丹参素对电离辐射损伤的防护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     近年来,核能和核技术广泛应用于能源、医疗、军事、食品加工、育种等国防和国民生活的方方面面,与人们日常生活息息相关。目前,可能受到放射线损伤的人群主要有接受放疗的癌症病人;从事与放射相关的工作人员,如放射科室的医务人员、核电站与辐射加工企业的工作人员、从事与核科学有关研究的科研工作者、各种核事故的波及人员以及宇航人员等,辐射在给人类造福的同时,对人们的健康也带来不同程度的威胁。
     电离辐射对生物体造成损伤主要通过两种方式,一是直接作用,指由射线造成生物大分子的损伤,电离辐射的能量直接沉积于生物大分子,造成DNA链的断裂、蛋白酶失活或者破坏细胞内的膜的结构或通透性,从而影响细胞的正常功能。二是间接作用,指生物大分子的破坏和失活是由于电离辐射作用于水分子,继而水的辐射分解产物再作用于生物大分子,引起后者的物理和化学变化,从而诱导细胞凋亡。细胞经受辐射的直接作用和间接作用后,细胞膜和细胞内DNA发生改变以及大量ROS的产生,诱导细胞内多种信号分子的活化,或信号通路的激活,最终导致辐射后细胞凋亡、癌变,甚至机体死亡。
     电离辐射对机体的损伤极大。迄今为止,虽然发现了一些有效预防损伤的化合物,如五十年前就已经发现了氨巯基化合物,三十年前合成的WR系列化合物等,这些已开发的抗辐射药物尽管拥有很好的抗辐射作用,但尚存在毒性大、不良反应多等多方面的不足,人们迫切希望能开发出毒性小,可用于临床防治电离辐射损伤的药物。丹参素(SalvianicacidA)是从唇形科植物丹参水溶性成分中提取的多酚
     类物质,大量实验报道,丹参素具有抗炎、增强机体免疫力、抗肿瘤、保护肝脏、抑制肝纤维化、保护心肌细胞及中枢神经系统、防治心脑血管疾病的作用。我们前期实验发现,丹参素能广泛地清除各种自由基,降低小鼠经电离辐照后的死亡率,并明显减轻在体和离体实验中辐射引起的各种损伤。本实验拟进一步观察丹参素的辐射防护作用,并研究丹参素的辐射防护作用是否与其保护细胞DNA不受损伤、抑制细胞凋亡有关,进一步在细胞实验中探索丹参素发挥辐射防护作用时参与的信号通路及其可能的作用机制。
     实验目的:
     1.观察丹参素对辐射损伤小鼠的保护作用。
     2.观察丹参素对辐射引起人正常细胞生长抑制的作用;并进一步研究丹参素对辐射损伤细胞形态、DNA、线粒体等的保护作用;
     3.探索丹参素辐射防护作用的可能机制以及信号通路;
     实验方法:
     动物实验
     雄性BALB/c小鼠(22±2g)适应环境后,随机分为五组:1)生理盐水对照组,2)单独照射组,3)丹参素10mg/Kg组,4)丹参素20mg/Kg组,5)阳性对照雌三醇(E3,2mg/Kg)组。不同浓度丹参素灌胃7天,阳性对照E3组在辐照前48h,24h,0h分别腹腔给药3次,然后给予不同剂量的γ射线照射。并于辐照后不同时间取材,观察丹参素对辐射损伤小鼠的生存率的影响,外周血中白细胞、红细胞、血红蛋白和血小板含量的变化,脾脏的病理学以及脾脏造血干细胞克隆形成率的改变,骨髓有核细胞数以及小鼠肝脏抗氧化能力的变化。
     细胞实验
     借助MTT法检测丹参素对四种人正常细胞的毒性和辐射防护作用,进一步采用克隆形成法观察丹参素对辐射损伤的L-02和HIEC细胞增殖能力的影响,然后用微核法,彗星尾实验,细胞免疫荧光观察丹参素对辐照细胞DNA的保护作用,最后分别使用荧光探针和生化方法检测丹参素对辐照损伤细胞的线粒体和氧化还原系统的保护作用。
     为了研究丹参素对辐照损伤细胞中凋亡相关的信号通路的影响,取对数期生长的L-02细胞与丹参素共孵育1h后给予γ射线照射,继续分别培养不同时间,用WesternBlot方法检测细胞中凋亡通路、DNA修复、JNK通路和Ca~(2+)通路相关蛋白的表达,用比色法检测细胞凋亡通路中蛋白激酶的变化。
     实验结果:
     (1)丹参素对辐射损伤小鼠的保护作用
     丹参素可以提高8Gy照射后30天小鼠的存活率,可以明显抑制4Gyγ射线照射后28天内外周血红细胞、白细胞、血红蛋白和血小板减少。
     丹参素可减轻由辐照所致的小鼠脾脏重量的过度减轻,而且经丹参素预处理后,受照小鼠内源性脾结节较照射组均明显增多。形态学观察表明,4Gyγ射线照射后即可见脾脏体积明显缩小,脾切面上脾小体缩小或完全消失,大量淋巴细胞凋亡,而照前给予丹参素则能有效的抑制辐射引起的生发中心的萎缩,减少淋巴细胞凋亡。同时经丹参素处理过的小鼠骨髓细胞中的有核细胞计数明显多于照射组,表明丹参素能增强骨髓细胞对辐射的耐受性。丹参素预处理能增强小鼠肝脏抗氧化酶类的活性,减少肝脏蛋白的氧化水平并抑制肝脏的脂质过氧化水平。
     (2)丹参素预处理对四种人正常细胞的毒性和辐射防护作用
     MTT法实验结果显示,不同浓度的丹参素对L-02、HIEC、GES、HaCaT四种人正常细胞都没有产生明显毒性,而且在孵育1h时,丹参素对四种细胞均表现出促进增殖的作用,因此我们选择丹参素提前孵育1h做后续的辐射防护实验。在之后的辐射防护实验中,四种细胞的活力在经过γ射线的照射后都有不同程度的下降,而丹参素1h的预处理则能明显提高四种细胞的生存数量,其中10μg/ml丹参素的作用效果最明显。根据细胞对γ射线和丹参素的敏感性,我们选用了L-02和HIEC两种细胞做后续实验。
     (3)丹参素对L-02和HIEC细胞辐射损伤的防护作用
     首先细胞克隆形成和凋亡ER实验的结果表明细胞辐照前1h给予丹参素孵育能显著提高细胞的增殖能力,增加细胞的克隆形成数(P<0.01),并能显著减少细胞凋亡(P<0.01)。而且丹参素预处理也能明显减少辐射损伤细胞形态的改变和细胞核的损伤。
     与单纯照射组相比,丹参素预处理组γ-H2AX活化的阳性细胞数以及活化强度有明显减轻,说明丹参素降低了γ射线辐照后细胞DNA受损程度。另外微核实验中丹参素的预处理能够明显减少微核的形成率,减轻辐射诱导的细胞核的损伤。彗星尾实验中,丹参素预处理组较单纯照射组中细胞的尾长缩短、尾部DNA的百分比下降、尾矩减小,显示丹参素对辐射损伤的DNA有保护作用。
     对细胞线粒体膜电位的测定结果显示丹参素预处理过的细胞表现出膜电位恢复的现象(P<0.01)。另外,我们的研究发现丹参素预处理能明显减少辐射在L-02和HIEC细胞内的ROS(P<0.05),还能在一定程度上恢复细胞内抗氧化酶的活性,增加抗氧化物质的含量,减轻细胞脂质过氧化的程度,维持细胞氧化还原系统的正常功能。
     (4)丹参素对辐射诱导细胞中凋亡相关通路活化的抑制作用
     凋亡相关蛋白的检测结果显示照射后48h细胞内,与单纯照射组相比,Bax/Bcl-2的比值随着丹参素浓度的升高而有显著降低,而p53的表达随着预处理丹参素浓度的升高也是有显著降低,。这些说明丹参素能够促进抗凋亡蛋白的表达,抑制促凋亡蛋白的表达。细胞经过4Gyγ射线照射后,从线粒体释放到胞浆中的Cyt-C和AIF的蛋白含量显著上升,而经丹参素预处理之后再给予4Gyγ射线照射能够降低Cyt-C和AIF的释放,从而抑制由线粒体损伤引起的细胞凋亡。另外,细胞内由辐射引起的Caspase3/8/9蛋白激酶的活化在丹参素的干预下都有所减少,上述结果表明,丹参素能够通过抑制蛋白激酶的活化从而降低辐射诱导的细胞凋亡。
