基于原子干涉的高分辨率引力测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇论文描述了根据原子的物质波性质设计的原子干涉仪,和应用原子干涉仪进行高分辨率引力场测量的实验。本论文中描述了两种不同的原子干涉仪方案,分别在浙江大学光学研究所量子光学实验室和巴黎天文台SYRTE实验室实施。这两个方案都使用了受激拉曼跃迁来操控原子的能态。其中浙江大学方案使用自由下落的冷原子构成原子干涉仪,以测量当地重力场的绝对值,其分辨率可达10-9g。巴黎天文台方案使用囚禁在一维光晶格中的冷原子,通过操控冷原子在光晶格中的空间位置移动构成原子干涉仪。当原子被囚禁在距离物体表面很近的光晶格中时,该原子干涉仪可以测量原子与表面之间的相互作用势,以验证Casimir-Polder力等短距作用力。
This thesis presents atom interferometers based on the matter wave characteristics of atoms, and experiments involving atom interferometers in measurement of the gravitational field. Two schematics of atom interferometers are depicted in this thesis, implemented by Institute of Optics at Zhejiang University and SYRTE at Paris Observatory, respectively. Both experiments utilize stimulated Raman transitions in manipulating the atoms' internal and external states. The Zhejiang University instrument, which uses free-falling atoms in interferometry, measures the absolute local gravity with resolution around 10-9g. The Paris Observatory experiment makes use of atoms trapped in a 1-dimensional optical lattice in realizing the interferometer, by manipulating the relative movements of the atoms between separate lattice sites. When the atoms are trapped in the lattice sites close to an arbitrary surface, the interferometer measures the interaction between atoms and the surface, leading to a high-precision verification of the short range interactions, e.g. the Casimir-Polder Force.
引文
1. T. Young, The Bakerian Lecture:Experiments and Calculations Relative to Physical Optics. Philosophical Transactions of the Royal Society of London,1804.94:p.1-16.
    2. C. Fabry and A. Perot, A new model of interferometry. Annales De Chimie Et De Physique,1901.22:p.564-574.
    3. A.A. Michelson, Light Waves and Their Uses1903:The University of Chicago Press.
    4. Eurelios. Virgo Homepage.2000; Available from: https://wwwcascina.virgo.infn.it/central.html.
    5. L.V.P.R. de Broglie, Waves and Quanta. Nature,1923.112.
    6. L.V.P.R. de Broglie, Recherches sur la Theorie des Quanta. Annales de Physique,1925.10(t. Ⅲ).
    7. C. Davisson and L.H. Germer, Diffraction of Electrons by a Crystal of Nickel. Physical Review,1927.30(6):p.705.
    8. E. Fermi and L. Marshall, Interference Phenomena of Slow Neutrons. Physical Review,1947.71(10):p.666.
    9. C. Jonsson, Electron Diffraction at Multiple Slits. American Journal of Physics,1974.42(1):p.4-11.
    10. A. Zeilinger, R. Gahler, C.G. Shull, W. Treimer, and W. Mampe, Single-and double-slit diffraction of neutrons. Reviews of Modern Physics, 1988.60(4):p.1067.
    11. D.W. Keith, M.L. Schattenburg, H.I. Smith, and D.E. Pritchard, Diffraction of Atoms by a Transmission Grating. Physical Review Letters,1988. 61(14):p.1580.
    12. O. Carnal and J. Mlynek, Young's double-slit experiment with atoms: A simple atom interferometer. Physical Review Letters,1991.66(21):p.2689.
    13. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, and D.E. Pritchard, An interferometer for atoms. Physical Review Letters,1991.66(21):p.2693.
    14. F. Riehle, T. Kisters, A. Witte, J. Helmcke, and CJ. Borde, Optical Ramsey spectroscopy in a rotating frame:Sagnac effect in a matter-wave interferometer. Physical Review Letters,1991.67(2):p.177.
    15. M. Kasevich and S. Chu, Atomic interferometry using stimulated Raman transitions. Physical Review Letters,1991.67(2):p.181.
    16. A.D. Cronin, J. Schmiedmayer, ouml, rg, and D.E. Pritchard, Optics and interferometry with atoms and molecules. Reviews of Modern Physics, 2009.81(3):p.1051.
