基于钛合金高速铣削刀具失效演变的硬质合金涂层刀具设计与制造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于密度小、强度/重量比高、高温稳定性好以及耐腐蚀性好等特点,钛合金被广泛应用于航空航天领域。但因钛合金低的导热性、高的化学活性以及弹性模量小等特点,使其切削加工性差、刀具寿命低,被公认为难加工材料,这限制了切削速度和生产率的提高。本文以钛合金高速铣削刀具失效演变对硬质合金涂层刀具性能的要求为指导和依据,以高性能硬质合金刀具材料设计、刀具结构设计和刀具涂层设计为核心,对硬质合金涂层刀具设计理论与方法进行了深入研究和探讨,最终研制成功适用于钛合金型面侧壁铣削的整体硬质合金涂层立铣刀,并研究了其切削性能。
     对高速铣削切屑形貌进行了多视角表征,研究了高速铣削钛合金Ti-6Al-4V时切屑自由表面、背面和纵截面的形貌特征及其参数变化规律;通过锯齿形切屑剪切带微观组织分析,揭示了锯齿形切屑形成的绝热剪切机理(热塑性剪切失稳),发现了切屑背面层组织的衍射峰宽化效应。研究了不同切削条件下铣削Ti-6Al-4V时的刀具失效演变过程,以及切削力和切削温度的变化规律,分析了刀具失效演变过程中刀具不同部位(前、后刀面)和不同失效阶段的刀具失效形貌。揭示了高速切削热—力—化学多场强作用下刀具由微观损伤到宏观失效的演变机制,刀具失效机理主要为涂层剥落、磨粒磨损、粘结磨损、氧化磨损、扩散磨损和热—机械疲劳的综合作用。从而对刀具性能提出了以下要求:刀具材料和涂层材料应与钛合金具有良好的化学相容性;刀具材料应具有较好的耐磨性和抗疲劳性能;应提高涂层与刀具基体的界面结合力,以避免涂层过早剥落,采用耐高温的涂层材料以保护刀具基体。
     基于钛合金高速铣削刀具失效演变对刀具材料的性能要求,通过研究硬质合金刀具材料与工件材料的化学相容性和摩擦学匹配性,并建立WC-Co硬质合金刀具材料微观结构参数(Co含量、平均晶粒度和WC晶粒邻接度等)与宏观性能之间的关系,从而对钛合金高速铣削用硬质合金刀具材料进行了设计。结果表明,Co含量为10wt.%的亚微细晶粒硬质合金(平均晶粒度为0.6-0.8μm)盘与钛合金球对磨时,可获得较小的摩擦系数和较好的耐磨性。基于UG平台二次开发了整体硬质合金立铣刀参数化设计和二维图绘制及生成软件,实现了对整体立铣刀的计算机辅助快速设计。利用整体硬质合金立铣刀切削钛合金工件材料的三维铣削有限元仿真,以低的切削力和切削温度为目标,优化了螺旋角、刀具前角和刀齿数等刀具结构和刀刃儿何参数。采用直径20mm的整体硬质合金平头立铣刀铣削钛合金时,主要刀具结构和刀刃几何参数优化结果为:芯部直径为12mm、齿数为4齿、螺旋角为44°以及侧刃前角为9°。
     烧结制备并测试表征了不同Co含量和晶粒尺寸的硬质合金刀具材料,研究了其制备工艺、微观结构和力学性能,以及抗机械疲劳性能,验证了材料设计的合理性。硬质合金断裂主要为脆性断裂,断裂方式主要为沿晶断裂和少数WC晶粒的穿晶断裂的混合模式。晶粒细化提高了硬质合金材料硬度和横向断裂强度,但以降低断裂韧度为代价;高Co含量硬质合金的横向断裂强度和断裂切度有所提高,但硬度较低。采和三点弯曲试样研究了硬质合金刀具材料的机械疲劳行为,结果表明,疲劳断裂通常起源于缺口尖端的不均匀缺陷,如微孔洞或粗大WC晶粒处,低Co含量硬质合金由于韧性较差,其疲劳行为主要取决于横向断裂强度,高Co含量硬质合金的断裂韧度是影响其抗疲劳性能的主要因素。
     为减少涂层在刀具失效过程中的剥落现象,提出硬质合金刀具涂层设计方法,基于复合涂层性能参数等效理论建立了复合涂层沉积过程残余热应力产生模型,并将计算结果与有限元仿真结果进行了对比验证,为难加工材料高速切削刀具涂层选择与设计提供理论依据。刀具涂层厚度选择3μm时,在涂层沉积过程中可获得较小的残余热应力。研究了CrN、TiN、TiAlN、AlTiN和AlCrN五种涂层的硬质合金盘与钛合金球的摩擦学匹配特性。结果表明,TiAlN涂层与钛合金对磨时可获得较小的摩擦系数和较好的耐磨性。提出了高速铣削刀具涂层设计的基本原则,为高速铣削刀具涂层的设计提供了依据。
     研究了所研制的整体硬质合金立铣刀高速铣削钛合金切切削性能,并将其与某同类刀具进行了切削对比试验,其切削力低于该同类刀具,切屑形成和刀具寿命都优于该同类刀具。
Because of the low density, the high strength-to-weight ratio, the favourable stability maintained at elevated temperature, and the exceptional resistance to corrosion, titanium alloys are used extensively in aerospace industry. However, titanium alloys are known as difficult-to-machine materials, due to their several inherent properties, such as low thermal conductivity, high chemical reactivity, and low Young's modulus. The cutting speed and productivity in machining titanium alloys are adversely restricted because of the low machinability and tool life. With the property requirements of tool failure evolution for coated carbide tools in high speed milling of difficult-to-machine materials, such as titanium alloys, as the guidance and basis, and with the carbide tool material design, tool structure design, and tool coating design as the core, the design theory and methods of coated carbide tools were in-depth investigated and discussed. Finally, the solid carbide coated end mill applied to sidewall surface milling of titanium alloy was successfully developed and its cutting performance was investigated.