     (5)丹参素对辐射损伤细胞DNA的保护作用
     细胞内γ-H2AX在4Gy射线照射后,即刻开始出现,3h达到最高峰;而经过丹参素干预的实验组γ-H2AX在照后1h就达到最高峰;说明丹参素预处理能够加快H2AX的磷酸化,促进损伤DNA的修复。
     辐照组γ-H2AX的上游分子ATM的表达水平从照后即刻开始到辐照后3h,逐渐增加,之后反而下降。而丹参素处理组中ATM从照后即刻开始直至照后3h一直处于活化状态。RT-PCR的结果显示经丹参素预处理的辐射损伤细胞中的ATM上调最多,但是4Gy单纯照射组和丹参素+辐照组与对照相比均无统计学差异。这说明丹参素对辐射损伤的细胞中ATM表达的影响主要集中在蛋白的合成和降解上。
     (6)丹参素对辐射诱导细胞中JNK信号通路活化的抑制作用
     丹参素预处理L-02细胞1h后经4Gyγ射线照射,继续培养24小时后,p38和JNK的表达均无明显变化,磷酸化的p38蛋白也没有明显变化,而磷酸化的JNK蛋白,p-JNK在受照后显著增加,而丹参素的预处理则能抑制辐射诱导的JNK蛋白的磷酸化,说明丹参素抑制辐射诱导的JNK激酶的磷酸化。经过丹参素预处理4Gyγ射线照射,继续培养12小时后,JNK激酶的上游分子p-MKK4的表达水平在辐照后显著升高,而丹参素预处理能降低p-MKK4的表达水平,MKK4的表达没有变化,NFκB的表达水平在细胞辐照后有所上升,但是丹参素对于辐照后NFκB的表达没有影响。
     使用JNK的特异性抑制剂SP600125,辐照后36hJNK通路下游分子c-Jun和ATF-2的表达在丹参素作用下被抑制,而在正常情况下对它们的表达没有影响。此结果表明,丹参素能够抑制MKK4/JNK通路的活化,从而减少辐射诱导的细胞凋亡。
     (7)丹参素对辐射诱导细胞中Ca~(2+)介导的凋亡通路活化的抑制
     丹参素预处理L-02细胞1h后经4Gyγ射线照射,照后3h细胞内Ca~(2+)由内质网释放,与对照组相比,丹参素预处理组的Ca~(2+)释放强度和阳性细胞数则都有所减弱。Ca~(2+)通路的钙调蛋白calpain-2在4Gyγ射线照后表达量显著升高,而在丹参素预处理组中钙调蛋白calpain-2的表达量升高幅度明显降低。
     结论:
     1.在体实验结果说明丹参素能明显延长和提高辐照小鼠的生存时间和存活率,丹参素能明显降低受照小鼠外周血、脾脏、骨髓细胞的损伤程度,并能增强机体的抗氧化能力。
     2.丹参素对L-02、HIEC、GES、HaCaT细胞没有明显的细胞毒性,并且其辐射防护效果显著。
     3.丹参素能抑制γ射线导致的细胞凋亡,促进细胞增殖,其作用与保护细胞DNA,清除ROS,增强细胞的抗氧化力有关。
     4.丹参素是通过抑制线粒体介导和钙离子诱导的细胞凋亡途径、促进细胞DNA损伤后修复分子的活化、抑制辐射诱导的JNK途径的激活发挥辐射保护作用的。
Background:
     As the wide application of nuclear energy, the opportunity of people exposed to radiation is increasing, from the food irradiation, accidents in nuclear power plants, medical treatment to ionizing radiation in space, radiation is everywhere. High-dose radiation can cause a variety of the living beings injuries or damages. The risk of radiation induced malignancies as a result of genotoxicity to normal cells is one of the most serious problems during radiotherapy in patients with disease free survival. Tumor control without producing damage to the surrounding normal tissues through the use of chemical agents has a clinical relevance in radiotherapy. Therefore, protection of surrounding normal tissues has a practical relevance in improving the therapeutic outcome. Radioprotectors are needed to protect cancer patient with radiotherapy and other potentially exposed populations, such as workers in the nuchear-power industry, space travelers or operator on radioactive devices.
     Ionizing radiation is considered as ubiquitous environmental carcinogen damaging DNA directly by energy deposition or indirectly by the generation of reactive oxygen species and free radicals. Reactive oxygen species and free radicals react with cellular macromolecules (i.e., proteins, carbohydrates, lipids and nucleic acids) leading to cell death or mutations and chromosome instability when they are not repaired or misrepaired. Several endogenous antioxidant enzymes (such as superoxide dismutase, catalase and glutathione peroxidase) are capable of scavenging reactive oxygen species and has shown pivotal role in the repair of DNA damage induced by reactive oxygen species.
