自由特征及对象族特征造型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在语义特征模型中,特征语义由形状信息和功能信息构成,这种建模系统不仅能完整定义特征的语义信息,而且能在模型的整个设计周期内维护特征语义的有效性,使设计人员在产品开发所有阶段设计有正确语法和一致语义的模型。随着CAD技术的不断发展,工业设计模型越来越复杂,精确度越来越高,这些需求驱动特征造型技术不断发展。当前语义特征造型技术还不成熟,很多技术难点还未攻克。本文针对语义特征建模系统,对自由特征及对象族特征造型关键技术进行研究,主要研究内容如下:
     详细阐述了一种自由特征模型参数化方法,通过封装参数和约束创建任意形状的体特征。通过在基准曲面上确定多个自由特征定义点,执行插值运算构造与基准曲面正交的横截面,对横截面执行蒙皮算法和扫掠算法,创建封闭自由体特征。算法实例表明,此方法构造的自由特征与基准曲面之间是G2连续的。为提高自由特征建模效率,提出一种语义特征造型中针对自由特征几何约束问题的求解算法。通过分析约束图,识别出四面体和三角形子问题;利用图分析算法将自由特征定义点上的距离约束和角度约束映射到四面体和三角形约束图上;利用局部传播法求解各子问题,先求解三角形约束,再利用手向性规则求解四面体约束;将各子问题的解组合为问题的全局解。
     提出一种新的陈述式语义特征模型,即陈述式对象族理论模型,给出模型的表示方法、拓扑形态以及几何形态。定义了模型的基本元素,以及模型成员的几何信息和拓扑信息,详细说明了对象族的不同特征和不同属性。基于组重写方法和自由度分析法,提出一种求解陈述式对象族模型的几何约束求解算法。将模型分类,给出每类模型的重写规则。在刚性组或非刚性组系统中,穷举地应用重写规则的较小集合执行本算法,一直到没有可用的重写规则为止,最后得到组的集合即为系统的求解策略。该算法不仅能识别刚性子问题,而且能识别只能通过自由度方法求解的子问题,可以确定系统是完备约束的、过约束的、还是欠约束的。
     针对陈述式对象族模型拓扑约束问题,提出一种新的求解方法。将所有拓扑约束通过映射函数映射成为布尔约束,利用布尔约束求解器求解问题的解。首先假设求解器已经找到一个解,将此解作为一个参数,通过增加子句,将解中的值取反赋予系统中第一个自由变量。如果没有找到新解,确定下一个自由变量,一直到没有自由变量为止。如果向系统中成功增加取反子句,可找到一个解。通过递归应用本算法找到更多解。如果不能向系统变量中增加取反子句,此时算法退出。如果还可以增加,则调用递归算法。为使递归算法更加高效,在返回解之前,删除算法中所有单位子句。
     针对陈述式对象族模型拓扑改变问题,提出一种跟踪拓扑变化的算法。算法首先建立参数和拓扑之间的关系,通过几何形态建立与几何约束系统相关联的参数化模型和拓扑实体,确定系统中哪些实体依赖变量参数。通过增加几何约束构造每个依赖实体的退化实例,利用几何约束求解器求解该退化实例,计算出变量参数对应的临界值。重复此过程,一直找到所有的临界变量。
     陈述式对象族模型中有效性约束的两个重要方法是几何约束和拓扑约束,用户在维护模型有效性时可能因为参数选取不当产生无效模型。针对此问题,提出一种为单个参数确定恰当参数范围算法,在这个范围内任意数值都符合有效性要求。算法首先对拓扑约束图进行分析,找到角度约束和距离约束,将约束增加到相应几何约束中;再分析由几何约束求解器创建的结构图,找到一个或多个退化子问题的临界参数值;最后测试所有区间中的具体数值,从而确定准确参数范围。
Feature semantics consist of shape information and function information in semantic feature model,it is not only to define completely feature semantic, but also to maintain model's validity in total life cycle in semantic feature modeling system, therefore, users design model which is right in grammar and consistent in semantics in all of development stages. With the development of CAD technology, industrial design model has been more and more complexity, and its accuracy has also been higher and higher, feature modeling technology has been driven by these requirements to develop. At present, semantic feature modeling technology is immature, and has lots of technique difficulties to be conquered. To semantic feature modeling system, key technologies about freeform feature and family of object feature are researched in this thesis, and the main contents are as follows:
     A parameterization algorithm of freeform feature was proposed in this thesis, parameters and constraints were encapsulated to create freeform shape volume feature in this method. Several freeform feature definition points were specified on a base surface, and interpolation algorithms were computed on these points to construct cross-section located on and orthogonal with the base surface, then these cross-sections were computed with skinning algorithm. The algorithm's example indicated that G2continuity between freeform feature created by this method and base surface can be guaranteed. To improve efficiencies of freeform feature modeling, a geometric constraint solving algorithm of semantic feature modeling was presented in this thesis. In this algorithm, feature dependency graph was analyzed to recognize tetrahedron and triangle sub-problems. Distance constraints and angle constraints on freeform feature definition points were mapped to a constraint graph of tetrahedron and triangle by a kind of graph analysis algorithms. Then each sub-problem was solved by local propagation method, triangle constraint was solved, and tetrahedron constraint was solved by hand-direction rules. Finally, solves of every sub-problem were combined into a global solve.
