457:1343-1363.
    [74] Jeffreys H. Theory of Probability[M]. Berkeley: Univ. Calif. Press,1961.
    [75] Clarke B, Barron A. Jeffreys prior is asymptotically least favorable under entropy risk[J].J. Statist. Planning Infer.,1994,41:37-60.
    [76] Bernardo J. Reference posterior distributions for Bayesian inference[J]. J. Roy. Statist.Soc. B.,1979,41:113-147.
    [77] x,+O.…–[J].8'f r,1991,14(6):444-449.
    [78] Hoeffding W. Asymptotically optimal tests for multinomial distributions[J]. Ann. Math.Statist.,1965,36:369-408.
    [79] Lee S, Abbott A L, Araman P A. Dimensionality reduction and clustering on statisticalmanifolds[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07), Minneapolis, Minnesota,2007:1-7.
    [80] Mio W, Badlyans D, Liu X. A computational approach to Fisher information geometrywith applications to image analysis[M]. Energy Minimization Methods in ComputerVision and Pattern Recognition, Vemuri B, Yuille A, Springer Berlin/Heidelberg:2005:3757,18-33.
    [81] Verdoolaege G, De Backer S, Scheunders P. Multiscale colour texture retrieval usingthe geodesic distance between multivariate generalized Gaussian models[C].2008IEEEInternational Conference on Image Processing (ICIP2008), San Diego, California,2008:169-172.
    [82] Eguchi S. Information geometry and statistical pattern recognition[J]. Sugaku Exposi-tion,2006,19:197-216.
    [83] Eguchi S, Copas J. Recent developments in discriminant analysis from an informationgeometric point of view[J]. Journal of the Korean Statistical Society,2001,30:247-264.
    [84] Wuhrer S, Shu C, Rioux M. Posture invariant gender classification for3D human mod-els[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recogni-tion Workshops, Miami,2009:33-38.
    [85] Bates D M, Watts D G. Relative curvature measures of nonlinearity[J]. Journal of theRoyal Statistical Society. Series B (Methodological),1980,42(1):1-25.
    [86] Mallick M, La Scala B F. Differential geometry measures of nonlinearity for groundmoving target indicator (GMTI) filtering[C]. Proceedings of the7th InternationalConference on Information Fusion, Philadelphia,2005:219-226.
    [87] Mallick M, Scala B F L, Arulampalam S. Differential geometry measures of nonlineari-ty with applications to target tracking[C]. Fred Daum Tribute Conference, Monterey,California,2007.
    [88] Mallick M, Yan Y, Arulampalam S, et al. Connection between differential geometry andestimation theory for polynomial nonlinearity in2D[C]. Proceedings of the13thInternational Conference on Information Fusion, Edinburgh, Scotland,2010.
    [89] Niu R, Varshney P K, Alford M, et al. Curvature nonlinearity measure and filter diver-gence detector for nonlinear tracking problems[C]. Proceedings of the11th InternationalConference on Information Fusion, Cologne,2008:1-8.
    [90] Kay S M. Fundamentals of Statistical Signal Processing: Volume I: EstimationTheory[M]. New Jersey, USA: Prentice Hall PTR,1993.
    [91] Farina A, Ristic B, Timmoneri L. Cramér-Rao bound for nonlinear filtering with Pd<1and its application to target tracking[J]. IEEE Transactions on Signal Processing,2002,50(8):1916-1924.
    [92] Hernandez M L, Marrs A D, Gordon N J, et al. Cramér-Rao bounds for non-linearfiltering with measurement origin uncertainty[C].2002:18-25.
    [93] Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramér-Rao bounds fordiscrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing,1998,46(5):1386-1396.
    [94] Niu R, Willett P, Bar-Shalom Y. Matrix CRLB scaling due to measurements of uncer-tain origin[J]. IEEE Transactions on Signal Processing,2001,49(7):1325-1335.
    [95] Stoica P, Marzetta T L. Parameter estimation problems with singular information matri-ces[J]. IEEE Transactions on Signal Processing,2001,49(1):87-90.