     Although many natural and synthetic/semi-synthetic chemicals have been investigated in the recent past for their efficacy to reduce adverse effects of ionizing radiation, the inherent toxicity of some of the synthetic agents at their radioprotective concentrations necessitated further search for secured and efficient compounds. In view of these limitations, an approach to evaluate the radiation protective ability of non-toxic and physiologically acceptable compounds seems to be hopeful and deserves investigation.
     Salvianic acid A (SAA) is the major water-soluble components of Salvia miltiorrhiza Bunge and with the molecular structure of which is d(+)-(3,4-dihydroxyphenyl) lactic acid. SAA has been reported to possess several pharmacological activities, which includes protection of cardiac muscle, dilatation of blood vessel, inhibition of arteriosclerosis and thrombus, improvement of microcirculation, regulation of restoration and regeneration of tissue, antisepsis and anti-inflammation and so on. And our previous studies have shown that SAA could scavenge lipid free radicals and inhibit mice death and damage induced by radiation. Hence the aim of our present study was to investigate the radioprotective effect of SAA on γ-radiation induced damage and its possible mechanism.
     Aims:
     1. To explore the radioprotective activity of SAA in vivo;
     2. To study on the radioprotection of SAA on multiple human normal cell types and to investigate on the protection of SAA on the cell morphology, DNA and mitochondria damaged by radiation;
     3. To identify the mechanisms and involved signal pathway of the radioprotection of SAA.
     Methods:
     Animal experiment
     Male BALB/c mice (22±2g), were randomly divided into five groups,1)saline control group,2) γ-radiation group,3)10mg/Kg SAA group,4)20mg/Kg SAA group,5) E3group. After treatment, the mice were fed for different times for the survival studies, hematological study, spleen histopathological and colony count study, nucleated cells analysis of mouse bone marrow and estimation of lipid peroxidation and antioxidant enzymes。
     Cell experiment
     In our present study, we investigate the radioprotective efficacy and cytotoxicity of SAA in vitro by using four types of human normal cells. Radiation-induced DNA damage, apoptosis and changes of cell morphology in human intestinal epithelial cells (HIEC) and human normal liver cells (L-02) in the presence and absence of SAA were examined. Finally, we observe the effect of SAA on ROS formation, the protection on mitochondria and the balance of the pro-oxidant and antioxidant in the cells.
     Cells were allowed to attach for24h; and then treated with SAA1h before γ-radiation and after a further culture for different times. And then cells were investigated for the expressions of proteins in the apoptosis signal pathway, DNA repaired signal pathway, INK pathway and Ca2+pathway and the activities of caspases.
     Results:
     (1) The radioprotective activity of SAA in vivo.
     SAA increased survival rate, the spleen index and clone of the irradiated mouse. The results also showed that the whole blood cell and the nucleated cells of bone marrow were decreased after the irradiation, and SAA can reverse these damages caused by radiation.