     A new kind of declarative semantic feature model was proposed in this thesis, and geometric representation, topological structure and geometric structure were provided. Basic elements, geometric information and topological information were defined, different properties of different features and family of object were specified. Based on cluster rewrite approach and degree of freedom analyzing method, geometric constraint solving algorithm of declarative family of object feature model was proposed. Feature models were divided three types, namely, rigid cluster, scalable cluster and radial cluster in this algorithm. Rewrite rules were described, rules were to exhaustively applied a small set of rewrite rules to a system of rigid and non-rigid clusters, and the set of clusters remaining when no more rewrite rules can be applied represent the generic solution of the system. From the generic solution, modeling system could compute particular solutions, and determine whether the system is well-constrained, under-constrained or over-constrained.
     A topological constraint solving method of declarative family of object model was presented in this thesis, all topological constraints were mapped to boolean constraints by mapping functions, then constraint problems were solved in solver. The algorithm for finding all solutions assumes that a solution has already been found by the solver, and is given as an argument to the algorithm, along with the solver state, and a third argument representing the number of fixed variables. The algorithm attempts to fix the first free variable in the system to the complementary value of the value in the given solution. It does this by adding a unit-clause to the system. If this results in an un-satisfiable problem, then instead the variable is fixed to the value found in the solution. As long as no new solution is found, the next free variable in the system is fixed, until no free variables remain.
     To topological change problem in declaring family of object models, a tracking topological change algorithm was proposed in this thesis. Relations between parameter and topology were built, and created a system of geometric constraints to relate the parameters of a model to topological entities in the geometric representation. From the decomposition of this system into its rigid subsystems, we determine which entities are dependent on the variant parameter. For each dependent entity, degenerate cases were constructed by adding geometric constraints to the system. The degenerate cases were solved using a geometric constraint solver, and from the solutions the corresponding values of the variant parameter were computed, i.e. the critical values. This process was repeated for different topological variants of the model, until all critical values had been found.
     Geometric constraint and topological constraint are two important representations of validity constraint in declarative family of object model. Invalid models are produced because of un-available parameters when users are maintaining feature models, an approach for automatically determining the allowable range for parameters of geometric constraints was presented in this thesis, and each parameter value is available in this range. Firstly, topological constraint graph was analyzed to find angle constraint and distance constraint, and add these constraints to geometric constraints. Then structure graph created by geometric constraint solver was analyzed to find one or more critical parameter value of degenerate sub-problems. Finally, parameter ranges in all ranges were tested to determine accurate parameter value.
引文
[1]王隆太.机械CAD/CAM技术[M].第2版.北京:机械工业出版社,2009:1-2.
    [2]YU GUANGXU, MULLER, JENS-DOMINIK, JONES DOMINIC and et al. CAD-based shape optimisation using adjoint sensitivities[J]. Computers and Fluids,2011,46(1):512-516.