    17. M.A. Kasevich, Coherence with Atoms. Science,2002.298(5597):p. 1363-1368.
    18. CJ. Borde, Atomic clocks and inertial sensors. Metrologia,2002. 39(5):p.435.
    19. A. Wicht, J.M. Hensley, E. Sarajlic, and S. Chu, A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry. Physica Scripta,2002.2002(T102):p.82.
    20. A. Gauguet, B. Canuel, eacute, egrave, T. que, W. Chaibi, and A. Landragin, Characterization and limits of a cold-atom Sagnac interferometer. Physical Review A,2009.80(6):p.063604.
    21. T. Wendrich, M. Gilowski, T. Muller, W. Herr, C. Schubert, E.M. Rasel, and W. Ertmer. Cold Atom Sagnac Interferometer. in Frequency Control Symposium,2007 Joint with the 21st European Frequency and Time Forum. IEEE International.2007.
    22. S. Dimopoulos, P.W. Graham, J.M. Hogan, and M.A. Kasevich, Testing General Relativity with Atom Interferometry. Physical Review Letters, 2007.98(11):p.111102.
    23. S. Chu. Chu group's webpage.2009; Available from: http://www.stanford.edu/group/chugroup/amo/interferometry.html.
    24. Micro-g LaCoste Website. Available from: http://www.lacosteromberg.com.
    25. T.M. Niebauer, R. Billson, B. Ellis, B. Mason, D. van Westrum, and F. Klopping, Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter. Metrologia,2011.48(3):p.154.
    26. J. Le Gouet, T.E. Mehlstaubler, S. Kim, S. Merlet, A. Clairon, A. Landragin, and F.P. Dos Santos, Limits to the sensitivity of a low noise compact atomic gravimeter. Applied Physics B:Lasers & Optics,2008.92(2):p.133-144.
    27. H. Muller, S.-w. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity. Physical Review Letters,2008.100(3):p.031101.
    28. X. Wu, Gravity gradient survey with a mobile atom interferometer, 2009, Stanford University.
    29. F. Sorrentino, Y.-H. Lien, G. Rosi, G.M. Tino, L. Cacciapuoti, and M. Prevedelli, Sensitive gravity-gradiometry with atom interferometry:progress towards an improved determination of the gravitational constant. New Journal of Physics,2010.12(9):p.095009.
    30. L. Zhou, Z.-Y. Xiong, W. Yang, B. Tang, W.-C. Peng, Y.-B. Wang, P. Xu, et al., Measurement of Local Gravity via a Cold Atom Interferometer. Chinese Physics Letters,2011.28(1):p.013701.
    31. S. Merlet, G. D'Agostino, A. Germak, H. Baumann, Q. Bodart, A. Louchet, A. Landragin, et al. Comparison of 3 absolute gravimeters based on different methods for the e-MASS project. in 2010 Conference on Precision Electromagnetic Measurements (CPEM).2010. Daejeon.
    32. ESA. GOCE space mission website.2011; Available from: http://www.esa.int/esaMI/GOCE/.
    33. N. Yu, J.M. Kohel, J.R. Kellogg, and L. Maleki, Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Applied Physics B:Lasers and Optics,2006.84(4):p.647-652.
    34. B.P. Kibble, I.A. Robinson, and J.H. Belliss, A Realization of the SI Watt by the NPL Moving-coil Balance. Metrologia,1990.27(4):p.173.
    35. D. Wineland and H. Dehmelt, Proposed 1014Δ v/v laser Fluorescence Spectroscopy on T1+Mono-Ion Ocillator III. Bulletin of the American Physical Society,1975.20(4):p.637-637.
    36. T.W. Hansch and A.L. Schawlow, Cooling of gases by laser radiation. Optics Communications,1975.13(1):p.68-69.
    37. D.J. Wineland, R.E. Drullinger, and F.L. Walls, Radiation-Pressure Cooling of Bound Resonant Absorbers. Physical Review Letters,1978.40(25): p.1639.
    38. W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well. Physical Review Letters,1978.41(4):p.233.
    39. S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, and A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters,1985.55(1):p.48.