     Splenic corpuscles had a uniform distribution and clear boundaries, and appeared uniformly blue in normal mice, in mice from the radiation-alone group splenic corpuscles were deflated and their number decreased. Compared with radiation-alone group, the splenic corpuscle in mice treated with10and20mg/kg SAA before irradiation, increased and distributed uniformly. In present of SAA, the activities of SOD and CAT and the content of GSH were increased, protein and lipid peroxidation were inhibited in liver.
     (2) The cytotoxicity and radioprotection of SAA on multiple normal cell types
     The results showed that different concentrations of SAA exhibited no significant cytotoxicities on L-02、HIEC、GES、HaCaT cells, and SAA could improve the viability of these cells after1h incubation. Pretreatment (1h) of cells with0.1,1,10μg/ml SAA provided protection compared to cells treated with radiation alone. Moreover, the maximum and marked protection achieved at10μg/ml SAA with radiation at4Gy.
     (3) Pretreatment with SAA reduced radiation-induced cell damages
     Compared with4Gy group, SAA could significantly increase the clone count and decrease apoptosis and promote proliferation on radiated cells (P<0.01). It can also maintain the morphology of cells and nuclear.
     The foci positive cells and fluorescence intensity of y-H2AX were significantly reduced which means the DNA damage was alleviated. Micronuclei assay and the comet assay also showed the same results.
     It is possible that SAA can protect mitochondrial from radiation induced damages by maintaining mitochondrial membrane potential and scavenging ROS. The results indicated that SAA can antagonize the reduction in the levels of both enzymatic and non-enzymatic antioxidants in irradiated cells. An increase in the level of TBARS induced by γ-radiation (4Gy) was effectively reduced by pretreatment with10μg/ml SAA (P<0.05).
     (4) Inhibition of SAA on radiation-induced activated cell apoptosis related signal pathway
     Western blotting results showed that the SAA-mediated radioprotection also involved down-regulating Bax and P53expressions and up-regulating Bcl-2expression, and suggested that SAA treatment shifted the balance between pro-and anti-apoptotic proteins towards cell survival.
     Pretreatment of cells with SAA for1h before γ-radiation was found to significantly block the release of cytochrome c and AIF from mitochondria, and these changes were statistically significant (P<0.05). SAA treatment also significantly reversed the increase of caspase-3/8/9activity in irradiated cells (P<0.01). This result implied that inhibition of the mitochondria-mediated apoptotic pathway was involved in the radioprotective effect of SAA.
     (5) Protection of SAA against radiation-induced DNA damage
     When exposed to4Gy γ-radiation, cells showed a prompt and temporary increase in the expression of y-H2AX within3h. When the cells were pretreated with SAA before4Gy γ-radiation, the peak expression of y-H2AX occurred at1h. Western blotting results showed that SAA significantly promoted the expression of DNA repair-related factor, ATM. And the results of RT-PCR indicated that change of ATM expression was related to protein degradation.
     (6) Inhibition of SAA on the radiation-induced activated JNK pathway
     SAA was added to cultured cells maintaining the final concentration (1μg/ml) for1h before y-radiation (4Gy) and after a further culture for24h, the expressions of p38, JNK, p-p38had no significant changes. But JNK phosphorylation was greatly increased by radiation and SAA could inhibit the phosphorylation of JNK (p-JNK). And radiation-induced activity of the upstream molecular MKK4of the JNK pathway could also be inhibited by SAA. The NFκB pathway can not be influenced by SAA. The inhibitor of JNK had almost the same effect with SAA in radiated-cells. It is possible that SAA achieved its radioprotective action, at least in part, by suppressing the MKK4/JNK pathway and reduced the radiation-induced apoptosis.
     (7) Inhibition of SAA on the radiation-induced activated Ca2+pathway
     SAA was added to cultured cells maintaining the final concentration (lμg/ml) for1h before y-radiation (4Gy) and after a further culture for3h, the concentrations of Ca2+in cytoplasm were significantly increased in the irradiation group. The positive cells and fluorescence intensity of Ca2+in cells treated with SAA were decreased. Western blotting results showed that the level of calmodulin protein, calpain-2, was up-regulated by the radiation and down-regulated in the SAA pretreated cells.
     Conclusions:
     1. SAA increased survival rate, the spleen index and clone of the irradiated mouse and could reverse the decrease of the whole blood cell and the nucleated cells of bone marrow induced by radiation. It is clear that SAA could increase antioxidative ability and reduce lipid peroxidation induced by radiation in mice.
     2. SAA exhibited no significant cytotoxicities on L-02、HIEC、GES、HaCaT cells, and preincubation1h of SAA could improve the viability of these cells after radiation.
     3. SAA exerted its protective effect on the proliferative activity of L-02and HIEC cells as evidenced by decreased cytotoxicity after exposure to γ-radiation. It was possible that SAA achieved its radioprotective action, at least in part, by reducing DNA damage, enhancing the activity of antioxidant enzymes and scavenging ROS.
     4. SAA exhibited its radioprotective activity via enhancing DNA repair and inhibiting the activities of JNK pathway and mitochondria and/or Ca2+-dependent apoptotic pathway in L-02cell line.