    [3]BIDARRA R, BRONSVOORT W F. Semantic feature modeling[J]. Computer-Aided Design,2000,32(3):201-225.
    [4]王竹荣,张九龙,崔杜武.一种求解度约束最小生成树问题的优化算法[J].软件学报,2010,21(12):3068-3081.
    [5]高曙明,何发智.分布式协同设计技术综述[J].计算机辅助设计与图形学学报,2004,16(2):149-158.
    [6]CHEN LI QING, LU LEI, ZHANG JIA QI and et al. Development of intelligent CAD design system for straw crusher[J]. Advanced Manufacturing Systems,2011,201-203:810-813.
    [7]LIANG J. Generation of a virtual reality-based automotive driving training system for CAD education[J]. Computer Applications in Engineering Education,2011,17(2):148-166.
    [8]ZHOU ZHENG. Data security assurance in CAD-PACS integration [J]. Computerized Medical Imaging and Graphics,2007,31(4-5):353-360.
    [9]舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述[J].计算机辅助设计与图形学学报,2000,12(12):947-954.
    [10]BRONSVOORT W F, BIDARRA R, NYIRENDA P J. Developments in feature modeling[J]. Computer-Aided Design and Application,2006,3(5): 655-664.
    [11]ROSSIGNAC J R, BORREL P, NACKMAN L R. Interactive design with sequences of parameterized transformations[M]. Intelligent CAD systems II: implementational issues,2009:93-125.
    [12]WANG Y W, WU J J, CHEN L P and et al. Identity propagation method for tracing alterations of a topological entity in a history-based solid modeling system [J]. Journal of Advanced Manufacturing Technology,2005, 27(3-4):305-312.
    [13]荆树旭,何发智,刘华俊.拓扑元素永久命名综述[J].计算机辅助设计与图形学学报,2007,19(5):545-552.
    [14]WU T, XI Y S, LI Z and et al. Coding and decoding of topological entities in constraint-based variational design[C].2008 International Conference on Advances in Product Development and Reliability,2008:201-208.
    [15]孙立镌.计算机图形学[M].哈尔滨:哈尔滨工业大学出版社,2000:120-121.
    [16]刘植,邬弘毅,张莉等.参数曲线曲面自由变形的多项式因子方法[J].计算机辅助设计与图形学学报,2009,21(3):412-418.
    [17]BIDARRA R, KRAKER K J D, BRONSVOORT W F. Representation and management of feature information in a cellular model [J]. Computer-Aided Design,1998,30(4):301-313.
    [18]BIDARRA R, MADEIRA J, NEELS W J and et al. Efficiency of boundary evaluation for a cellular model[J]. Computer-Aided Design,2005,37(12): 1266-1284.
    [19]BIDARRA R, BRONSVOORT W F. Validity maintenance of semantic feature models[C]. ACM. Proceedings of the fifth ACM symposium on solid modeling and applications, Michigan,1999:85-96.
    [20]DEN BERG E V, BRONSVOORT W F. Validity maintenance for freeform feature modeling[J]. Journal of Computing and Information Science in Engineering,2010,10(1):1-14.
    [21]AIT-AOUDIA S, FOUFOU S. A 2D geometric constraint solver using a graph reduction method[J]. Advances in Engineering Software,2010, 41(10-11):1187-1194.
    [22]翟振刚,陆耀,赵红.利用块几何约束及视差概率的立体匹配算法[J].软件学报,2010,21(11):2985-2998.
    [23]BRONSVOORT W F, JANSEN F W. Feature modeling and conversion-key concepts to concurrent engineering[J]. Computers in Industry,1993,21(1): 61-86.
    [24]SHAH J J, MANTYLA M. Parametric and feature-based CAD/CAM concepts, techniques and application[M]. New York:Wiley,1995:36-104.
    [25]FABRE A, SCHRECK P. Combining symbolic and numerical solvers to simplify indecomposable systems solving[C]. Proceedings of the 23rd Annual ACM Symposium on Applied Computing, SAC'08,2008:1838-1842.
    [26]ESLAMIAN M, VAHIDI B, HOSSEINIAN S H. Analytical calculation of detailed model parameters of cast resin dry-type transformers [J]. Energy Conversion and Management,2011,52(7):2565-2574.