     The multi-view characterization of the chips, which includes free surface, back surface, and cross-sectional surface, was carried out in high-speed milling of Ti-6A1-4V alloy. The variation of characteristics and parameters of chip morphologies were investigated. The results indicated that chip formation takes place by the mechanism of catastrophic thermoplastic shear from the observation of the shear bands using metallurgical analyses of microstructure. There exists the broadening of the diffraction peaks in the back surface of chips. Progressive tool failure processes under different cutting conditions were discussed. The variations of cutting forces components and transient infrared temperature during the machining processes were investigated. The variations of tool failure morphologies and tool failure mechanisms in different positions (rake and flank faces) and different failure stages of the progressive tool failure processes were discussed. The evolution of tool micro-damage to macroscopic failure under the multi-strong thermal-mechanical-chemical fields in high-speed milling was revealed. Tool failure mechanisms were synergistic interaction among coating delamination, abrasive wear, adhesive wear, oxidation wear, diffusion wear and thermal-mechanical fatigue wear. The following requirements, such as good matchability between tool material, coating material and titanium alloy, good wear resistance and fatigue properties for tool material, high interfacial adhesion between coatings and tool substrate, and coating material bearing high temperature to protect tool substrate, are proposed.
     With regard to the property requirements of progressive tool failure for coated carbide tools in high speed milling, the chemical and tribological matchability of carbide tool material and workpiece material were investigated. The relationships between microstructural parameters (Co content, mean grain size, and WC contiguity) and macroscopic properties were built up. The carbide tool material used in high-speed milling of titanium alloy was selected and designed. The results indicated that the sub-micro fine cemented carbide with10wt.%Co binder (WC grain size in0.6~0.8μm) revealed the smallest friction coefficient and the best wear resistance when sliding against tatinium alloy. The parameterized design software of solid carbide end mill was secondary developed based on UG platform. The software can map or generate two-dimensional engineering drawings, and implement the computer aided rapid design of solid end mills. Three-dimensional finite element simulation of solid carbide end mills in machining titanium alloy was conducted by using Deform-3D. The geometric parameters of the tool structure and cutting edge, such as helix angle, rake angle, and number of teeth, were optimized with low cutting force and cutting temperature as the target. The optimized results are a12mm inner diameter,4teeth, a44°helix angle, a9°side rake angle.
     The carbide tool materials with various Co content and grain size was sintered, prepared, tested and characterized. The preparation processes, microstructure, mechanical properties, and mechanical fatigue behaviours of carbide tool materials were investigated to verify the reasonableness of material design. The fracture mode can be described as brittle fracture, especially the mixed-mode of intergranular fracture and transgranular fracture of aggregates of WC grains. Grain refinement improves the hardness and transverse rupture strength of carbide tool materials at the expense of reducing fracture toughness. High Co contents of carbide tool materials increase the transverse rupture strength and fracture toughness at the expense of low hardness. The three-point bending fatigue characteristics of WC-Co cemented carbides were investigated using three-point bending specimens. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Transverse rupture strength dominated the fatigue behaviour of carbides with low Co content, whilst the fatigue behaviour of carbides with high Co content was determined by fracture toughness.
     A theoretical method was proposed for the coating design of carbide tools, in order to reduce the possibility of coating delamination in the tool failure processes. The thermal residual stresses of multi-layered coatings were modeled based on equivalent parameters of coating properties, and the calculated results were verified with finite element simulation. This provides theorical basis for the selection and design of coatings of cutting tools in high-speed machining. The resluts show that coatings with a thickness of3μm will produce considerably low thermal residual stresses in the coating deposition process. Dry siding ball-on-disk wear tests of CrN, TiN, TiAIN, AlTiN and AlCrN coatings on flat WC-Co cemented carbide substrate against titanium balls were conducted to evaluate the tribological matchability of tool coatings and workpiece material. TiAIN is strongly recommended as coating of carbide tools when machining titanium alloys due to the lowest friction coefficient and the best wear resistance when sliding against Ti-6A1-4V. Based on the evaluations of matchability of tool substrate and tool coatings, as well as that of tool coatings and workpiece material, the basic principles of tool coating design in high-speed milling were proposed, laying the foundation of the coating design of cutting tools.
     Cutting performance of the developed solid carbide end mill in high-speed milling of titanium alloy was investigated, comparing with that of a similar end mill. The developed end mill exhibited smaller cutting forces, better chip formation, and longer tool life than the similar tool.
引文
[1]艾兴主编.高带切削加工技术[M].北京:国防工业出版社,2003.
    [2]刘战强.先进刀具设计技术:刀具结构、刀具材料与涂层技术[J].航空制造技术,2006,(7):38-42.
    [3]郭东明,刘战强,蔡光起,等.中国先进加工制造工艺与装备技术中的关键科学问题[J].数字制造科学,2005,3(4):1-36.
    [4]Ulutan D, Ozel T. Machining Induced Surface Integrity in Titanium and Nickel Alloys:A Review [J]. International Journal of Machine Tools and Manufacture,2011,51(3):250-280.
    [5]Neugebauer R, Bouzakis K D, Denkena B, et al. Velocity Effects in Metal Forming and Machining Processes [J]. CIRP Annals-Manufacturing Technology,2011,60(2):627-650.
    [6]Byrne G, Dornfeld D, Denkena B. Advancing Cutting Technology [J]. CIRP Annals-Manufacturing Technology,2003,52(2):483-507.
    [7]Hogmark S, Jaocbson S, Larsson M, et al. Chapter 26:Mechanical and Tribological Requirements and Evaluation of Coating Composites [M]. Modern Tribology Handbook. Vol. 1.CRC Press,2000.
    [8]Salomon C J. Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools:Germany,523594[P].1931.04.
    [9]Longbottom J M, Lanham J D. A Review of Research Related to Salomon's Hypothesis on Cutting Speeds and Temperatures [J]. International Journal of Machine Tools and Manufacture, 2006,46(14):1740-1747.
    [10]Richardson D J, Keavey M A, Dailami F. Modelling of Cutting Induced Workpiece Temperatures for Dry Milling [J]. International Journal of Machine Tools and Manufacture, 2006,46(10):1139-1145.