引文
1王鹤皋.飞速发展的放射肿瘤学现状.实用医技杂志,2009,16(12):949-950
    2王林生.利用电离辐射创造普通小麦外源染色体易位系.生物学通报,2009,44(7):1-2
    3葛琴娟,吴宵,许金凤.低剂量电离辐射对放射工作人员健康状况的影响及控制.中国辐射卫生,2009,18(4):434-435
    4李春莉,赵国莹.医学设备电离辐射的危害与防护.长春中医药大学学报,2009,25(6):923
    5张献清,曾学平,穆士杰,吴道澄,夏爱军,吴源茹,易静.低剂量γ射线辐照对人红细胞免疫功能和血清抗氧化酶活性的影响.中国医学物理学杂志,2008,25(3):667-669
    6Kalpana KB, Devipriya N, Srinivasan M, Menon VP. Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocyte. Mutat Res,2009,676:54-61
    7Reily PA. Free radicals in biology:oxidative stress and the effect of ionizing radiation. Int J Radiat Biol,1994,65:27-33
    8Weiss JF. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environ Health Perspect,1997,105:1473-1478
    9Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol,1988,35:95-125
    10宾萍.γH2AX与DNA双链断裂关系的研究进展.卫生研究,2007,36(4):520-522
    11Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem,2001,276:42462-42467
    12Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks histone H2AX phosphorylation on serine139. J Biol Chem,1998.273(10):5858-5868
    13Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domain involved in DNA double-strand breaks in vivo. J Cell Bio,1999,146(5):905-915.
    14Yan C, Lu J, Zhang G, Gan T, Zeng Q, Shao Z, Duerksen-Hughes PJ, Yang J. Benzo[a]pyrene induces complex H2AX phosphorylation patterns by multiple kinases including ATM, ATR, and DNA-PK. Toxicol In Vitro,2011,25(1):91-99
    15Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA,2002,99:8173-8178
    16Paull TT, Rogakou EP, YamZakai V, Kirchgessner CU, Gellert M, Bonner WM. A critical role of histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol,2000,10(15):886-895
    17Wang H, Wang M, Wang H, Bocker W, Iliakis G. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA PK in human cells exposed to ionizing radiation and treated with kinase inhibitor. J Cell Physiol,2005,202(2):492-502
    18Halicka HD, Huang X, Traganos F, King MA, Dai W, Darzynkiewicz Z. Histone H2AX phosphorylation after cell irradiation with UV-B relationship to cell cycle phase and induction of apoptosis. Cell Cycle,2005,4(2):339-345
    19Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem,2001,276(51):47759-47762
    20Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem,2001,276(4):38224-38230
    21Stiff T, O'Isocoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. ATM and DNA-PKfunction redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res,2004,64(7):2390-2396
    22Bellani MA, Romanienko PJ, Cairatti DA, Camerini-Otero RD. SPO11is required for sex-body formation, and SPoll heterozygosity reseues the prophase arrest of Atm-/-spermatoeytes. J Cell Sci,2005,118(15):3233-3245
    23尹宜发,陈小燕,蔡正斌,顾昱,李拥军.宫颈癌ATM的表达与放射敏感性的关系.现代肿瘤医学,2007,15(12):1833-1835
    24Lobrich M, Jeggo PA. The two edges of the ATM sword:co-operation between repairand checkpoint functions. Radiother Oncol,2005,76(2):112-118
    25Bratton SB, Macfarlane M, Cain K, Cohen GM. Protein complexes activate distinct caspase cascades in death receptor and stress2induced apoptosis. Exp Cell Res,2000,256:27-33
    26Sheard MA. Ionizing radiation as a response-enhancing agent for CD95mdeiated apoptosis. Int J Cancer,2001,96:213-220
    27Ashkenazi A, Dixit VM. Death receptors:signaling and modulation. Science,1998,281:1305-1308
    28Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress:a matter of life or death. Cell Death Differ,2006,13:363-373
    29Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-bete. Nature,2000,403(6765):98-103
    30Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J,2008,22(2):579-589
    31Sareen D, Darjatmoko SR, Albert DM, Polans AS. Molecular Pharmacology Fast Forward,2007,72:1466-1475
    32Chatterjee M, Wu S. Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem,2001,219:21-27
    33Grether-Beck S,Bonizzi G, Schmitt-Brenden H, Felsner I, Timmer A, Sies H, Johnson JP, Piette J, Krutmann J. Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J,2000,19:5793-5800
    34丁振华,范建中,主编.紫外辐射生物学与医学.北京:人民军医出版社,2000.114-116
    35袁长青,丁振华.辐射诱导细胞凋亡的信号转导通路.中华放射医学与防护杂志,2003,23(1):67-69
    36Sugden PH, Clerk A."Stress-responsive" mitogen-activated protein kinases (c-Jun N-terminal kinases and p38mitogen-activated protein kinases) in the myocardium. Circ Res,1998,83:345-352