    [96] Sira S P, Li Y, Papandreou-Suppappola A, et al. Waveform-agile sensing for tracking[J].IEEE Signal Processing Magazine,2009,26(1):53-64.
    [97] Ghosh A, Ertin E. Waveform agile sensing for tracking with collaborative radarnetworks[C].2010IEEE Radar Conference, Washington DC,2010:1197-1202.
    [98] Sira S P, Morrell D, Papandreou-Suppappola A. Waveform design and scheduling foragile sensors for target tracking[C]. Thirty-Eighth Asilomar Conference on Signals,Systems&Computers, Pacific Grove, California,2004:820-824.
    [99] Sira S P, Papandreou-Suppappola A, Morrell D. Time-varying waveform selection andconfiguration for agile sensors in tracking applications[C]. IEEE International Confer-ence on Acoustics, Speech and Signal Processing (ICASSP2005), Philadelphia, Penn-sylvania,2005:881-884.
    [100] Kershaw D J, Evans R J. Optimal waveform selection for tracking systems[J]. IEEETransactions on Information Theory,1994,40(5):1536-1550.
    [101] Amari S. Differential geometry of curved exponential families-curvatures and infor-mation loss[J]. The Annals of Statistics,1982,10(2):357-385.
    [102]Xavier J, Barroso V. The Riemannian geometry of certain parameter estimationproblems with singular Fisher information matrices[C].2004IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP '04), Montreal,Quebec,2004:1021-1024.
    [103]Brigo D, Hanzon B, Le Gland F. A differential geometric approach to nonlinear filtering:the projection filter[C]. Proceedings of the34th IEEE Conference on Decision andControl, New Orleans,1995:4006-4011.
    [104]Brigo D, Hanzon B, Le Gland F. The exponential projection filter and the selection ofthe exponential family[C]. Proceedings of the Second Portuguese Conference onAutomatic Control, Portugal, Oporto,1996:251-256.
    [105] Brigo D. New results on the Gaussian projection filter with small observation noise[J].Syst. Control Lett.,1996,28:273-279.
    [106]Brigo D, Hanzon B, Le Gland F. A differential geometric approach to nonlinear filtering:the projection filter[J]. IEEE Transactions on Automatic Control,1998,43(2):247-252.
    [107]Brigo D, Hanzon B, Le Gland F. Approximate nonlinear filtering by projection onexponential manifolds of densities[J]. Bernoulli,1999,5(3):495-534.
    [108] Edelmany A, Arias T A, Smith S T. The geometry of algorithms with orthogonalityconstraints[J]. J. Matrix Anal. Appl.,1998,20(2):303-353.
    [109]Manton J H. On the role of differential geometry in signal processing[C]. IEEEInternational Conference on Acoustics Speech and Signal Processing (ICASSP2005),Philadelphia, USA,2005:1021-1024.
    [110] Manton J H. On the various generalisations of optimisation algorithms to manifolds[C].MTNS2004, KU Leuven, Belgium,2004.
    [111]Barbaresco F. New foundation of radar Doppler signal processing based on advanced differential geometry of symmetric spaces:Doppler matrix CFAR and radar applica-tion[C]. International Radar Conference (Radar'09), Bordeaux, France,2009.
    [112]Barbaresco F. Robust statistical radar processing in Frechet metric space: OS-HDR-CFAR and OS-STAP processing in Siegel homogeneous bounded domains [C]. International Radar Symposium (IRS'11), Leipzig, Germany,2011.
    [113]Barbaresco F. Interactions between symmetric cone and information geometries: Bruhat-Tits and Siegel spaces models for high resolution autoregressive Doppler imagery[M]. ETVC'08Conference, Ecole Polytechnique, in Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,2009.
    [114]Yang L, Arnaudon M, Barbaresco F. Riemannian median, geometry of covariance matrices and radar target detection[C]. Proceedings of the7th European Radar Conference, Paris, France,2010.