    [11]Tay A A O. A Review of Methods of Calculating Machining Temperature [J]. Journal of Materials Processing Technology,1993,36(3):225-257.
    [12]Komanduri R, Hou Z B. Thermal Modeling of the Metal Cutting Process:Part Ⅰ Temperature Rise Distribution Due to Shear Plane Heat Source [J]. International Journal of Mechanical Sciences,2000,42(9):1715-1752.
    [13]Komanduri R, Hou Z B. Thermal Modeling of the Metal Cutting Process—Part Ⅱ: Temperature Rise Distribution Due to Frictional Heat Source at the Tool-Chip Interface [J]. International Journal of Mechanical Sciences,2001,43(1):57-88.
    [14]Komanduri R, Hou Z B. Thermal Modeling of the Metal Cutting Process—Part Ⅲ: Temperature Rise Distribution Due to the Combined Effects of Shear Plane Heat Source and the Tool-Chip Interface Frictional Heat Source [J]. International Journal of Mechanical Sciences,2001,43(1):89-107.
    [15]Luchesi V M, Coelho R T. An Inverse Method to Estimate the Moving Heat Source in Machining Process [J]. Applied Thermal Engineering,2012,45-46:64-78.
    [16]Abukhshim N A, Mativenga P T, Sheikh M A. Heat Generation and Temperature Prediction in Metal Cutting:A Review and Implications for High Speed Machining [J]. International Journal of Machine Tools and Manufacture,2006,46(7-8):782-800.
    [17]Lazoglu I, Altintas Y. Prediction of Tool and Chip Temperature in Continuous and Interrupted Machining [J]. International Journal of Machine Tools and Manufacture,2002,42(9): 1011-1022.
    [18]Ulutan D, Lazoglu I, Dine C. Three-Dimensional Temperature Predictions in Machining Processes Using Finite Difference Method [J]. Journal of Materials Processing Technology, 2009,209(2):1111-1121.
    [19]Ulutan D, Erdem Alaca B, Lazoglu I. Analytical Modelling of Residual Stresses in Machining [J]. Journal of Materials Processing Technology,2007,183(1):77-87.
    [20]Ozel T, Altan T. Process Simulation Using Finite Element Method—Prediction of Cutting Forces, Tool Stresses and Temperatures in High-Speed Flat End Milling [J]. International Journal of Machine Tools and Manufacture,2000,40(5):713-738.
    [21]Grzesik W, Bartoszuk M, Nieslony P. Finite Element Modelling of Temperature Distribution in the Cutting Zone in Turning Processes with Differently Coated Tools [J]. Journal of Materials Processing Technology,2005,164:1204-1211.
    [22]Majumdar P, Jayaramachandran R, Ganesan S. Finite Element Analysis of Temperature Rise in Metal Cutting Processes [J]. Applied Thermal Engineering,2005,25(14):2152-2168.
    [23]Umbrello D, Filice L, Rizzuti S, et al. On the Effectiveness of Finite Element Simulation of Orthogonal Cutting with Particular Reference to Temperature Prediction[J]. Journal of Materials Processing Technology,2007,189(1):284-291.
    [24]叶贵根,薛世峰,仝兴华,等.高速切削TiA16V4温度和切削力动态变化规律研究[J].工具技术,2011,45(8):21-25.
    [25]Sutter G, List G. Very High Speed Cutting of Ti-6Al-4V Titanium Alloy-Change in Morphology and Mechanism of Chip Formation [J]. International Journal of Machine Tools and Manufacture,2013,66:37-43.
    [26]List G, Sutter G, Bi XF, et al. Strain, Strain Rate and Velocity Fields Determination at Very High Cutting Speed [J]. Journal of Materials Processing Technology,2013,213(5):693-699.
    [27]Childs T, Maekawa K, Obikawa T, et al. Metal Machining:Theory and Applications [M]. Wiley, New York,2000.
    [28]Loffler F H W. Systematic approach to improve the performance of PVD coatings for tool applications [J]. Surface and Coatings Technology,1994,68-69:729-740.
    [29]Mari D, Gonseth D R. A New Look at Carbide Tool Life [J]. Wear,1993,165(1):9-17.
    [30]Ezugwu E O, Wang Z M. Titanium Alloys and Their Machinability-A Review[J]. Journal of Materials Processing Technology,1997,68(3):262-274.
    [31]Ezugwu E O, Bonney J, Yamane Y. An Overview of the Machinability of Aeroengine Alloys [J]. Journal of Materials Processing Technology,2003,134(2):233-253.
    [32]Ezugwu E O. Key Improvements in the Machining of Difficult-To-Cut Aerospace Superalloys [J]. International Journal of Machine Tools and Manufacture,2005,45(12-13):1353-1367.
    [33]赵永庆,洪权,葛鹏.钛及钛合金金相图谱[M].长沙:中南大学出版社,2011.
    [34]Klocke F. Tool Life Behaviour. Chapter 7 in Manufacturing Processes 1:Cutting [M]. Springer Berlin Heidelberg,2011.
    [35]Oosthuizena G A, Akdoganb G, Dimitrovc D, et al. A Review of the Machinability of Titanium Alloys [J]. Journal of the South African Institution of Mechanical Engineering,2010, 26:43-52.
    [36]Oosthuizen G A. Wear Characterisation in Milling of Ti6Al4V-A Wear Map Approach [D]. Ph.D Thesis, University of Stellenbosch, South Africa,2010.
    [37]Kuljanic E, Fioretti M, Beltrame L, et al. Milling Titanium Compressor Blades with PCD Cutter [J]. CIRP Annals-Manufacturing Technology,1998,47(1):61-64.
    [38]Ribeiro M V, Moreira M R V, Ferreira J R. Optimization of Titanium Alloy (6AMV) Machining [J]. Journal of Materials Processing Technology,2003,143-144:458-463.
    [39]Deng J X, Li Y S, Zhang H. Adhesion Wear on Tool Rake and Flank Faces in Dry Cutting of Ti-6A1-4V [J]. Chinese Journal of Mechanical Engineering,2011,24(6):1089-1094.
    [40]Jawaid A, Che-Haron C H, Abdullah A. Tool Wear Characteristics in Turning of Titanium Alloy Ti-6246 [J]. Journal of Materials Processing Technology,1999,92:329-334.