    37Tony Y, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol,1998,10(2):205-219
    38Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev,2001,81:807-869
    39Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000,103:239-252
    40Ping P, Murphy E. Role of p38mitogen-activated protein kinases in preconditioning:a detrimental fator or a protective kinase? Circ Res,2000,86:921-922
    41袁长青,丁振华.辐射诱导细胞凋亡的信号转导通路.中华放射医学与防护杂志,2003,23(1):67-69
    42Blazquez C, Galve-Roperh I, Guzman M. De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J,2000,14:2315-2322
    43Vijayalaxmi, Reiter RJ, Tan DX, Herman TS. Thomas Jr, C.R. Melatonin as a radioprotective agent:a review. Int J Radiat Oncol Biol Phys,2004,59:639-653
    44Weiss JF, Landauer MR. Radioprotection by antioxidants. Ann N Y Acad Sci,2000,899,44-60
    45丁桂荣,郭国祯.抗辐射损伤药物的研究.辐射研究与辐射工艺学报,2007,25(6):321-324
    46Anne PR. Phase Ⅱ trial of subcutaneous amifostine in patients undergoing radiation therapy for head and neck cancer. Semin Oncol,2002,29(Suppl9):80-83
    47苏文娜,蒋铭敏.辐射损伤防治药物的研究进展.中华放射医学与防护杂志,2006,26(3):307-308
    48Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine:the first selective-target and broad-spectrum radioprotector. Oncologist,2007,12(6):738-747
    49杨军.干细胞因子的辐射防护作用与机制.医学综述,1999,5(12):533-534
    50Neta R, Douches S, Oppenheim JJ. Interleukin1is a radioprotector. J Immunol,1986,136(7):2483-2485
    51Lempereur L, Cantarella G, Murabito P, Chiarenza A, Fiore L, Zappala G, Bernardini R. Thymic hormones, cancer and behavioul adaptive responses. Ann Med,1999,31(Suppl2):40-45
    52刘琳,黄荣清,肖炳坤,杨建云.激素类抗辐射药物的研究进展.药学进,2010,29(6):744-746
    53Sorenson JR. Cu, Fe, Mn, and Zn chelates offer a medicinal chemistry approach to overcoming radiation injury. Curr Med Chem,2002,9:639-662
    54Gueven N, Dittmann K, Mayer C, Rodemann HP. The radioprotective potential of the Bowman-Birk protease inhibitor is independent of its secondary structure. Cancer Lett,1998,125:77-82
    55Dittmann KH, Dikomey E, Mayer C, Rodemann HP. The Bowman-Birk protease inhibitor enhances clonogenic cell survivval of ionizing radiation-treated nucleotide excision repair competent cells but not of xeroderma pigmen-tosum cells. Int J Radiat Biol,2000,76:223-229
    56Maisin JR, Chemical radioprotection:past, present, and future prospects. Int J Radiat Biol,1998,73:443-450
    57吴京燕,程光宇,江海涛,候玉如,张怡青.灵芝多糖合剂抗辐射保健功能的研究.南京师范大学学报,2003,26(3):79-81
    58江励华.中药抗DNA损伤作用的研究.医药报道,2004,23(4):250-252
    59栗世如,钟进义.葡多酚对雄性小鼠生殖细胞辐射损伤的影响.卫生毒理学杂志,2000,14(4):204-206
    60梁贞杰,黄榕,陈晓.香菇多糖冲剂抗辐射和保护肝损伤的实验研究.海峡药学,1997,9(1):8-9
    61许浪.黄芪对受照辐射损伤大鼠脾脏的促再生作用.郴州医学高等专科学校学报,2002,4(1):9-11
    62雷筱芬,陈木森.黄酮类化合物抗辐射研究进展.江西农业大学学报,2007,29(6):1039-1042
    63Jagetia GC, Reddy TK. The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow:a micronucleus study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,519(1):37-48
    64田生礼,邴文贵,李健超.人参多糖对X射线照射小鼠骨髓细胞染色体畸变和造血干、祖细胞的影响.白求恩医科大学学报,1992,18(3):230-232
    65刘青,李新芳.南沙多糖对受照小鼠遗传损伤的拮抗作用.中国药理与临床,2001,17(6):21-23
    66李德远,周韫珍,余应利,苏喜生,汤坚,徐为春.银杏叶黄酮抗辐射效应研究.营养学报,2004,26(3):220-222
    67洪梅,梁红,潘伟明.银杏叶黄酮类化合物生物效应研究概况.农业与技术,2003,23(1):33-35
    68汪德清,沈文梅,田亚平.黄芪总黄酮对犬模拟肺癌术中放疗抗辐射损伤作用的研究.中华放射医学与防护杂志,1996,16(6):399-401
    69王岳飞,唐德松,朴宰日,杨贤强.茶多酚对荷瘤小鼠辐射损伤的影响.中华放射医学与防护杂志,2004,24(3):263-264.
    70梁莉,杨永建,李新芳.苦豆子总碱减轻亚慢性照射对小鼠的损伤效应.中药药理与临床,2002,18(4):16-17
    71利国威,梁培根,应百平.骆驼蓬碱的辐射防护作用.中华放射医学与防护杂志,1993,13(4):252-255
    72张珊文,张新奇.川芎放射增敏及放射保护作用的研究概况.中西医结合杂志,1990,10(11):697-699
    73刘丽波,李玲,刘鹏来,栗学军,康顺爱.人参皂甙对雄性小鼠骨髓细胞染色体的辐射防护作用.白求恩医科大学学报,1997,23(4):348-350
    74张成武,曾昭琪,张媛贞.钝顶螺旋藻多糖和藻蓝蛋白对小鼠急性放射病的防护作用.营养学报,1996,18(3):327-330
    75曲绍春,曲极冰,王杰.鹿胶原对小鼠X线照射所致白细胞减少的影响.白求恩医科大学学报,1994,20(6):569-572
    76李宗铎,王春俭,张书斋.阿胶的药理作用.河南中医,1989,6:27-28
    77李宏亮,秦绪江,李宏伟,刘景国。丹参中水溶性成分的纯化研究.黑 龙江医学,2007,20(3):235-236
    78陈政雄,王保德,秦国伟.钩枝藤中生物碱的分离和鉴定.药学通报,1981,16(7):24-26
    79Fan GW, Gao XW, Wang H, Zhang, J, Hu LM, Su YF, Kang LY, Zhang BL The anti-inflammatory activities of Tanshinone Ⅱ A, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J Steroid Biochem Mol Biol,2009,113(3-5):275-280