    [27]BIDARRA R, DEN BERG E V, BRONSVOORT W F. A collaborative feature modeling system[J]. Transactions of the ASME,2002,2:192-198.
    [28]陈立前,王戟,刘万伟.基于约束的多面体抽象域的弱接合[J].软件学报,2010,21(11):2711-2724.
    [29]FOLEY, VAN DAM, FEINER and et al. Computer Graphics:Principles and Practice[M]. Addison Wesley,2006:480-514.
    [30]NORMAN S. An industry perspective on the beginnings of CAD[J]. SIGCSE Bulletin,2008,40(2):128-134.
    [31]高雪瑶,孙立镌.语义特征造型的拓扑元素编码机制[J].计算机应用研究,2010,27(3):938-941.
    [32]DE KRAKER K J, DOHMEN M, BRONSVOORT W F. Multiple-view feature modelling with model adjustment[C]. Proceedings of the fourth ACM symposium on Solid Modeling and Applications, Atlanta,2007:123-130.
    [33]BRONSVOORT W F, NOORT A. Multiple-view feature modeling for integral product development[J]. Computer-Aided Design,2004,36 (10): 929-946.
    [34]林强,高小山,刘媛媛等.基于几何约束求解的完备方法[J].计算机辅助设计与图形学学报,2007,19(7):828-815.
    [35]BRONSVOORT W F, BIDARRA R, MEIDEN HA V D and et al. The increasing role of semantics in object modeling[J]. Computer-Aided Design and Applications,2010,7(3):431-440.
    [36]黄伟贤,王国瑾.G1端点约束的Bezier曲线曲面的Ribs和Fans[J].计算机研究与发展,2011,48(9):1781-1787.
    [37]戴春来.样条曲线的参数化方法[J].计算机辅助设计与图形学学报,2005,17(6):1207-1212.
    [38]BIDARRA R,NEELS W J, BRONSVOORT W F. Boundary evaluation for a cellular model[C]. Proceedings of ASME Design Engineering Technical Conferences, Chicago,2003:1-13.
    [39]BIDARRA R, NOORT A. Advanced direct manipulation of feature models[C]. Proceedings of the 2nd International Conference on Computer Graphics Theory and Applications, Barcelona, Spain,2007:731-736.
    [40]BRONSVOORT W F, BIDARRA R, NOORT A. Feature model visualization[J]. Computer Graphics Forum,2002,21(4):661-673.
    [41]潘日晶,姚志强.基于动态参数化的二次B样条插值曲线[J].计算机学报,2005,28(3):334-342.
    [42]赵伟,高曙名.基于层次B样条的自由形状特征重用[J].计算机辅助设计与图形学学报,2008,20(1):6-12.
    [43]SEONG J K, COHEN E, ELBER G. Voronoi diagram computations for planar NURBS curves[C]. SIGGRAPH:ACM Special Interest Group on Computer Graphics and Interactive Techniques. ACM Symposium on Solid and Physical Modeling. New York,2008:67-77.
    [44]ROBINSON T T, ARMSTRONG C G, FAIREY R. Automated mixed dimensional modelling from 2D and 3D CAD models [J]. Finite Elements in Analysis and Design,2011,47(2):151-165.
    [45]DEN BERG E V, BRONSVOORT W F, JORIS S M VERGEEST. Techniques for freeform feature modeling[C]. Huazhong University of Science and Technology Press. Fourth International Symposium on Tools and Methods of Competitive Engineering, Wu Han,2002:201-211.
    [46]DEN BERG E V, DER MEIDEN H A V, BRONSVOORT W F. Specification of freeform features[C]. ACM Press. Proceedings of the eighth ACM symposium on Solid modeling and application. Washington,2003:56-64.
    [47]曹世翔,江洁,张广军.边缘特征点的多分辨率图像拼接[J].计算机研究与发展,2011,48(9):1788-1793.
    [48]NYIRENDA P J, MULBAGAL M, BRONSVOORT W F. Definition of freeform surface feature classes [J]. Computer-Aided Design and Applications, 2006,3(1-4):665-674.