    [41]Jawaid A, Sharif S, Koksal S. Evaluation of Wear Mechanisms of Coated Carbide Tools When Face Milling Titanium Alloy [J]. Journal of Materials Processing Technology,2000,99(1): 266-274.
    [42]Ikuta A, Shinozaki K, Masuda H, et al. Consideration of the Adhesion Mechanism of Ti Alloys Using a Cemented Carbide Tool During the Cutting Process [J]. Journal of materials processing technology,2002,127(2):251-255.
    [43]Nouari M, Ginting A. Wear Characteristics and Performance of Multi-Layer CVD-Coated Alloyed Carbide Tool in Dry End Milling of Titanium Alloy [J]. Surface and Coatings Technology,2006,200(18):5663-5676.
    [44]Jiang H, Shivpuri R. A Cobalt Diffusion Based Model for Predicting Crater Wear of Carbide Tools in Machining Titanium Alloys [J]. Journal of Engineering Materials and Technology, 2005,127(1):136-144.
    [45]Deng J X, Li Y S, Song W L. Diffusion Wear in Dry Cutting of Ti-6A1-4V with WC/Co Carbide Tools [J]. Wear,2008,265(11-12):1776-1783.
    [46]Palanisamy S, McDonald S D, Dargusch M S. Effects of Coolant Pressure on Chip Formation While Turning Ti6A14V Alloy [J]. International Journal of Machine Tools and Manufacture, 2009,49(9):739-743.
    [47]Bermingham M J, Palanisamy S, Kent D, et al. A Comparison of Cryogenic and High Pressure Emulsion Cooling Technologies on Tool Life and Chip Morphology in Ti-6Al-4V Cutting [J]. Journal of Materials Processing Technology,2012,212(4):752-765.
    [48]Nandy A K, Gowrishankar M C, Paul S. Some Studies on High-Pressure Cooling in Turning of Ti-6A1-4V [J]. International Journal of Machine Tools and Manufacture,2009,49(2): 182-198.
    [49]Hong S Y, Ding Y C. Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture,2001,41(10): 1417-1437.
    [50]Hong S Y, Markus I, Jeong W-c. New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti-6A1-4V [J]. International Journal of Machine Tools and Manufacture,2001,41(15):2245-2260.
    [51]Hong S Y, Ding Y C, Jeong W C. Friction and Cutting Forces in Cryogenic Machining of Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture,2001,41(15): 2271-2285.
    [52]Venugopal K A, Paul S, Chattopadhyay A B. Tool Wear in Cryogenic Turning of Ti-6A1-4V Alloy [J]. Cryogenics,2007,47(1):12-18.
    [53]Venugopal K A, Paul S, Chattopadhyay A B. Growth of Tool Wear in Turning of Ti-6Al-4V Alloy Under Cryogenic Cooling [J]. Wear,2007,262(9-10):1071-1078.
    [54]Sun S, Brandt M, Dargusch M S. Machining Ti-6Al-4V Alloy with Cryogenic Compressed Air Cooling [J]. International Journal of Machine Tools and Manufacture,2010,50(11): 933-942.
    [55]Dhananchezian M, Kumar M P. Cryogenic Turning of the Ti-6Al-4V Alloy with Modified Cutting Tool Inserts [J]. Cryogenics,2011,51(1):34-40.
    [56]Bermingham M J, Kirsch J, Sun S, et al. New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture,2011,51 (6):500-511.
    [57]Yuan S M, Yan L T, Liu W D, et al. Effects of Cooling Air Temperature on Cryogenic Machining of Ti-6Al-4V Alloy [J]. Journal of Materials Processing Technology,2011,211(3): 356-362.
    [58]Rahim E A, Sasahara H. A Study of the Effect of Palm Oil as MQL Lubricant on High Speed Drilling of Titanium Alloys [J]. Tribology International,2011,44(3):309-317.
    [59]Sun J, Wong Y S, Rahman M, et al. Effects of Coolant Supply Methods and Cutting Conditions on Tool Life in End Milling Titanium Alloy [J]. Machining Science and Technology,2006,10(3):355-370.
    [60]Wang Z G, Rahman M, Wong Y S, et al. Study on Orthogonal Turning of Titanium Alloys with Different Coolant Supply Strategies [J]. The International Journal of Advanced Manufacturing Technology,2009,42(7):621-632.
    [61]Ezugwu E O, Da Silva R B, Bonney J, et al. The Effect of Argon-Enriched Environment in High-Speed Machining of Titanium Alloy[J]. Tribology Transactions,2005,48(1):18-23.
    [62]Su Y, He N, Li L, et al. An Experimental Investigation of Effects of Cooling/Lubrication Conditions on Tool Wear in High-Speed End Milling of Ti-6Al-4V[J]. Wear,2006,261(7-8): 760-766.
    [63]KeYL, Dong H Y, Liu G, et al. Use of Nitrogen Gas in High-Speed Milling of Ti-6Al-4V [J]. Transactions of Nonferrous Metals Society of China,2009,19(3):530-534.
    [64]Liu N M, Chiang K T, Hung C M. Modeling and Analyzing the Effects of Air-Cooled Turning on the Machinability of Ti-6Al-4V Titanium Alloy using the Cold Air Gun Coolant System [J]. The International Journal of Advanced Manufacturing Technology,2012, doi: 10.1007/s00170-012-4547-8.
    [65]Kramer B M, Viens D, Chin S. Theoretical Consideration of Rare Earth Metal Compounds as Tool Materials for Titanium Machining. CIRP Annals-Manufacturing Technology,1993, 42(1):111-114.
    [66]Nabhani F. Wear Mechanisms of Ultra-Hard Cutting Tools Materials [J]. Journal of Materials Processing Technology,2001,115(3):402-412.
    [67]Heath P J. Developments in Applications of PCD Tooling[J]. Journal of Materials Processing Technology,2001,116(1):31-38.
    [68]Nurul Amin A K M, Ismail A F, Nor Khairusshima M K. Effectiveness of Uncoated WC-Co and PCD Inserts in End Milling of Titanium Alloy—Ti-6Al-4V [J]. Journal of Materials Processing Technology,2007,192-193:147-158.