    80Fu J, Huang H, Liu J, Pi R, Chen J, Liu P. Tanshinone ⅡA protects cardisc myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol,2007,568(1-3):213-221
    81Wang XJ, Wang ZB, Xu JX. Effect of salvianic acid A on lipid peroxidation and membrane permeability in mitochondria. Journal of Ethnopharmacology,2005,97:441-445
    82周茂金,苏美英,刘昌孝.丹参素研究进展.中草药,2003,34(10):24-25
    83张锦瑾,田京伟.注射用丹参素钠的安全性药理研究.毒理学杂志,2007,21(4):314
    84王文俊,吴咸中,姚智.大黄素、丹参素对单核细胞分泌炎性细胞因子的调节.中国免疫学杂志,1995,11(6):370-372
    85Ding M, Ye TX, Zhao GR. Aqueous extract of Salviamiltiorrhiza at tenuates increased endothelial permeability induced by tumor necrosis factor-alpha. International Immunopharmacology,2005,5(11):1641-1651
    86张罗修,王梦,钱芸.丹参素、黄芩甙等对大鼠腹腔巨噬细胞产生PGE2及TXB2的影响.中药药理与临床,1990,6(4):31-34
    87Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, Zhao LB. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food and Chemical Toxicology,2008,46:73-81
    88王南,蔡海江,朱宇.丹参素对牛主动脉平滑肌细胞氧化修饰LDL的制 作用.南京医科大学学报,1994,14(4):529-531
    89孙锡铭,蔡海江,宋素云.丹参素的新药理作用.中草药,1991,22(1):20-21
    90眭健,林枫.丹参素对胃腺癌NGCC(?)田胞株的作用.镇江医学院学报,1997,7(4):384-385
    91方杰.丹参素对乳腺癌MCF细胞株的作用.中国老年学杂志,2003,23(3):168-169.
    92李箐,李跃华,薛隆翠.丹参素对实验性肝细胞损伤的防护作用.中西医结合肝病杂志,1996,6(3):29-30
    93苗青旺,田伟,王新瑞.丹参素对肝硬变大鼠肝部分切除术后肝再生的影响.中国药物与临床,2009,9(6):502-503
    94李跃华,吴翠贞,阙玲莉.丹参素增强肝细胞生长及其在药物性肝细胞损伤中的保护作用.南京医科大学学报,1996,16(4):346-348
    95郑元义,戴立里,王文兵.丹参素治疗肝纤维化及其作用机制研究.中华肝脏病杂志,2003,11(5):288-290
    96陈维洲.丹参的药理.药学学报,1984,19(11):876-877
    97Wang XJ, Xu JX. Salvianic acid A protects human neuroblastoma SH2SY5Y cells against MPP+2induced cytotoxicity. Neurosci Res,2005,51(2):129-138
    98郑若云,方三曼,韩宝铭.丹参水提物对化学引起大鼠心肌缺血的保护作用.中西医结合杂志,1990,10(10):609-611
    99苏晓华,梁殿权,王孝铭.丹参素(DS2182)对大鼠心肌线粒体氧自由基损伤的保护作用.中国病理生理杂志,1992,8(2):122-124
    100唐立辉,王孝铭,梁殿权.丹参素对小鼠心肌缺血再灌注损伤的保护.中国病理生理杂志,1989,5(2):65-69
    101王淑仙,谢顺华.小红森、茜草和丹参提取物对小鼠心肌、脑ATP含量的影响.中草药,1986,17(10):19-21
    102钱卫民,邓春玉,薛玉梅.丹参素对豚鼠心室肌细胞L型钙通道的影响.岭南心血管病杂志,2002,8(4):276-278
    103郭自强,王硕仁,朱陵群.丹参素和川芎嗪对血管紧张素Ⅱ致心肌肥大相关基因的影响.中国中西医结合杂志,2005,25(4):342-344
    104董忠田,江文德.丹参素对猪离体冠状动脉的作用.药学学报,1982,173:226-228
    105李承株,林嘉宝,杨诗春.丹参素对血小板释放血管收缩物质的影响.中西医结合杂志,1984,4(9):565-568
    106陈莲华,肖常思,贡沁燕.丹参及其有效成分对低氧性肺血管收缩作用的研究.中华麻醉学杂志,1994,14(3):163-165
    107李承株,杨诗春,赵风娣.丹参素抗凝血作用的研究.中西医结合杂志,1983,3(5):297-299
    108高海泉.中药对血小板功能的影响.中西医结合杂志,1984,4(4):246-248
    109史举彤,杨文浩,陈长清.丹参素对体外循环中血细胞的影响.山东医科大学学报,1991,29(3):237-239
    110费丽萍,李进喜,郑道声.丹参素和丹参酮对红细胞内游离钙浓度的影响.96全国复方丹参制剂学术研讨会论文集,1996:52
    111Parihar VK, Dhawan J, Kumar S, Manjula SN, Subramanian G, Unnikrishnan MK, Mallikarjuna Rao C. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chemico-Biological Interactions,2007,170:49-58
    112Thulasi G. Pillai, Cherupally Krishnan Krishnan Nair, K.K. Janardhanan. Polysaccharides isolated from Ganoderma lucidum occurring in Southern parts of India, protects radiation induced damages both in vitro and in vivo. Environmental Toxicology and Pharmacolog,2008,26:80-85
    113Duan Y, Zhang H, Xie B, Yan Y, Li J, Xu F, Qin Y. Whole body radioprotective activity of an acetone-water extract from the seedpod of Nelumbo nucifera Gaertn. Seedpod. Food and Chemical Toxicology,2010,48:3374-3384
    114Devi PU, Prasanna PGS. Comparative radioprotection of mouse hemopoietic study by some thiols and a polysaccharide. Proc Natl Acad Sci Lett,1995,65B:89-92
    115Lee JH, Park JW. Protective role of alpha-phenyl-N-t-butylnitrone against ionizing radiation in U937cells and mice. Cancer Res,2003,63:6885-6893
    116Parihar VK, Dhawan J, Kumar S, Manjula SN, Subramanian G, Unnikrishnan MK, Mallikarjuna Rao C. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact2007,170:49-58
    117Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res,1988,48:589-601
    118Belikova A, Jiang J, Stoyanovsky DA, Glumac A, Bayir H, Greenberger JS, Kagan V E. Mitochondria-targeted (2-hydroxyamino-vinyl) triphenyl phosphonium releases NO and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Lett,2009,583:1945-1950
    119Sandhya T, Lathika KM, Pandey BN, Bhilwade HN, Chaubey RC, Singh NP, McCoy MT, Tice RR, Schneider LE. A simple technique for quantitation follow levels of DNA damage in individual cells. Exp Cell Res1988,175:184-191
    120Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Advances in Space Research,2009,43:1171-1178