    [49]DEN BERG E V, BRONSVOORT W F. Parameterised, constraint-based wrapping of freeform shapes[J]. Computers and Graphics,2007,31(1): 89-99.
    [50]HOFFMANN C M, PETERS J. Geometric constraints for CAGD[C]. Vanderbilt University Press. Mathematical methods for Curves and Surfaces, 2005:237-254.
    [51]BOUMA W, FUDOS I, HOFFMANN C M. A geometric constraint solver[J]. Computer-Aided Design,2005,26(6):487-501.
    [52]HOFFMANN C M. Geometric constraint solving in R2 and R3 in "Computing in Euclidean Geometry"[C]. World Scientific,2005:266-298.
    [53]FUDOS I, HOFFMANN C M. Constraint-based parametric conics for CAD[J]. Computer-Aided Design,2010,28(2):91-100.
    [54]FUDOS I, HOMANN C M. A graph-constructive approach to solving systems of geometric constraints[J]. ACM Transactions on Graphics,2007, 16(2):179-216.
    [55]HOFFMANNC M, LOMONOSOV A, SITHARAM M. Geometric constraint decomposition[J]. Geometric Constraint Solving. Berlin, Springer-Verlag, 1998:1-20.
    [56]DURAND C, HOFFMANN C M. Variational constraints in 3D[C]. IEEE Computer Society. Proceedings International Conference on Shape Modeling and Applications. Los Alamitos,1999:38-47.
    [57]HOFFMANN C M, YUAN BO. On spatial constraint solving approaches [J]. Automated Deduction in Geometry,2001,2061(2001):1-15.
    [58]HOFFMANN C M. Constraint-based CAD[J]. Journal of Computing and Information Science in Engineering,2005,5(3):182-197.
    [59]LOURENCO D, OLIVEIRA P, NOORT A and et al. Constraint solving for direct manipulation of features [J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,2006,20(4):369-382.
    [60]孟祥旭,徐延宁.参数化设计研究[J].计算机辅助设计与图形学学报,2002,14(11):1086-1090.
    [61]季晓慧,张健.一种求解混合约束问题的快速完备算法[J].计算机研究与发展,2006,43(3):551-556.
    [62]HILLYARD R, BRAID I. Analysis of dimension and tolerances in computer-aided mechanical design[J]. CAD,1978,10(3):161-166.
    [63]GOSSARD D, ZUFFANTE R P, HIROSHI and et al. Representing dimension, Tolerances and Features in MCAE systems[C]. IEEE CG&A, 1988:51-59.
    [64]PARBON J, YOUNG R. Integrating parametric geometry, features, and variational modeling for Conception Design[J].Journal of System Automation,2002,4:17-37.
    [65]VERROUST, FSCHONEK, DROLLER. Rule-oriented method for parameterized[J]. Computer-Aided Design,2010,24(10):531-540.
    [66]TODD P.A k-tree generalization that characterizes consistency of dimensioned engineering drawings[J]. SIAM J. of Disc.Math.,1989,2: 255-261.
    [67]NYIRENDA P J, BRONSVOORT W F. Numeric and curve parameters for freeform surface feature models[J]. Computer-Aided Design,2008,40(8): 839-851.
    [68]SHEN G, SAKKALIS T, PATRIKALAKIS N M. Boundary representation model rectification[J].Graphical Models,2001,63(3):177-195.
    [69]KWANWOO LEE, KYO CHUL KANG, JAEJOON LEE. Concepts and guidelines of feature modeling for product line software engineering[C]. Proceeding ICSR-7 Proceedings of the 7th International Conference on Software Reuse:Methods, Techniques, and Tools,2002:62-77.
    [70]BRONSVOORT W F, BIDARRA R, MEIDEN HA V D and et al.The increasing role of semantics in object modeling[J]. Computer-Aided Design and Applications,2010,7(3):431-440.
    [71]BIDARRA R, BRONSVOORT W F. Persistent naming through persistent entities [C]. Proceedings of the Geometric Modeling and Processing-Theory and Applications, Washington,2002:233-230.