    [115]刘俊凯,王雪松,王涛等.信息几何在脉冲多普勒雷达目标检测中的应用[J].国防科技大学学报,2011,33(2):77-80.
    [116]孙华飞,彭林玉,张真宁.信息几何及其应用[J].数学进展,2011,40(3):257-269.
    [117]Ohara A, Nakazumi S, Suda N. Relations between a parametrization of stabilizing state feedback gains and eigenvalue locations[J]. Systems and Control Letters,1991,16(4):256-261.
    [118]Ohara A, Amari S. Differential geometric structures of stable state feedback systems with dual connections[J]. Kybernetika,1994,30(4):369-386.
    [119]Zhang Z N, Sun H F, Zhong F W. Natural gradient-projection algorithm for distribution control[J]. Optimal Control, Applications and Methods,2009,30(2):495-504.
    [120]Ikeda S, Tanaka T, Amari S. Information geometry of turbo and low-density pari-ty-check codes[J]. IEEE Transactions on Information Theory,2004,50(6):1097-1114.
    [121]Bengtsson I, Zyczkowski K. Geometry of Quantum States:An Introduction to Quantum Entanglement[M]. New York:Cambridge University Press,2006.
    [122]Amari S, Cichocki A. Information geometry of divergence functions[J]. Bulletin of the Polish Academy of Sciences:Technical Sciences,2010,58(1):183-195.
    [123]Petersen P. Riemannian geometry[M]. New York:Springer,1998.
    [124]Kobayashi S, Nomizu K. Foundations of Differential Geometry[M]. New York: Wiley-Interscience,1996.
    [125]维基百科.微分几何.http://zh.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%87%A0%E4%BD%95.2011.
    [126]百度百科.微分几何.http://baike.baidu.com/view/17525.htm.2012.
    [127]Menendez M L, Morales D, Pardo L, et al. Statistical tests based on geodesic distances[J]. Applied Mathematics Letters,1995,8(1):65-69.
    [128]Arnold V. Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l' hydrodynamique des fluides parfaits (in French)[J]. Annales De L' Institut Fourier (Grenoble),16(1):319-361.
    [129]Abdel-All N H, Abd-Ellah H N, Moustafa H M. Information geometry and statistical manifold[J]. Chaos, Solitons and Fractals,2003,15(1):161-172.
    [130]Gray A. The volume of a small geodesic ball of a Riemannian manifold[J]. Michigan Mathematical Journal,1974,20(4):329-344.
    [131]Wikipedia. Spherical geometry. http://en.wikipedia.org/wiki/Spherical_geometry.
    [132]Barton D K, Leonov S A. Radar Technology Encyclopedia[M]. Boston:Artech House,1997.
    [133]Wolff C. Radar Basics-Book1, Radar Basic Principles. http://www.radartutorial. eu/druck/Bookl.pdf.2009.
    [134]Woodward P M. Probability and Information Theory with Applications to Radar[M]. London:Pergamon Press,1953.
    [135]Urkowitz H, Hauer C A, Koval J F. Generalized resolution in radar systems[J]. Proceedings of the IRE,1962,50(10):2093-2105.
    [136]Niu R, Willett P, Bar-Shalom Y. Tracking considerations in selection of radar waveform for range and range-rate measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):467-487.
    [137]Auslander L, Tolimieri R. Characterizing the radar ambiguity functions[J]. IEEE Transactions on Information Theory,1984,30(6):832-836.
    [138]Weiss L G. Wavelets and wideband correlation processing[J]. IEEE Signal Processing Magazine,1994,11(1):13-32.
    [139]赵宏钟,付强.雷达信号的加速度分辨性能分析[J].中国科学(E辑),2003,33(7):638—646.
    [140]林茂庸,柯有安.雷达信号理论[G].北京:国防工业出版社,1984.
    [141]Cheng Y, Wang X, Caelli T, et al. On information resolution of radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems,2011:Accepted for publication.
