柴油与安全柴油燃爆性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全柴油是指能够有效减小着火爆炸危险性的新型抑爆燃料。在军事、消防、交通运输等方面具有十分重要的作用。本文从实验探索的角度出发,依据燃料燃爆研究指导配方设计的思想,在大型立式激波管内及无约束实验条件下,系统研究了柴油燃料及安全柴油的燃爆性能,为进一步开发安全柴油提供了技术基础。主要研究结论如下:
     (1)柴油燃料的最小点火能随当量比呈U型曲线关系,实验得到柴油-空气当量比为1.31时,柴油燃料具有最小点火能(0.16MJ/m2)。
     (2)在立式激波管内,0,41 MJ/m2的点火能量下,不同配方微乳化安全柴油爆燃压力较柴油燃料下降了1.38-11.43%;0.56 MJ/m2的点火能量下,不同配方微乳化安全柴油爆燃压力最多下降2.29%;表明在约束条件下安全柴油具有较好的爆燃性能。
     (3)在无约束实验条件下,研究表明柴油燃料爆炸可划分为爆炸火球与池火燃烧两个阶段,抑制爆炸火球及池火的自熄灭是安全柴油需要实现的两个主要目标;在柴油基燃料中添加抗抛撒剂及加水微乳化是实现这两个目标的主要手段。
     (4)应用红外热成像和高速录像系统对柴油燃料及安全柴油的爆炸火球和爆炸过程进行了实验研究;与柴油燃料相比,微乳化安全柴油FRD-3的爆炸火球高温区持续时间缩短了62.8%,抗抛撒安全柴油FRD-4火球面积减小了86.4%,火球没有形成高温区;抗抛撒安全柴油具有良好的抑爆效果。
     (5)基于实验研究与分析,安全柴油的抑爆性能可用其爆炸火球表面最高温度、高温区持续时间、火球最大面积及池火自熄灭能力等四个参数来表征。
     (6)吸热降温作用是微乳化安全柴油抑爆作用的主要原因,而抗抛撒安全柴油实现抑爆效果主要是由于燃料黏度的增加。
Safety diesel is a new type fuel which can effectively reduce the risk of fire and explosion, and it plays an important role in military, fire control, transportation and so on. Based on the research of experiments, and according to the explosion test guiding formula design, the explosion characteristics of diesel fuel and safety diesel were studied in shock tube and in the infinite filed. The research was useful to form the technical basis in order to develop safety diesel. The major achievements are as follows:
     (1) The minimum ignition energy of diesel fuel varies with fuel-air ratio in a U-curve relationship; the minimum ignition energy of diesel fuel was 0.16MJ/m2 when the fuel-air ratio was 1.31.
     (2) Compared with the deflagration pressure of diesel fuel in the shock tube when the ignition energy was 0.41MJ/m2, deflagration pressure of different water content micro-emulsified safety diesel decreased by 1.38~11.43%, and decreased by 2.29% at most with the 0.56 MJ/m2 ignition energy. The results indicated that safety diesel have satisfactory deflagration performance under the constraint conditions.
     (3) The explosion tests of diesel fuel in the infinite field showed that there were two steps of this process:fireballs and pool fire. Suppression of fireballs and self-extinguished were proved to be the main aims of safety diesel. In order to achieve these aims, two technical means were choosed.one is micro-emulsified technology, and another is anti-dispersing additive.
     (4) The explosion process and fireballs of diesel fuel and safety diesel were studied by the Thermal Imager and the High-Speed camera system. The high temperature duration of FRD-3 was shortened 62.8%, and the maximum area of fireballs of FRD-4 decrease by 86.4%, and no high temperature duration compared with diesel fuel in the same experimental conditions. FRD-3 was a kind of micro-emulsified safety diesel, and FRD-4 was anti-dispersing safety diesel. The anti-dispersing safety diesel had more excellent performance in explosion suppression.
     (5) On the basis of experiment and analysis, Explosion suppression performance of safety diesel could be characterized by the maximum surface temperature, high temperature duration, maximum area of fireballs and self-extinguished ability.
     (6) The explosion suppression process of micro emulsified and anti-dispersing safety diesel was analyzed, and heat-absorbing of water was considered as the major reason which micro emulsified safety diesel could be self-extinguished, But anti-dispersing safety diesel can reduce the risk of fire and explosion come from the increase of fuel viscosity.
引文
[I]Marty S D, Schmitigal J. Fire-Resistant Fuel [R]. AD A302805,2009.
    [2]席志德,解立峰,刘家骢.高速运动液体燃料爆炸抛撒模型的建立[J].弹道学报,2004,16(2):80-85.
    [3]Stawczyk J. Experimental Evaluation of LPG Tank Explosion Hazards [J]. Journal of Hazardous Materials,2003(96):189-200.
    [4]刘奇儿.燃料抛撒中云团颗粒尺寸研究[J].四川大学学报,2001,33(3):43-49.
    [5]Weatherford W D, Fodor G E, Naegeli D W, et al. Development of Army Fire-Resistant Diesel Fuel [R]. AD A083610,1979.
    [6]Grant G, Brenton J, Drysdale D. Fire Suppression by Water Spray [J]. Progress in Energy and Combustion Science,2000,26(4):79-130.
    [7]薛艳,王树雷,曹文杰等.柴油阻燃技术研究进展[J].阻燃材料与技术,2008(2):12-14.