    [72]KRIPAC J. A mechanism for persistently naming topological entities in history-based parametric solid models[J]. Computer-Aided Design,1995, 29(2):113-122.
    [73]CHEN X, HOFFMANN C M. On editability of feature-based design[J]. Computer-Aided Design,2005,27(12):905-914.
    [74]CAPOYLEAS V, CHEN X, HOFFMANN C M. Generic naming in generative, constraint-based design[J]. Computer-Aided Design,1996,28(1): 17-26.
    [75]WU J, ZHANG T, ZHANG X and et al. A face based mechanism for naming, recording and retrieving topological entities [J]. Computer-Aided Design, 2001,33(10):687-698.
    [76]MARCHEIX D, PIERRA G. A survey of the persistent naming problem[C]. ACM. Proceedings Solid Modeling 2002-Seventh Symposium on Solid Modeling and Applications, New York,2002:17-21.
    [77]BIDARRA R, NYIRENDA P J, BRONSVOORT W F. A feature-based solution to the persistent naming problem[J]. Computer-Aided Design and Applications,2005,2(1):517-526.
    [78]RAPPOPORT A. The generic geometric complex (GGC):a modeling scheme for families of decomposed point sets[C]. ACM. Proceedings Solid Modeling 1997, Fourth ACM Symposium on Solid Modeling and Applications, Georgia, 1997:19-30.
    [79]SHAPIRO V, VOSSLER D L. What is a parametric family of solids[C]. ACM. Proceedings of the Third ACM/IEEE Symposium on Solid Modeling and Applications, Salt Lake City,2010:17-19.
    [80]BAHLEN T M, SPENCE A D, BRONSVOORT W F. Extraction and visualization of dimensions from a geometric model[J]. Computer-Aided Design and Applications,2010,7(4):579-589.
    [81]RAGHOTHAMA S, SHAPIRO V. Boundary representation deformation in parametric solid modeling[J]. ACM Transactions on Graphics,1998,17(4): 259-286.
    [82]RAGHOTHAMA S, SHAPIRO V. Topological framework for part families[J]. Journal of Computing and Information Science in Engineering, 2002,2(4):246-255.
    [83]RAGHOTHAMA S. Constructive topological representations[C]. ACM. Proceedings ACM Symposium on Solid and Physical Modeling, New York, 2006:39-51.
    [84]TAPIA M. A visual implementation of a shape grammar system[J]. Environment and Planning B:Planning and Design,1999,26(1):59-73.
    [85]CHAU H, CHEN X, MCKAY A and et al. Evaluation of a 3D shape grammar implementation[J]. Elsevier Science. Design Computing and Cognition'04, Cambridge,2004:357-376.
    [86]COYNE B, SPROAT R. Wordseye:An automatic text-to-scene conversion system[C]. ACM.28th annual conference on Computer Graphics and Interactive Techniques, New York,2001:487-496.
    [87]KWAITER G, GAILDRAT V, CAUBET R. Dem2ons:A high level declarative modeler for 3D graphics applications[C]. In Proceedings CISST97, International Conference on Imaging Science Systems and Technology, Las Vegas,1997:149-154.
    [88]RUCHAUD W, PLEMENOS D. Multiformes:a declarative modeller as a 3D scene sketching tool[C]. Elsevier Science. In Proceedings ICCVG'2002, International Conference on Computer Vision and Graphics,2002:1-6.
    [89]NYIRENDA P J, BRONSVOORT W F. A framework for extendable freefrom surface feature modeling[J]. Computers in Industry,2009,60(1): 35-47.
    [90]DE REGT R, MEIDEN HA V D, BRONSVOORT W F. A workbench for geometric constraint solving[J]. Computer-Aided Design and Applications, 2008,5(1-4):471-482.
    [91]PODGORELEC D, ZALIK B, DOMITER V. Dealing with redundancy and inconsistency in constructive geometric constraint solving[J]. Advances in Engineering Software,2008,39(9):770-786.
    [92]MEIDEN HA V D, BRONSVOORT W F. Solving topological constraints for declarative families of objects[J]. Computer-Aided Design,2007,39(8): 652-662.