    [142]Rago C, Willett P, Bar-Shalom Y. Detection-tracking performance with combined waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):612-624.
    [143]Van Trees H L. Detection, Estimation, and Modulation Theory Part3-Radar Sonar Signal Processing and Gaussian Signals in Noise[M]. New York:John Wiley,1971.
    [144]Calderbank R, Howard S D, Moran B. Waveform diversity in radar signal processing[J]. IEEE Signal Processing Magazine,2009,26(1):32-41.
    [145]Stein S. Algorithms for ambiguity function processing[J]. IEEE Transactions on Acous-tics, Speech, and Signal Processing,1981, ASSP-29(3):588-599.
    [146]Skolnik M I. Radar Handbook (2nd Edition)[M]. New York:McGraw-Hill,1990.
    [147]Kay S M. Fundamentals of Statistical Signal Processing: Volume II: DetectionTheory[M]. New Jersey, USA: Prentice Hall PTR,1993.
    [148] Cheng Y, Wang X, Wang H, et al. Information resolution of joint detection-trackingsystems[C]. Proceedings of International Radar Symposium, Leipzig, Germany,2011.
    [149]Helen M, Virtanen T. Query by example of audio signals using Euclidean distancebetween Gaussian mixture models[C]. Proceedings of the2007IEEE InternationalConference on Acoustics Speech and Signal Processing (ICASSP2007), Hawaii, USA,2007:225-228.
    [150]Wang X, Cheng Y, Moran B. Bearings-only tracking analysis via informationgeometry[C]. Proceedings of the13th International Conference on Information Fusion,Edinburgh, Scotland,2010.
    [151] Dekker A J, van den Bos A. Resolution: a survey[J]. Journal of Optical Society ofAmerica,1997,14(3):547-557.
    [152] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system[J].Journal of Optical Society of America A,1986,3:1152-1158.
    [153] Nahrstedt D A, Schooley L C. Alternative approach in decision theory as applied to theresolution of two point images[J]. Journal of Optical Society of America,1979,69:910-912.
    [154]Amar A, Weiss A J. Fundamental limitations on the resolution of deterministicsignals[J]. IEEE Transactions on Signal Processing,2008,56(11):5309-5318.
    [155] Amar A, Weiss A J. Fundamental resolution limits of closely spaced random signals[J].IET Radar, Sonar and Navigation,2008,2(3):170-179.
    [156] Lee H B. The Cramér-Rao bound on frequency estimates of signals closely spaced infrequency[J]. IEEE Transactions on Signal Processing,1992,40(6):1508-1517.
    [157] Dilaveroglu E. Nonmatrix Cramér-Rao bound expressions for high-resolution frequencyestimators[J]. IEEE Transactions on Signal Processing,1998,46(2):463-474.
    [158] Swingler D. Frequency estimation for closely spaced sinusoids: Simple approximationsto the Cramér-Rao lower bound[J]. IEEE Transactions on Signal Processing,1993,41(1):489-495.
    [159] Smith S T. Statistical resolution limits and the complexified Cramér Rao bound[J].IEEE Transactions on Signal Processing,2005,53(5):1597-1609.
    [160] Harris J L. Resolving power and decision theory[J]. Journal of Optical Society ofAmerica,1964,54:606-611.
    [161] Ying C H J, Sabharwal A, Moses R L. A combined order selection and parameter esti-mation algorithm for undamped exponentials[J]. IEEE Transactions on SignalProcessing,2000,48(3):693-701.
    [162]Korso M N E, Boyer R, Renaux A, et al. Statistical resolution limit for multipleparameters of interest and for multiple signals[C]. Proceedings of the2010IEEEInternational Conference on Acoustics Speech and Signal Processing (ICASSP2010),Dallas, TX,2010:3602-3605.
    [163] Sira S P, Papandreou-Suppappola A, Morrell D. Dynamic configuration of time-varyingwaveforms for agile sensing and tracking in clutter[J]. IEEE Transactions on SignalProcessing,2007,55(7):3207-3217.