    [69]Barnett-Ritcey D D. High-Speed Milling of Titanium and Gamma-Titanium Aluminide:An Experimental Investigation [D]. PhD dissertation, McMaster University, McMaster, Canada, 2004.
    [70]Oosthuizen G A, Akdogan G, Treurnicht N. The Performance of PCD Tools in High-Speed Milling of Ti6A14V [J]. International Journal of Advanced Manufacturing Technology,2011, 52(9-12):929-935.
    [71]Ezugwu E O, Bonney J, Da Silva R B, et al. Surface Integrity of Finished Turned Ti-6Al-4V Alloy with PCD Tools Using Conventional and High Pressure Coolant Supplies [J]. International Journal of Machine Tools and Manufacture,2007,47(6):884-891.
    [72]Corduan N, Himbart T, Poulachon G, et al. Wear Mechanisms of New Tool Materials for Ti-6A1-4V High Performance Machining [J]. CIRP Annals-Manufacturing Technology,2003, 52(1):73-76.
    [73]Ezugwu E O, Da Silva R B, Bonney J, et al. Evaluation of the Performance of CBN Tools when Turning Ti-6Al-4V Alloy with High Pressure Coolant Supplies [J]. International Journal of Machine Tools and Manufacture,2005,45(9):1009-1014.
    [74]Zoya Z A, Krishnamurthy R. The Performance of CBN Tools in the Machining of Titanium Alloys [J]. Journal of Materials Processing Technology,2000,100(1-3):80-86.
    [75]刘战强,艾兴,李甜甜,等.PCBN刀具加工TC4钛合金的切削加工性[J].山东大学学报(工学版),2009,39(1):77-83.
    [76]Sumiya H, Uesaka S, Satoh S. Mechanical Properties of High Purity Polycrystalline cBN Synthesized by Direct Conversion Sintering Method [J]. Journal of materials science,2000, 35(5):1181-1186.
    [77]Zareena A R, Rahman M, Wong Y S. Binderless CBN Tools, a Breakthrough for Machining Titanium Alloys [J]. Journal of Manufacturing Science and Engineering,2005,127(2) 277-279.
    [78]Wang Z G, Wong Y S, Rahman M. High-Speed Milling of Titanium Alloys Using Binderless CBN Tools [J]. International Journal of Machine Tools and Manufacture,2005,45(1): 105-114.
    [79]Wang Z G, Rahman M, Wong Y S. Tool Wear Characteristics of Binderless CBN Tools Used in High-Speed Milling of Titanium Alloys [J]. Wear,2005,258(5-6):752-758.
    [80]Hirosaki K, Shintani K, Kato H, et al. High Speed Machining of Bio-Titanium Alloy with a Binder-Less PcBN Tool[J]. JSME International Journal Series C,2004,47(1):14-20.
    [81]Hirosaki K, Shintani K, Kaneuji A. Study on High Speed Cutting of Bio-Titanium alloy—Tool Wear Pattern and Mechanism of Binder-less PcBN Tool [J]. Journal of the Japan Society for Precision Engineering,2006,72(2):219-223.
    [82]Hirosaki K, Shintani K, Kato H, et al. High Speed Milling of Bio-Titanium Alloys using a Binder-less PcBN Tool-Tool damage mechanism of flank face in machining of (3 type alloy [J]. Journal of the Japan Society for Precision Engineering,2006,72(11):1397-1401.
    [83]Bhaumik S K, Divakar C, Singh A K. Machining Ti-6A1-4V Alloy with a wBN-cBN Composite Tool. Materials & Design,1995,16(4):221-226.
    [84]Li R, Shih A J. Finite Element Modeling of 3D Turning of Titanium [J]. The International Journal of Advanced Manufacturing Technology,2006,29(3):253-261.
    [85]Abellan-Nebot J V, Siller H R, Vila C, et al. An Experimental Study of Process Variables in Turning Operations of Ti-6Al-4V and Cr-Co Spherical Prostheses [J]. The International Journal of Advanced Manufacturing Technology,2012,63(9-12):887-902.
    [86]Ratchev S M, Afazov S M, Becker A A, et al. Mathematical Modelling and Integration of Micro-Scale Residual Stresses into Axisymmetric FE Models of Ti6Al4V Alloy in Turning [J]. C1RP Journal of Manufacturing Science and Technology,2011,4(1):80-89.
    [87]Puerta Velasquez J D, Bolle B, Chevrier P, et al. Metallurgical Study on Chips Obtained by High Speed Machining of a Ti-6wt.% Al-4wt.% V Alloy [J]. Materials Science and Engineering:A,2007,452:469-474.
    [88]Puerta Velasquez J D, Tidu A, Bolle B, et al. Sub-Surface and Surface Analysis of High Speed Machined Ti-6A1-4V Alloy [J]. Materials Science and Engineering:A,2010,527(10): 2572-2578.
    [89]Sun J, Guo Y B. A Comprehensive Experimental Study on Surface Integrity by End Milling Ti-6A1-4V [J]. Journal of Materials Processing Technology,2009,209(8):4036-4042.
    [90]Elmagrabi N, Che Hassan C H, Jaharah A G, et al. High Speed Milling of Ti-6Al-4V Using Coated Carbide Tools [J]. European Journal of Scientific Research,2008,22(2):153-162.
    [91]Rao B, Dandekar C R, Shin Y C. An Experimental and Numerical Study on the Face Milling of Ti-6Al-4V Alloy:Tool Performance and Surface Integrity [J]. Journal of Materials Processing Technology,2011,211 (2):294-304.
    [92]Olson G B. Computational Design of Hierarchically Structured Materials [J]. Science,1997, 277(5330):1237-1242.
    [93]陶辉锦,尹健.材料设计中的结构层次理论及跨尺度关联问题[J].粉末冶金材料科学与工程,2007,12(5):264-271.
    [94]许崇海,黄传真.复相陶瓷刀具村料设计的理论框架[J].中国机械工程,2001,12(10):1198-1200.