    121Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine123, is a reliable fluorescent probe to assess AW changes in intact cells:implications for studies on mitochondrial functionality during apoptosis. FEBS Letters,1997,411:77-82
    122Royall JA, Ischiropoulos H. Evaluation of2',7'-dichlorofluorescin and dihydrorhodamine123as fluorescent probes for intracellular H2O2in cultured endothelial cells. Arch Biochem Biophys,1993,302:348-355
    123Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what do the results mean? Br J Pharmacol,2004,142:231-255
    124Royall JA, Ischiropoulos H. Evaluation of2',7'-dichlorofluorescin and dihydrorhodamine123as fluorescent probes for intracellular H2O2in cultured endothelial cells. Arch Biochem Biophys,1993,302:348-355
    125Tiwari P, Kumarb A, Balakrishnana S, Kushwahaa HS,.Mishrac KP. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols. Mutat Res,2009,676:62-68
    126Kalpana KB, Devipriya N, Srinivasan M, Menon VP. Investigation of the radioprotective efficacy of hesperidin against gamma-radiation induced cellular damage in cultured human peripheral blood lymphocyte. Mutat Res,2009,676:54-61
    127Perkins CL, Fang G, Kim CN, Bhalla KN. The role of Apaf-1, caspase-9, and bid proteins in etoposide-or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res,2000,60:1645-1653
    128Li H, Wang L, Mao Y, Xie X, Xia C, Chen J, Lu Z, Song J. Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med Microbiol Immunol,2009,198(2):113-21
    129Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane. Mol Cell Biol,2000,20(3):929-935
    130Cao X, Zhang Y, Zou LY, Xiao HB, Chu YH, Chu XF. Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis. Neuroscience Letters,2010,479:118-122
    131Du JH, Zhang HD, Ma ZJ, Kunmei J. Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol,2010,65:895-902
    132Joan R, Stuart H, William RF, Tom P, Edmund JM, Lin AN, Michcell JB. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radical Biology&Medicine,2003,35:978-993
    133Sarathi H, Tang SC, L Maximilian B, Benjamin FT, Andrejs L, Priya W. Aurintricarboxylic Acid Inhibits Protein Synthesis Independent, Sanguinarine-Induced Apoptosis and oncosis. Toxicol Pathol,2007,35:300-309
    134Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53activates Bak and causes disruption of a Bak-Mcll complex. Nat Cell Biol,2004,6:443-450
    135Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR. Direct activation of Bax by p53mediates mitochondrial membrane permeabilization and apoptosis. Science,2004,303:1010-1014
    136Yoshihide T. Role of Bcl-2family proteins in apoptosis:apoptosomes or mitochondria? Genes to Cells,1998,3:697-707
    137Ashkenazi A, Dixit VM. Death receptors:signaling and modulation. Science,1998,281:1305-1308
    138De Maria R, Lentil L, Malisan F, d'Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R. Requirement for GD3ganglioside in CD95and ceramide-induced apoptosis. Science,1997,77:1652-1655
    139Pellegrini M, Bath S, Marsden VS, Huang DC, Metcalf D, Harris AW, Strasser A. FADD and caspase-8are required for cytokine-induced proliferation of hemopoietic progenitor cells. Blood,2005,106(5):1581-1589
    140Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR. Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. Biol Chem,2004,279(3):2273-2280
    141Xie H, Wise SS, Holmes AL, Xu B, Wakeman TP, Pelsue SC, Singh NP, Wise JP Sr. Carcinogenic lead chromate induces DNA double2strand breaks in human lung cells. Mut Res,2005,586:160-172
    142Gwag BJ, Canzonieri LM, Sensi SL, Demaro JA, Koh JY, Goldberg MP, Jacquin M, Choi DW. Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons. Neuroscience,1999,90(4):1339-1348
    143Miyamoto S, Howes AL, Adams JW, Dorn GW2nd, Brown JH. Ca2+dysregulation induces mitochondrial depolarization and apoptosis. J Biol Chem,2005,280(46):38505-38512
    144Shevchenko AS, Gabai VL, Kobialko VO, Makarova IuM, Shevchenko TS. Increased plasma membrane permeability for Ca2+in radiation-induced thymocyte apoptosis. Radiat Biol Radioecol,1997,37(2):220-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700