    [164] Kyriakides I, Konstantinidis I, Morrell D, et al. Target tracking using particle filteringand CAZAC sequences[C]. International Waveform Diversity and Design Conference,Pisa, Italy,2007.
    [165] Lee H, Li F. Quantification of the difference between detection and resolution thresh-olds for multiple closely spaced emitters[J]. IEEE Transactions on Signal Processing,1993,41(6):2274-2277.
    [166]Etemadi N. An elementary proof of the strong law of large numbers[J]. ProbabilityTheory and Related Fields,1981,55(1):119-122.
    [167] Nowak R. Lecture: Hypothesis Testing and KL Divergence[R].,2010.
    [168]Cover T M, Thomas J A. Elements of Information Theory[M]. New York: Wiley,1991.
    [169] Efron B. The geometry of exponential families[J]. The Annals of Statistics,1978,6(2):362-376.
    [170] Westover M B. Asymptotic geometry of multiple hypothesis testing[J]. IEEE Transac-tions on Information Theory,2008,54(7):3327-3329.
    [171] Sullivant S. Statistical models are algebraic varieties[R]. Harvard University.
    [172] Lehmann F L. Testing Statistical Hypotheses[M]. New York: Wiley,1959.
    [173] Sung Y, Tong L, Poor H V. Neyman-Pearson detection of Gauss-Markov signals innoise: Closed-form error exponent and properties[J]. IEEE Transactions on InformationTheory,2006,52(4):1354-1365.
    [174] Chamberland J, Veeravalli V V. Decentralized detection in sensor networks[J]. IEEETransactions on Signal Processing,2003,51(2):407-416.
    [175] Kullback S. Information Theory and Statistics[M]. New York: Dover Publications,1968.
    [176] Nielsen F, Nock R. The entropic centers of multivariate normal distributions[C]. Euro-pean Workshop on Computational Geometry (EuroCG), Nancy, France,2008:221-224.
    [177] Ramprashad S A, Parks T W. Locally most powerful invariant tests for signal detec-tion[J]. IEEE Transactions on Information Theory,1998,44(3):1283-1288.
    [178] Eguchi S. Further discussion on second-order efficiency for estimation[J]. QüESTIIó,1993,17(3):347-364.
    [179] Dawid A P. Discussions to Efron's paper[J]. The Annals of Statistics,1975,3(6):1231-1234.
    [180] Dawid A P. Further comments on a paper by Bradley Efron[J]. The Annals of Statistics,1977,5:1249.
    [181]Madsen L T. The geometry of statistical model-A generalization of curvature[R].Statist. Res. Unit., Danish Medical Res. Council,1979.
    [182] Atkinson C, Mitchell A F S. Rao's distance measure[J]. Sankhy—: The Indian Journal ofStatistics, Series A,1981,43(3):345-365.
    [183]Eguchi S. Second order efficiency of minimum contrast in a curved exponentialfamily[J]. The Annals of Statistics,1983,11:793-803.
    [184]Eguchi S. A characterization of second order efficiency in a curved exponentialfamily[J]. Ann. Inst. Statist. Math.,1984,36A:199-206.
    [185]Eguchi S. A differential geometric approach to statistical inference on the basis ofcontrast functionals[J]. Hiroshima Math. J.,1985,15:341-391.
    [186] Altun Y, Hofmann T, Smola A J. Exponential families for conditional random fields[C].Proceedings of the20thAnnual Conference on Uncertainty in Artificial Intelligence (UAI2004), Arlington:2-9.
    [187] Osborne M R. Fisher’s method of scoring[J]. International Statistical Review,1992,60(1):99-117.
    [188] Amari S, Douglas S C. Why natural gradient?[C]. IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP1998), Seattle, USA,1998.
    [189] Maroti M, Kusy B, Balogh G, et al. Radio interferometric positioning[R]. VanderbiltUniversity: Institute for Software Integrated Systems,2005.