    [95]余立新.材料设计与硬质合金[J].凿岩机械气动工具,2009,(4):36-41.
    [96]林晨光.中国超细品粒WC-Co硬质合金研究进展[J].稀有金属,2004,28(4):762-766.
    [97]Kim C S. Microstructural-Mechanical Property Relationships in WC-Co composites[D]. Ph.D. thesis, Carnegie Mellon University, USA,2004.
    [98]Lee H C, Gurland J. Hardness and Deformation of Cemented Tungsten Carbide [J]. Materials Science and Engineering,1978,33(1):125-133.
    [99]Xu Z H, Agren J. A Modified Hardness Model for WC-Co Cemented Carbides [J]. Materials Science and Engineering,2004,386:262-268.
    [100]Engqvist H, Jacobson S, Axen N. A Model for the Hardness of Cemented Carbides[J]. Wear, 2002,252, (5-6):384-393.
    [101]Cha S I, Lee K H, Ryu H J,, et al. Analytical Modeling to Calculate the Hardness of Ultra-Fine WC-Co Cemented Carbides[J]. Materials Science and Engineering:A,2008,489(1-2): 234-244.
    [102]李晨辉,余立新,熊惟皓.WC的粒度对WC-Co硬质合金断裂韧性的影响[J].硬质合金,2001,18(3):138-141.
    [103]陈楚轩.硬质合金质量控制原理[M].中国钨业协会硬质合金分会,2007,15-30.
    [104]Upadhyaya A, Sarathy D, Wagner G. Advances in Alloy Design Aspects of Cemented Carbides [J]. Materials & Design,2001,22(6):511-517.
    [105]Chandrasekaran H, Venkatesh V C. Thermal Fatigue Studies on Tool Carbides and its Relevance of Milling Cutters [J]. CIRP Annals-Manufacturing Technology,1985,34(1): 125-128.
    [106]Gee M, Mingard K, Roebuck B. Application of EBSD to the Evaluation of Plastic Deformation in the Mechanical Testing of WC/Co Hardmetal [J]. International Journal of Refractory Metals and Hard Materials,2009; 27(2):300-312.
    [107]陈振华,姜勇,陈鼎等.硬质合金的疲劳与断裂[J].中国有色金属学报,2011,21(10):2394-2401.
    [108]Torres Y, Anglada M, Llanes L. Fatigue Mechanics of WC-Co Cemented Carbides [J]. International Journal of Refractory Metals and Hard Materials,2001,19(4-6):341-348.
    [109]Ritchie R O, Gilbert C J, McNaney J M. Mechanics and Mechanisms of Fatigue Damage and Crack Growth in Advance Materials [J]. International Journal of Solids and Structures,2000, 37(1-2):311-329.
    [110]Llanes L, Torres Y, Anglada M. On the Fatigue Crack Growth Behavior of WC-Co Cemented Carbides:Kinetics Description, Microstructural Effects and Fatigue Sensitivity [J]. Acta materialia,2002,50(9):2381-2393.
    [111]Dary F C, Roebuck B, Gee M G. Effects of Microstructure on the Thermo-Mechanical Fatigue Response of Hardmetals using a New Miniaturized Testing Rig [J]. International Journal of Refractory Metals and Hard Materials,1999,17(1-3):45-53.
    [112]Kindermann P, Schlund P, Sockel H G, et al. High-Temperature Fatigue of Cemented Carbides under Cyclic Loads [J]. Journal of Refractory Metals and Hard Materials,1999, 17(1-3):55-68.
    [113]Kliinsner T, Marsoner S, Ebner R, et al. Effect of Microstructure on Fatigue Properties of WC-Co Hard Metals [J]. Procedia Engineering,2010,2(1):2001-2010.
    [114]Sakagami K, Kouno S, Yamamoto T. Bending Fatigue Characteristics of Cemented Carbides for Cold Forging Tools [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2007,54(4):260-263. (in Japanese)
    [115]Suresh S, Sylva L A. Room Temperature Fatigue Crack Growth in Cemented Carbides [J]. Materials Science and Engineering,1986,83(1):L7-L10.
    [116]Roebuck B, Maderud C J, Morrell R. Elevated Temperature Fatigue Testing of Hardmetals using Notched Testpieces [J]. Journal of Refractory Metals and Hard Materials,2008,26(1): 19-27.
    [117]Torres Y, Sarin V K, Anglada M, et al. Loading Mode Effects on the Fracture Toughness and Fatigue Crack Growth Resistance of WC-Co Cemented Carbides [J]. Scripta materialia,2005, 52(11):1087-1091.
    [118]Klaasen H, Kubarsepp J, Sergejev F, et al. Performance of Cemented Carbides in Cyclic Loading Conditions [J]. Materials Science,2006,12(2):144-146.
    [119]Klaasen H, Kubarsepp J, Tsinjan A, et al. Performance of Carbide Composites in Cyclic Loading Wear Conditions [J]. Wear,2011,271(5-6):837-841.
    [120]Casas B, Torres Y, Llanes L. Fracture and Fatigue Behavior of Electrical-Discharge Machined Cemented Carbides [J]. International Journal of Refractory Metals and Hard Materials,2006, 24(1-2):162-167.
    [121]Torres Y, Bermejo R, Llanes L, et al. Influence of Notch Radius and R-Curve Behaviour on the Fracture Toughness Evaluation of WC-Co Cemented Carbides [J]. Engineering Fracture Mechanics,2008,75(15):4422-4430.
    [122]Liang D B. Thermal Fatigue and Shock-Resistant Material for Earth-Boring Bits [P]. US, 6197084B1,2001.03.06.
    [123]邓建新,赵军.数控刀具材料选用手册[D].北京:机械工业出版社,2005.
    [124]Bouzakis K D, Michailidis N, Skordaris G, et al. Cutting with Coated Tools:Coating Technologies, Characterization Methods and Performance Optimization[J]. CIRP Annals-Manufacturing Technology,2012,61(2):703-723.
    [125]Narasimhan K, Boppana S P, Bhat D G. Development of a Graded TiCN Coating for Cemented Carbide Cutting Tools—A Design Approach[J]. Wear,1995,188(1-2):123-129.