    40. P.D. Lett, R.N. Watts, C.I. Westbrook, W.D. Phillips, P.L. Gould, and HJ. Metcalf, Observation of Atoms Laser Cooled below the Doppler Limit. Physical Review Letters,1988.61(2):p.169.
    41. P.J. Ungar, D.S. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms-Theory. Journal of the Optical Society of America B-Optical Physics,1989.6(11):p.2058-2071.
    42. J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients:simple theoretical models. J. Opt. Soc. Am. B, 1989.6(11):p.2023-2045.
    43. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science,1995.269(5221):p.198-201.
    44. E.L. Raab, M. Prentiss, A. Cable, S. Chu, and D.E. Pritchard, Trapping of Neutral Sodium Atoms with Radiation Pressure. Physical Review Letters,1987.59(23):p.2631.
    45.王义遒,原子的激光冷却与陷俘2007, Beijing:北京大学出版社.
    46. B. Young, M. Kasevich, and S. Chu, Precision atom interferometry with light pulses, in Atom Interferometry, P.R. Berman, Editor 1997, ACADEMIC PRESS, INC:San Diego. p.363.
    47. Q. Niu, X.-G. Zhao, G.A. Georgakis, and M.G. Raizen, Atomic Landau-Zener Tunneling and Wannier-Stark Ladders in Optical Potentials. Physical Review Letters,1996.76(24):p.4504.
    48. F. Pereira Dos Santos, P. Wolf, A. Landragin, M.-C. Angonin, P. Lemonde, S. Bize, and A. Clairon, Measurement of Short Range Forces Using Cold Atoms, in Frequency Standards and Metrology:Proceedings of the 7th Symposium2009.
    49. I. Bloch, Ultracold quantum gases in optical lattices. Nature Physics, 2005.1(1):p.23-30.
    50. J. Ye, H.J. Kimble, and H. Katori, Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps. Science,2008. 320(5884):p.1734-1738.
    51. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, An optical lattice clock. Nature,2005.435(7040):p.321-324.
    52. R. Le Targat, X. Baillard, M. Fouche, A. Brusch, O. Tcherbakoff, G.D. Rovera, and P. Lemonde, Accurate Optical Lattice Clock with 87 Sr Atoms. Physical Review Letters,2006.97(13):p.130801.
    53. P. Lemonde and P. Wolf, Optical lattice clock with atoms confined in a shallow trap. Physical Review A,2005.72(3):p.033409.
    54. M. Takamoto, T. Takano, and H. Katori, Frequency comparison of optical lattice clocks beyond the Dick limit. Nat Photon,2011. advance online publication.
    55. P. Clade, E. de Mirandes, M. Cadoret, S. Guellati-Khlifa, C. Schwob, F. Nez, L. Julien, et al., Determination of the Fine Structure Constant Based on Bloch Oscillations of Ultracold Atoms in a Vertical Optical Lattice. Physical Review Letters,2006.96(3):p.033001.
    56. G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Atom Interferometry with Trapped Fermi Gases. Physical Review Letters,2004.92(23):p.230402.
    57. I. Carusotto and G.C. La Rocca, Modulated Optical Lattice as an Atomic Fabry-Perot Interferometer. Physical Review Letters,2000.84(3):p. 399.
    58. H.B.G. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces. Physical Review,1948.73(4):p.360.
    59. E. Fischbach and C.L. Talmadge, The search for non-Newtonian gravity 1999, New York:Springer.
    60. C.I. Sukenik, M.G. Boshier, D. Cho, V. Sandoghdar, and E.A. Hinds, Measurement of the Casimir-Polder force. Physical Review Letters,1993. 70(5):p.560.
    61. D.M. Harber, Experimental investigation of interactions between ultracold atoms and room-temperature surfaces, in Department of Physics2005, University of Colorado.
    62. J.M. Obrecht, Measurement of temperature dependence of the Casimir-Polder force, in Department of Physics2001, University of Colorado.
    63. P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and A. Clairon, From optical lattice clocks to the measurement of forces in the Casimir regime. Physical Review A,2007.75(6):p.063608.