    [190]Kusy B, Ledeczi A, Maroti M, et al. Node-density independent localization[C].Proceeding of the5th International Conference on Information Processing in SensorNetworks (IPSN06), Nashville, Tennessee, USA,2006:19-21.
    [191] Patwari N, Hero A O, Perkins M, et al. Relative location estimation in wireless sensornetworks[J]. IEEE Transactions on Signal Processing,2003,51(8):2137-2148.
    [192] Moore D, Leonard J, Rus D, et al. Robust distributed network localization with noisyrange measurements[C]. Proc.2nd Int. Conf. Embedded Netw. Sens. Syst.(SenSys'04),Baltimore, MD,2004:50-61.
    [193]La Scala B F, Wang X, Moran B. Node self-localization in large scale sensornetworks[C]. Proc. of International Conference on Information, Decision and Control(IDC2007), Adelaide, Australia,2007:188-192.
    [194] Wang X, Mu icki D. Target tracking using energy based detections[C]. Proceedings ofthe10th International Conference on Information Fusion, Quebec, Canada,2007.
    [195] Wang X, Moran B, Brazil M. Hyperbolic positioning using RIPS measurements forwireless sensor networks[C]. Proceedings of the15th IEEE International Conference onNetworks (ICON2007), Adelaide, Australia,2007:425-430.
    [196]Morelande M R, Moran B, Brazil M. Bayesian node localisation in wireless sensornetworks[C]. IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP2008), Las Vegas, USA,2008.
    [197] Brazil M, Morelande M, Moran B, et al. Distributed self-localization in sensor networksusing RIPS measurements[C]. Proc. World Congress Eng.(WCE2007), London, UK,2007.
    [198]Middleton D. S. O. Rice and the theory of random noise: Some personal recollections[J].IEEE Transactions on Information Theory,1988,34(6):1367-1373.
    [199]Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. New York:Academic Press,1988.
    [200] Dodson C T J, Matsuzoe H. An affine embedding of the gamma manifold[J]. AppliedSciences,2003,5(1):7-12.
    [201] Arwini K, Riego L D, Dodson C T J. Universal connection and curvature for statisticalmanifold geometry[J]. Houston Journal of Mathematics,2007,33(1):145-161.
    [202]Arwini K, Dodson C T J. Information Geometry: Near Randomness and NearIndependence[M]. Berlin, Germany: Springer,2008.
    [203] Wainwright M J, Jordan M I. Graphical Models, Exponential Families, and VariationalInference[M]. Hanover, USA: Now Publishers Inc,2008.
    [204]Nielsen F, Nock R. The entropic centers of multivariate normal distributions[C].European Workshop on Computational Geometry (EuroCG), France,2008:221-224.
    [205]Nardone S C, Aidala V J. Observability criteria for bearings-only target motionanalysis[J]. IEEE Transactions on Automatic Control,1981,17(2):162-166.
    [206] Jauffret C, Pillon D. Observability in passive target motion analysis[J]. IEEE Transac-tions on Aerospace and Electronic Systems,1996,32(4):1290-1300.
    [207] Krishnamurthy V. Algorithms for optimal scheduling and management of hidden Mar-kov model sensors[J]. IEEE Transactions on Signal Processing,2002,50(6):1382-1397.
    [208]Le Cadre J P, Trémois O. Optimization of the observer motion using dynamicprogramming[C]. IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP95), Detroit, Michigan,1995:3567-3570.
    [209] Fawcett J A. Effect of course maneuvers on bearings-only range estimation[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1988,36(8):1193-1199.
    [210] Le Cadre J P, Laurent-Michel S. Optimizing the receiver maneuvers for bearings-onlytracking[J]. Automatica,1999,35:591-606.
    [211]Helferty J P, Mdgett D R, Dzidlski J E. Trajectory optimization for minimum rangeerror in bearings-only source localization[C]. Proc. Oceans'93Engineering in Harmonywith Ocean,1993:229-234.