    [126]Rech J, Battaglia J L, Moisan A. Thermal Influence of Cutting Tool Coatings. Journal of Materials Processing Technology,2005,159(1):119-124.
    [127]Rech J, Kusiak A, Battaglia J L. Tribological and Thermal Functions of Cutting Tool Coatings [J]. Surface and Coatings Technology,2004,186(3):364-371
    [128]ISO 8688-2. Tool Life Testing in Milling—Part 2:End Milling[S]. International Organization for Standardization, Geneva,1989.
    [129]Sun J, Guo Y B. A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4V [J]. International Journal of Machine Tools and Manufacture,2008,48(12-13):1486-1494.
    [130]Zhang S, Guo Y B. An Experimental and Analytical Analysis on Chip Morphology, Phase Transformation, Oxidation, and Their Relationships in Finish Hard Milling [J]. International Journal of Machine Tools and Manufacture,2009,49(11):805-813.
    [131]Schulz H, Abele E, Sahm A. Material Aspects of Chip Formation in HSC Machining [J]. CIRP Annals-Manufacturing Technology,2001,50(1):45-48.
    [132]Luo P, Xie H, Paladugu M, et al. Recycling of Titanium Machining Chips by Severe Plastic Deformation Consolidation[J]. Journal of Materials Science,2010,45(17):4606-4612.
    [133]Molinari A, Musquar C, Sutter G. Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V:Experiments and Modeling [J]. International Journal of Plasticity,2002,18(4): 443-459.
    [134]Astakhov V P. Effects of the Cutting Feed, Depth of Cut, and Workpiece (bore) Diameter on the Tool Wear Rate [J]. The International Journal of Advanced Manufacturing Technology, 2007,34(7-8):631-640.
    [135]Li H Z, Zeng H, Chen X Q. An Experimental Study of Tool Wear and Cutting Force Variation in the End Milling of Inconel 718 with Coated Carbide Inserts [J]. Journal of Materials Processing Technology,2006,180(1-3):296-304.
    [136]Kikuchi M. The Use of Cutting Temperature to Evaluate the Machinability of Titanium Alloys [J]. Acta Biomaterialia,2009,5(2):770-775.
    [137]李友生,邓建新,张辉等.高速车削钛合金的硬质合金刀具磨损机理研究[J].摩擦学学报,2008,28(5):443-447
    [138]Liew W Y H, Ding X. Wear Progression of Carbide Tool in Low-Speed End Milling of Stainless Steel[J]. Wear,2008,265(1-2):155-166.
    [139]叶大轮,胡建华.实用无机物热力学数据手册[M].第二版.北京: 冶金工业出版社,2002.
    [140]徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [141]温诗铸,黄平.摩擦学原理(第3版)[M].北京:清华大学出版社,2008.
    [142]Deng J X, Zhang H, Wu Z, et al. Friction and Wear Behaviors of WC/Co Cemented Carbide Tool Materials with Different WC Grain Sizes at Temperatures up to 600 ℃[J]. International Journal of Refractory Metals and Hard Materials,2012,31:196-204.
    [143]Shermergor T D. The Theory of Elasticity of Microheterogeneous Media. Moscow:Nauka; 1977. (in Russian)
    [144]Golovchan V T. On the Thermal Residual Microstresses in WC-Co Hard Metals[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):341-344.
    [145]Golovchan V T, Litoshenko N V. On the Contiguity of Carbide Phase in WC-Co Hardmetals [J]. International Journal of Refractory Metals and Hard Materials,2003,21, (5-6):241-244.
    [146]Jackson A P, Vincent J F V, Turner R M. Comparison of Nacre with other Ceramic Composites [J]. Journal of Materials Science,1990,25(7):3173-3178.
    [147]Hashin Z, Shtrikman S. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials [J]. Journal of the Mechanics and Physics of Solids,1963,11(2): 127-140.
    [148]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988:320.
    [149]Kingery W D. Thermal Conductivity:XIV, Conductivity of Multicomponent Systems [J]. Journal of the American Ceramic Society,1959,42(12):617-627.
    [150]Schubert W D, Neumeister H, Kinger G, Lux B. Hardness to Toughness Relationship of Fine-Grained WC-Co Hardmetals [J]. International Journal of Refractory Metals and Hard Materials,1998,16(2):133-142.
    [151]Pickens J R and Gurland J. The Fracture Toughness of WC-Co Alloys Measured on Single-edge Notched Beam Specimens Precracked by Electron Discharge Machining [J]. Materials Science and Engineering,1978,33(1):135-142.
    [152]Sigl L S, Fischmeister H F. On the Fracture Toughness of Cemented Carbides [J]. Acta Metallurgica,1988,36(4):887-897.
    [153]Park S, Kapoor S G, DeVor R E. Microstructure-Level Model for the Prediction of Tool Failure in WC-Co Cutting Tool Materials [J]. Journal of Manufacturing Science and Engineering,2006,128(3):739-748.
    [154]Sadowski T, Nowicki T. Numerical Investigation of Local Mechanical Properties of WC/Co Composite [J]. Computational Materials Science,2008,43(1):235-241.
    [155]Sigl L S and Exner H E. Experimental Study of Mechanics of Fracture in WC-Co Alloys [J]. Metall. Trans. A,1987,18A:1299-1308.
    [156]Ravichandran K S. Fracture Toughness of Two Phase WC-Co Cermets [J]. Acta Metallurgica et Materialia,1994,42(1):143-150.
    [157]侯永涛,丁向阳.UG/Open二次开发与实例精解[M].北京:化学工业版社,2007.
    [158]Kim J H, Park J W, Ko T J. End Mill Design and Machining via Cutting Simulation [J]. Computer-Aided Design,2008,40(3):324-333.
    [159]徐其军,熊小文.整体硬质合金立铣刀槽形设计和生产[J].江西冶金.2006,26(4):14-17.
    [160]Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains High Strain Rates and High Temperature [C]. Proceedings of Seventh International Symposium on Ballistics. Hague, Netherlands,1983:541-547.