    64. R. Messina, S. Pelisson, M.-C. Angonin, and P. Wolf, Atomic states in optical traps near a planar surface, preprint arXiv:1103.1581v1,2011.
    65. A.A. Geraci, S.J. Smullin, D.M. Weld, J. Chiaverini, and A. Kapitulnik, Improved constraints on non-Newtonian forces at 10 microns. Physical Review D,2008.78(2):p.022002.
    66. L. Landau, Zur Theorie der Energieubertragung. Physics of the Soviet Union,1932.2:p.46-51.
    67. C. Zener, Non-Adiabatic Crossing of Energy Levels. Proceedings of the Royal Society of London. Series A,1932.137(833):p.696-702.
    68. L. Forster, M. Karski, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, et al., Microwave Control of Atomic Motion in Optical Lattices. Physical Review Letters,2009.103(23):p.233001.
    69. O. Mandel, M. Greiner, A. Widera, T. Rom, auml, T.W. nsch, and I. Bloch, Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice Potentials. Physical Review Letters,2003.91(1):p.010407.
    70. V.V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M.L Chiofalo, and G.M. Tino, Coherent Delocalization of Atomic Wave Packets in Driven Lattice Potentials. Physical Review Letters,2008.100(4):p.043602.
    71. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, Interference-filter-stabilized external-cavity diode lasers. Optics Communications,2006.266(2):p.609-613.
    72. D.A. Steck. Rubidium 87 D Line Data. revision 2.1.2,12 August 2009:[Available from:http://steck.us/alkalidata/.
    73. R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, Optical Dipole Traps for Neutral Atoms, in Advances In Atomic, Molecular, and Optical Physics, B. Benjamin and W. Herbert, Editors.2000, Academic Press. p.95-170.
    74. A. Kaplan, M. Fredslund Andersen, and N. Davidson, Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms. Physical Review A,2002.66(4):p.045401.
    75. Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pelisson, P. Wolf, and F. Pereira Dos Santos, Laser controlled tunneling in a vertical optical lattice, preprint arXiv:1102.5326,2011.
    76. C.J. Borde, Theoretical tools for atom optics and interferometry. Comptes Rendus de l'AcadEmie des Sciences-Series IV-Physics,2001.2(3): p.509-530.
    77. F. Impens and CJ. Borde, Generalized ABCD propagation for interacting atomic clouds. Physical Review A,2009.79(4):p.043613.
    78. P. Wolf and P. Tourrenc, Gravimetry using atom interferometers: Some systematic effects. Physics Letters A,1999.251(4):p.241-246.
    79. K. Bongs, R. Launay, and MA. Kasevich, High-order inertial phase shifts for time-domain atom interferometers. Applied Physics B:Lasers and Optics,2006.84(4):p.599-602.
    80. Z. Zhang, X. Wang, and Q. Lin, A novel way for wavelength locking with acousto-optic frequency modulation. Opt. Express,2009.17(12):p.10372-10377.
    81. M. Prevedelli, T. Freegarde, and T.W. Hansch, Phase-Locking of Grating-Tuned Diode-Lasers. Applied Physics B-Lasers and Optics,1995.60(2-3):p.S241-S248.
    82. X. Wang, B. Cheng, B. Wu, Z. Wang, and Q. Lin, A Simplified Cold Atom Source for 3-D MOT Loading. Chinese Physics Letters,2011.28(5):p. 053701.
    83. T.M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances. Journal of Optics B:Quantum and Semiclassical Optics,2002.4(1):p.62.
    84. J. Cho, Addressing Individual Atoms in Optical Lattices with Standing-Wave Driving Fields. Physical Review Letters,2007.99(2):p.020502.
    85. D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, and D. Meschede, Neutral Atom Quantum Register. Physical Review Letters,2004.93(15):p.150501.
    86. R. Scheunemann, F.S. Cataliotti, T.W. Hansch, and M. Weitz, Resolving and addressing atoms in individual sites of a CO2-laser optical lattice. Physical Review A,2000.62(5):p.051801.
    (?).根据开放版权协议GFDL (GNU Free Documentation License)引用自Wikipedia的描述性图片。在本论文中以同样版权协议引用的描述性图片均加有(?)记号。除非另作说明,其他的图片均为原创性工作。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700