    [212] Logothetis A, Krishnamurthy V, Holst J, et al. Modal state estimation of a maneuveringtarget in clutter[C]. Proc.36th IEEE Conf. on Decision and Control, San Diego,1997:5024-5029.
    [213]Logothetis A, Krishnamurthy V. Modal trajectory estimation for jump Markov linearsystems via the Expectation Maximization algorithm[C]. Proc.36th IEEE Conferenceon Decision and Control, San Deigo, USA,1997:1700-1705.
    [214] Le Cadre J, Trémois O. Bearings-only tracking for maneuvering sources[J]. IEEETransactions on Aerospace and Electronic Systems,1998,34(1):179-193.
    [215] Brehard T, Le Cadre J. Closed-form posterior Cramér-Rao bounds for bearings-onlytracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(4):1198-1223.
    [216] Nardone S C, Lindgren A G, Gong A K F. Fundamental properties and performance ofconventional bearings-only target motion analysis[J]. IEEE Transactions on AutomaticControl,1984, AC-29(9):775-787.
    [217] Passerieux J M, Van Cappel D. Optimal observer maneuver for bearings-only track-ing[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):777-788.
    [218] Martíneza S, Bullo F. Optimal sensor placement and motion coordination for targettracking[J]. Automatica,2006,42:661-668.
    [219] Oshman Y, Davidson P. Optimization of observer trajectories for bearings-only targetlocalization[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):892-902.
    [220]Gavish M, Miss M J. Performance analysis of bearing-only target location algorithms[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(3):817-828.
    [221]Cunningham A, Thomas B. Target motion analysis visualisation[C]. Asia PacificSymposium on Information Visualisation (APVIS2005), Sydney, Australia,2005.
    [222] Trémois O, Le Cadre J P. Target motion analysis with multiple arrays: Performanceanalysis[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1030-1046.
    [223] Aidala V J, Hammel S E. Utilization of modified polar coordinates for bearings-onlytracking[J]. IEEE Transactions on Automatic Control,1982, AC-28(3):283-294.
    [224] Hanselmann T, Morelande M, Moran B, et al. Sensor scheduling for multiple targettracking and detection using passive measurements[C]. Proc.11th International Confer-ence on Information Fusion, Cologne, Germany,2008:1528-1535.
    [225]Wang X, Morelande M, Moran B. Sensor scheduling for bearings-only tracking with asingle sensor[C]. Proceedings of The Fifth International Conference on IntelligentSensors, Sensor Networks and Information Processing (ISSNIP2009), Melbourne,Australia,2009:67-72.
    [226] Pronzato L, Walter E. Robust experiment design via stochastic approximation[J].Mathematical Biosciences,1985,75(1):103-120.
    [227] Wang X, Morelande M, Moran B. Target motion analysis using single sensor bear-ings-only measurements[C]. Proceedings of the2nd International Conference on ImageProcessing and Signal Processing (CISP'09), Tianjin, China,2009:2094-2099.
    [228] Peach N. Bearings-only tracking using a set of range-parameterised extended Kalmanfilters[J]. Proc. IEE: Control Theory Application,1995,142(1):73-80.
    [229]Wenzler A, Steinlechner S. Nonlinear processing of n-dimensional phase signals[C].IEEE International Symposium on Circuits and Systems (ISCAS2002), Phoenix,Arizona, Phoenix, Arizona,2002:805-808.
    [230] Wang C, Yin Q, Wang W. An efficient ranging method for wireless sensor networks[C].Proceedings of the2010IEEE International Conference on Acoustics Speech and SignalProcessing (ICASSP10), Dallas, Texas,14-19March,2010:2846-2849.
    [231]Mckilliam R G, Quinn B G, Clarkson I V L, et al. Frequency estimation by phaseunwrapping[J]. IEEE Transactions on Signal Processing,2010,58(6):2953-2963.
    [232] Boyer W D. A diplex, Doppler, phase comparison radar[J]. IEEE Transactions on Aer-ospace and Navigational Electronics,1963, ANE-10(1):27-33.