    [93]XIA H J, WANG B X, CHEN L P and et al.3D geometric constraint solving using the method of kinematic analysis[J]. International Journal of Advanced Manufacture Technology,2008,35(7-8):711-722.
    [94]MEIDEN HA V D, BRONSVOORT W F. A non-rigid cluster rewriting approach to solve systems of 3D geometric constraints [J]. Computer-Aided Design,2010,42(1):36-49.
    [95]DER MEIDEN H A V, BRONSVOORT W F. Tracking topological changes in parametric models[J]. Computer Aided Geometric Design,2010,27(3): 281-293.
    [96]DER MEIDEN H A V, BRONSVOORT W F. Modeling families of objects: review and research directions [J]. Computer-Aided Design and Applications, 2009,6(3):291-306.
    [97]DER MEIDEN HA V, BRONSVOORT WF. An efficient method to determine the intended solution for a system of geometric constraints [J]. International Journal of Computational Geometry and Applications,2005, 15(3):279-98.
    [98]赵伟.自由形状特征的重用与抑制[D].杭州:浙江大学,2008:13-17.
    [99]BARR A H. Global and local deformations of solid primitives[J]. Computer Grahics,1984,18(3):21-31.
    [100]SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. Computer Graphics,2010,20(4):151-160.
    [101]COQUILLART S. Extended free-form deformation:a sculpturing tool for 3D geometric modeling[J]. Computer Graphics,2009,24(4):187-196.
    [102]KONNO K, CHIYOURA H. An approach of designing and controlling free-form surfaces by using NURBS boundary Gregory patches[J]. Computer Aided Geometric Design,1996,13(9):825-849.
    [103]NYIRENDAP J, BRONSVOORT W F, LANGERAK T R and et al. A generic taxonomy for defining freeform feature classes[J], Computer-Aided Design and Applications,2005,2(1-4):497-506.
    [104]WU X J, WANG M Y, LIU W J. Heterogeneous object slicing with geometric contour constraint [J]. Computer-Aided Design and Application,2009,6(1): 137-145.
    [105]CHEUTET V, DANIEL M, HAHMANN S and et al. Constraint modeling for curves and surfaces in CAGD:a survey[J]. International Journal of Shape Modeling,2007,13(2):159-199.
    [106]DER MEIDEN H A V, BRONSVOORT W F. An efficient method to determine the intended solution for a system of geometric constraints [J]. International Journal of Computational Geometry and Applications,2005, 15(3):279-298.
    [107]LAM AN G. On graphs and rigidity of plane skeletal structures[J]. Journal of Engineering Mathematics,2007,4(4):331-340.
    [108]DURAND C, HOFFMANN C M. A systematic framework for solving geometric constraints analytically [J]. Journal of Symbolic Computation,2000, 30(5):495-519.
    [109]张鹏程,李必信,李雯睿.时间属性序列图:语法和语义[J].软件学报,2010,21(11):2752-2767.
    [110]SITHARAM M. Well-formed systems of point incidences for resolving collections of rigid bodies[J]. International Journal of Computational Geometry and Application,2006,16(5):591-615.
    [111]BENDSOE M P. Optional shape design as a material distribution problem[J]. Structural Optimization,2009,1(1):193-202.
    [112]TOTH TIVADAR M. Determination of geometric parameters of fracture networks using 1D data[J]. Journal of Structural Geology,2010,32(7): 878-885.
    [113]BOZCA M. Torsional vibration model based optimization of gearbox geometric design parameters to reduce rattle noise in an automotive transmission[J]. Mechanism and Machine Theory,2010,45(11):1583-1598.
    [114]YIN YOUBING, HOFFMAN, ERIC A, and et al. A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation[J]. Physics in Medicine and Biology,2011,56(1): 203-218.
    [115]WEN H, ZHANG P, LI Z Y and et al. Research on Manufacturing Resource Sharing Framework Based on RSM[C]. Proceedings of the Third International Conference on Semantics, Knowledge and Grid, Washington, DC USA,2007:574-575.
    [116]FAROUK T. The approximation of non-degenerate offset surfaces[J]. Computer Aided Geometric Design,2006,3(1):15-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700