    [161]Daridon L, Oussouaddi O, Ahzi S. Influence of the Material Constitutive Models on the Adiabatic Shear Band Spacing:MTS, Power Law and Johnson-Cook Models [J]. International Journal of Solids and Structures,2004,41(11-12):3109-3124.
    [162]List G, Sutter G, Bouthiche A. Cutting Temperature Prediction in High Speed Machining by Numerical Modelling of Chip Formation and its Dependence with Crater Wear [J]. International Journal of Machine Tools and Manufacture,2012,54-55:1-9.
    [163]李宏德.立铣刀优化设计[J].制造技术与机床,2007,(5):25-27.
    [164]陈日曜主编.金属切削原理(第2版)[M].北京:机械工业出版社,2002.
    [165]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2004.
    [166]机械工程手册编辑委员会.机械工程手册(第2版)[M].北京:机械工业出版社,1997.
    [167]K.u H S, Chia W C. Design of Multi-Purpose Carbide End Mill [J]. Institution of Engineers, Malaysia. Journal,2006,67(2):34-40.
    [168]宋清华.高速铣削稳定性及加工精度研究[D].济南:山东大学博士学位论文,2009.
    [169]中华人民共和国国家技术监督局.GB/T 5166-1998.中华人民共和国国家标准-烧结金属材料和硬质合金弹性模量测定[S].北京:中国标准出版社,1998.
    [170]杨净.硬质合金与硬质合金制品生产新工艺、生产配方优化设计及质量检测实用手册[M].西安:中国知识出版社,2005.
    [171]Luis G R, Pedro M A, Carlos A, et al. Fracture Toughness of Solar-Sintered WC with Co Additive [J]. Ceramics International,2002,28(3):345-348.
    [172]Ferreira J A M, Pina Amaral M A, Antunes F V, et al. A Study on the Mechanical Behaviour of WC/Co Hardmetals [J]. International Journal of Refractory Metals and Hard Materials, 2009,27(1):1-8.
    [173]林晨光,袁冠森,王林山.纳米晶WC-Co硬质合金中WC品粒度的评价方法[J].硬质合金,2004,21(4):226-228.
    [174]Berto F, Lazzarin P. A Review of the Volume-Based Strain Energy Density Approach Applied to V-Notches and Welded Structures[J]. Theoretical and Applied Fracture Mechanics,2009, 52(3):183-194.
    [175]Lazzarin P, Berto F. From Neuber's Elementary Volume to Kitagawa and Atzori's Diagrams: An Interpretation Based on Local Energy [J]. International Journal of Fracture,2005,135(1-4): L33-L38.
    [176]张行主编.断裂与损伤力学(第2版)[M].北京:北京航空航天大学出版社,2009.
    [177]Bower A F. Applied Mechanics of Solids [M]. CRC Press,2009.
    [178]ASTM E1290:Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement.
    [179]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995.
    [180]Gogotsi G A. Fracture Toughness of Ceramics and Ceramic Composites[J]. Ceramics International,2003,29(7):777-784.
    [181]Berto F, Lazzarin P, Matvienko Y G. J-Integral Evaluation for U- and V-Blunt Notches under Mode I Loading and Materials Obeying a Power Hardening Law[J]. International Journal of Fracture,2007,146(1-2):33-51.
    [182]Berto F, Lazzarin P, Radaj D. Fictitious Notch Rounding Concept Applied to Sharp V-Notches: Evaluation of the Microstructural Support Factor for Different Failure Hypotheses:Part Ⅱ: Microstructural Support Analysis [J]. Engineering Fracture Mechanics,2009,76(9): 1151-1175.
    [183]Gomez F J, Elices M, Berto F, et al. Fracture of V-Notched Specimens under Mixed Mode (I+ 11) Loading in Brittle Materials [J]. International Journal of Fracture,2009,159(2):121-135.
    [184]McHugh P E, Connolly P J. Micromechanical Modelling of Ductile Crack Growth in the Binder Phase of WC-Co[J]. Computational materials science,2003,27(4):423-436.
    [185]Pezzotti G, Huebner H, Suenobu H, et al. Analysis of Near-Tip Crack Bridging in WC/Co Cermet [J]. Journal of the European Ceramic Society,1999,19(1):119-123.
    [186]Jonsson B, Hogmark S. Hardness Measurements of Thin Films [J]. Thin Solid Films,1984, 114(3):257-269.
    [187]Kramer B M, Judd P K. Computational Design of Wear Coatings [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1985,3(6):2439-2444.
    [188]Stoney G G. The Tension of Metallic Films Deposited by Electrolysis [J]. Proc. R. Soc. London,1909, A82,172-175.
    [189]Grzesik W. Composite Layer-Based Analytical Models for Tool-Chip Interface Temperatures in Machining Medium Carbon Steels with Multi-Layer Coated Cutting Tools [J]. Journal of Materials Processing Technology,2006,176(1-3):102-110.
    [190]Zhou L Y, Ni J T, He Q D. Study on Failure Mechanism of the Coated Carbide Tool [J]. International Journal of Refractory Metals and Hard Materials,2007.25(1):1-5.
    [191]Jaffery S H I, Mativenga P T. Wear Mechanisms Analysis for Turning Ti-6Al-4V-Towards the Development of Suitable Tool Coatings [J]. International Journal of Advanced Manufacturing Technology,2012,58(5-8):479-493.
    [192]Falub C V, Karimi A, Ante M, et al. Interdependence between Stress and Texture in Arc Evaporated Ti-Al-N Thin Films [J]. Surface and Coatings Technology,2007,201(12): 5891-5898.
    [193]黄自谦,贺跃辉,蔡海涛,等.TiAIN涂层的热残余应力分析[J].中国有色金属学报,2007,17(6):897-902.
    [194]Pierson H O. CVD in Wear-and Corrosion-Resistant Applications. Chapter in Handbook of Chemical Vapor Deposition (CVD) (Second Edition):Principles, Technology, and Applications [M]. William Andrew Inc.,1999.
    [195]Yan J W, Murakami Y, Davim J P. Tool Design, Tool Wear and Tool Life [M]. Springer Series in Advanced Manufacturing,2009, Machining Dynamics, Book Chapter, Pages 117-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700