    [8]Tang M J, Nicholls J A, Lin Z C. The Direct Initiation of Detonation in Decane-Air and Decane-Oxygen Spray. Report No. UM-018404-1,1984.
    [9]姚干兵,解立峰,刘家骢.碳氢燃料云雾直接起爆感度的实验研究[J].弹道学报,2006(3):9-12.
    [10]Kenneth W R, The Propagation and Structure of Two Phase Detonation. The Degree of Doctor of Philosophy. University of Michigan, USA.,1977.
    [11]Nieholls J A, Fast Reaction in Dispersed Heterogeneous Energetic Systems. Combustion and Flame.1992,45(3):47-54.
    [12]许学忠.FAE的化学起爆技术研究[D].南京:南京理工大学,2000.
    [13]Heng Q P, Jasuja A K, Lefebvre A H. Influence of air and fuel flows on gas turbine sprays at high pressures [J]. Symposium (International) on Combustion,1996,26:2757-2762.
    [14]Rao K V L, Lefebvre A H. Minimum ignition energies in flowing kerosene-air mixtures[J]. Combustion and Flame,1976,27:1-20.
    [15]Aggarwal S K. A review of spray ignition phenomena:Present status and future research [J]. Progress in Energy and Combustion Science,1998,24:565-600.
    [16]解立峰,郭学永,果宏,徐晓峰.燃料-空气云雾爆轰的直接引爆实验研究.爆炸与冲击[J],2003,23(1):78-80.
    [17]Borisov A A. Fuel-Air Explosion.来南京理工大学讲学稿,1995.
    [18]Dorofeev S B, Sidorow V P. Fireballs from Deflagration and Detonation of Heterogeneous Fuel-rich Clouds[J]. Fire Safety Journal,1995,25(4):323-326.
    [19]Satyanarayana K, Borah M, Rao P G, Prediction of thermal hazards from fireballs [J]. Journal of Loss Prevention in the Process Industries,1991,4(5):344-347.
    [20]Weatherford W D, Naegeli D W:Research on Fire-resistant Diesel Fuel Flammability Mitigation Mechanisms [R]. AD A130743,1982.
    [21]Wright D W, Weatherford W D. Investigation of Fire-vulnerability-reduction Effectiveness of Fire-resistant Diesel Fuel in armored Vehicular Fuel Tanks [R]. AD A090129,1980.
    [22]陈斌,郭烈锦,张西民等.喷嘴雾化特性实验研究[J].工热物理学报程,2001,22(2):237-240.
    [23]曹建明.喷雾学研究的国际进展[J].长安大学学报(自然科学版),2005,25(1):82-87.
    [24]姚干兵.液态碳氢燃料云雾爆轰及其抑制与泄放研究[D].南京:南京理工大学,2006.
    [25]范宝春.两相系统的燃烧、爆炸和爆轰.第一版.北京:国防工业出版社.1998.
    [26]陈中元.微乳化柴油配方及制备工艺研究.北京:北京化工大学,2010.
    [27]李铁臻,侯滨.微乳化柴油配方的研制[J].表面技术,2004,33(2):72-74.
    [28]陈焕朋,吕效平,韩萍芳等.柴油微乳液的制备及其性能研究[J].化学工程,2011,39(3):79-82.
    [29]吕效平,韩萍芳.超声波对柴油乳化的影响[J].石油化工,2001,8:615-618.
    [30]吴东垠,盛宏至,张宏策等.柴油、甲醇和水三组元乳化液滴微爆过程的研究[J].西安交通大学学报,2007,41(7):772-775.
    [31]王利坡,傅维标.单滴燃料热壁蒸发、微爆与着火的实验研究[J].工程热物理学报,2001,22(1):115-118.
    [32]傅维标,龚景松,侯凌云等.乳化油柴油机中不存在微爆现象[J].科学通报,2006,51(9):1117-1120.
    [33]Roberts T, Gosse A, Hawksworth S, Thermal Radiation from Fireballs on Failure of Liquefied Petroleum Gas Storage Vessels, Process Safety and Environmental Protection, 2000,78(3):84-192.
    [34]解立峰,何正文,严峰.FAE模拟装置温度场参数实验研究[J].弹道学报,2007,19(1):48-5.
    [35]吴德义,杨基明.爆炸冲击波作用下液体抛撒初期射流形成的实验研究[J].流体力学实验与测量,2003,17(3):36-38.
    [36]吴德义,杨基明.强冲击波作用下液体抛撒的实验研究[J].爆炸与冲击,2003(1):91-95.
    [37]William E M, Jeffrey D M. An Improved Model for the Prediction of Radiant Heat from Fireballs[C]. International Conference and Workshop on Modeling Consequences of Accidental Releases of Hazardous Materials,1999:1-16.
    [38]谢兴华.燃烧理论.第一版.徐州:中国矿业大学出版社,2002.
    [39]John Nicholas著.吴树森译.化学动力学—气体反应的近代综述.北京:高等教育出版社,1987.
    [40]王建,段吉员,黄文斌等.惰性气体对氢氧混合气体爆轰性能的影响[J].高能量密度物理,2008(1):4-7.
    [41]Pilch M. Use of Breakup Time and Velocity History Date to Predict the Maximum Size of Stable Fragments for Acceleration Induced Breakup of a Liquid Drop. International Journal of Multiphase Flow,1987,13:741-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700