    [233]Urazghildiiev I, Ragnarsson R, Rydberg A. High-resolution estimation of ranges usingmultiple-frequency CW radar[J]. IEEE Transactions on Intelligent TransportationSystems,2007,8(2):332-339.
    [234] Skolnik M I. Introduction to Radar Systems,2nd ed[M]. New York: McGraw-Hill,1980.
    [235]Setlur P, Amin M, Ahmad F. Cramér-Rao Bounds for range and motion parameterestimations using dual frequency radars[C]. Proceedings of the2007IEEE InternationalConference on Acoustics Speech and Signal Processing (ICASSP07), Honolulu, Hawaii,USA,2007:813-816.
    [236] Patwari N, Ash J N, Kyperountas S, et al. Locating the nodes: Cooperative localizationin wireless sensor networks[J]. IEEE Signal Processing Magazine,2005,22(4):54-69.
    [237] Mordell L J. Diophantine equations[M]. New York and London: Academic Press,1969.
    [238] Cohen H. Number Theory: Volume I: Tools and Diophantine Equations[M]. New York:Springer,2007.
    [239]Steuding J. Diophantine analysis[M]. Boca Raton, FL: Chapman&Hall/CRC,2005.
    [240] Arulampalam M S, Mansell S, Gordon N, et al. A tutorial on particle filters for onlinenonlinear/Non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [241] Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensorarrays and particle filters[J]. IEEE Transactions on Signal Processing,2002,50(2):216-223.
    [242] Kreucher C, Kastella K, A. O. Hero I. Multitarget tracking using the joint multitargetprobability density[J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1396-1414.
    [243] Bahlmann C. Directional features in online handwriting recognition[J]. Pattern Recogni-tion,2006,39(1):115-125.
    [244]Mardia K V, Jupp P E. Directional Statistics2nd edition[M]. Chichester: J. Wiley,2000.
    [245]Mardia K V. Statistics of Directional Data[M]. New York: Academic Press,1972.
    [246]Fisher N I. Statistical Analysis of Circular Data[M]. Cambridge, UK: CambridgeUniversity Press,1995.
    [247] Church B W, Shalloway D. Characterizing large correlated fluctuations of macromolec-ular conformations in torsion-angle space using the multivariate wrapped-Gaussian dis-tribution[J]. Polymer,1996,37(10):1805-1813.
    [248] Abikoff W. The Uniformization Theorem[J]. The American Mathematical Monthly,1981,88(8):574-592.
    [249] Maskit B. Uniformizations of Riemann surfaces, Contributions to Analysis[M]. NewYork: Academic Press,1974.
    [250] Aviles P, Mcowen R C. Conformal deformation to constant negative scalar curvature onnoncompact Riemannian manifolds[J]. Journal of Differential Geometry,1988,27(225-239).
    [251] Obata M. Conformal transformations of Riemannian manifolds[J]. Journal of Differen-tial Geometry,1970,4:311-333.
    [252] Jin M, Wang Y, Yau S, et al. Optimal global conformal surface parameterization[C].IEEE Visualization2004, Austin, Texas, USA,2004:267-274.
    [253] Letelier P S. Riemann-Christoffel Flows[J]. International Journal of Theory Physics,2008,47:1312-1315.
    [254] Hopper C, Andrews B. The Ricci Flow in Riemannian Geometry[M]. New York:Springer,2010.
    [255]Rubinstein J H, Sinclair R. Visualizing Ricci Flow of manifolds of revolution[J].Experimental Mathematics,2005,14(3):285-298.
    [256] Schreier P J. Polarization ellipse analysis of non-stationary random signals[J]. IEEETransactions on Signal Processing,2008,56(9):4330-4339.
    [257]Peyre G. Manifold models for signals and images[J]. Computer Vision and ImageUnderstanding,2009,113(2):249-260.
    [258] Wakin M B, Baraniuk R G. Random projections of signal manifolds[C]. Proceedings ofIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP06), Toulouse, France,2006: V941-V944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700