基于模型更新的土木结构混合试验方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构混合试验是将物理加载试验和数值模拟相结合来评估大型复杂土木结构地震反应和抗震性能的有效试验技术,目前正得到了研究者们的广泛关注。目前已在混合试验系统、数值积分算法、加载控制、时滞补偿、误差累计控制等关键技术方面取得了一定的研究成果。然而,对于高层建筑或者大跨度桥梁结构进行混合试验时,研究者们会遇到很大困难。当整体结构进入非线性,不可能将所有关键部分都进行物理试验,如何准确模拟数值子结构成为最大的挑战。为了能够提高混合试验中数值子结构模型的准确性,提出了基于约束隐性卡尔曼滤波器的模型更新混合方法。模型更新混合试验方法的研究对推动混合试验方法发展及客观揭示大型复杂土木结构的动力灾变过程具有重要的理论意义和实用价值。
     本文针对基于模型更新的土木结构混合试验方法的一些关键科学问题进行了研究,主要研究内容如下:
     (1)采用确定性最小二乘法在线识别双折线模型参数,通过数值模拟和试验验证了在相同加载路径下的在线模型更新效果。研究表明:该方法具有良好的参数识别精度和较高的计算效率。针对两层防屈曲支撑结构,首次进行了模型更新的混合试验验证。试验研究表明:与传统混合试验相比,在线模型更新可以有效地减小混合试验数值模型误差,提高混合试验精度。
     (2)针对常量标量系统,推导了不考虑过程噪声和考虑过程噪声状态估计方差解析表达式,给出了卡尔曼滤波器影响参数对状态估计影响规律。采用状态估计方差作为状态估计评价标准,给出了使用卡尔曼滤波器进行状态估计时滤波器参数取值建议。验证了采用状态投影方法来解决界限约束状态估计的合理性。提出了考虑乘性噪声卡尔曼滤波器的最优估计递推算法,通过弹性结构刚度识别验证了算法的有效性。
     (3)研究了基于隐性卡尔曼滤波器(UKF)的模型更新方法,搭建了基于dSPACE控制平台的FTS作动器试验系统,针对弹性试件首次进行了基于UKF的模型更新混合试验。试验表明:与传统混合试验相比,该试验方法大幅度地提高了混合试验精度。提出了基于修改Sigma点(Sigma Points)位置及权重的约束隐性卡尔曼滤波器算法(约束UKF)。与UKF相比,约束UKF算法主要有两个方面的改进:1)在预测步中,将违反界限约束的Sigma点移至边界上,同时将约束界限内的Sigma点做相应对称调整,并从理论上证明当κ=0.5时考虑约束的UT变换算法具有一阶精度;2)在校正步中,采用状态更新方程产生变换后的Sigma点,当更新的状态估计违反界限约束时,直接将超出约束边界的Sigma点投影到边界上,并给出了校正步状态估计均值和协方差计算公式的理论证明。所提出的算法可以同时考虑了界限约束对状态估计均值和协方差的影响,而且具有较高的计算效率,能够实现实时模型更新。给出了Bouc-Wen模型在线参数识别方法。研究表明:与UKF方法相比,约束UKF方法能够有效地减小参数识别值前期波动幅度,确保参数识别值的物理意义,提高参数识别收敛速度和模型更新精度。进行了滤波器初始参数影响分析,并给出参数选择建议。
     (4)针对两个自由度非线性结构进行了基于约束UKF模型更新的混合试验数值模拟,验证了该试验方法的有效性和可行性。采用dSPACE-MTS实时混合试验系统,分别针对防屈曲支撑结构首次进行了慢速和实时的模型更新混合试验。试验表明:与传统混合试验和基于UKF模型更新的混合试验相比,基于约束UKF模型更新的混合试验方法可以更大程度地提高混合试验精度。
     (5)提出基于OpenSees的模型更新混合试验方法,针对一榀六层框架-支撑结构,进行了多种情况下的模型更新混合试验数值仿真。数值子结构和试验子结构均采用OpenSees进行数值模拟,模型参数识别采用Matlab编程实现。通过修改原OpenSees程序源代码,建立可以模型更新的twoNodeLink单元。采用Socket通信技术实现OpenSees和Matlab程序的数据传输。分别讨论试验支撑采用Bouc-Wen模型和考虑强度、刚度退化的Bouc-Wen模型两种情况下模型误差对混合试验精度的影响。研究表明,模型误差将导致模型参数识别值很难收敛到一个稳态值,具有较强的时变性,这会降低模型更新混合试验精度。提出了将模型更新与多个试验子结构混合试验相结合来减小模型误差影响的方法,尝试选择多个关键部位的构件作为试验子结构,然后分别更新与其加载路径和非线性程度相近的数值子结构模型。研究表明,该方法能够有效地减小模型误差对模型更新的影响,提高了模型更新混合试验精度。
Hybrid testing is a combination of numerical simulation and physical testing, which is increasingly being recognized as a powerful emerging technique that offers the opportunity for evaluation of large scale civil structures subjected to dynamic loading. In recent decades, a great deal of progress has been made in hybrid testing such as numerical integration algorithms, loading control methods, actuator delay compensation and testing error analysis. However, researchers generally might still encounter a number of difficulties when conducting hybrid testing for complex structures like high-rise buildings or large-scale bridges. One of the challenging issues is how to model the numerical substructure, when the whole structure exhibit strong nonlinearity subjected to extreme loading like strong earthquake and it is not economically realistic to physically test all the critical parts of the structure. To improve accuracy of numerical model during the hybrid testing, the hybrid testing method based on model updating with constrainted unscented Kalman filter(CUKF) is presented, which is of great theory significance and practical value in improving the hybrid tesing method and revealing the dynamic behavior of large scale civil structures.
     Several key issues of hybrid testing method for civil engineering based on model updating are inestigated in this paper. The main research work and concludings are as follows:
     (1) Online parameter identification method for the bilinear hysteretic model using the least square estimation is researched, which is verified by numerical simulation and experiment under the same loading paths. It is demonstrated that the on-line identification algorithm is in high precision and computational efficiency. Hybrid tesings with model updating for frame-brace structure of two degrees of freedom using MTS system are conducted firstly. The test results indicate that online model updating can decrease model errors and improve the precision of hybrid testing compared with conventional hybrid testing.
     (2) For constant scalar systems, analytic expression of Kalman filter was deduced under the system process noise available and unavailable, and the effects of parameters of kalman filter on the state estimation convariance are researched. Using state estimation variance as an evaluation standard state estimation, suggests of parameter selection in application of the Kalman filter is given. The rationality of the projection method to solve constraints problem in the state estimation method is verified. An optimal recursion algorithm considering the multiplicative noise based the Kalman filter is derived, the effectiveness of the algorithm is verified by elastic stiffness identification.
     (3) Hybrid testing method based on model updating with the unscented Kalman filter (UKF) is researched and its effectiveness is first confirmed by an actual test with a steel spring as the experimental substructure compared to conventional testing. A new constrained unscented Kalman filter (CUKF) algorithm is proposed based on the Unscented Kalman Filter (UKF) by adjusting the position of the sample points and weights. Compared to existing CUKF, the approach proposed in this paper features the following two aspects.(i) In prediction step, sigma points (i.e., sample point) violating bound constraints are moved onto the bounds, and the relevant sigma points within the boundary are moved correspondingly to retains the symmetry of the new set of sigma points. The proof is given to prove that the proposed replacement of sigma points results in a first-order accuracy for the unscented transformation of mean value if=0.5.(ii) In correction step, the state updating equation is used to generate transformed sigma points, and those transformed sigma points that violate bound constraints are projected to constraints boundary only when the updated state estimate exceeds the boundary. It can be proved that the reformulated equations give exactly the same result of updated mean and covariance with the standard UKF. The algorithm can consider the effect of the boundary constraints on the state estimation of mean as well as covariance, and has high computing efficiency and can realize real-time model updating. Research of Bouc-Wen model updating shows that: compared with UKF methods, CUKF method can effectively reduce volatility of the parameter identification at the early stage, ensure physical meaning of identification parameters, improve the convergence speed and precision of model updating. Filter Parameter Analysis is conducted and advice of initial parameter selection is given.
     (4) The hybrid testing method based on model updating with CUKF is presented. The effectiveness and feasibility of hybrid testing method based on model updating with CUKF is verified by a hybrid testing numerical simulation for the two freedom nonlinear system. Using dSPACE-MTS test platform, both increased-time and real-time hybrid testing based on model updating for frame structure incorporating all-steel buckling-restrained braces (BRBs) are finished. The results show that the proposed hybrid testing method has better accuracy compared with conventional hybrid testing and hybrid testing based on model updating with UKF.
     (5) The hybrid testing with model updating using OpenSees is proposed, and a series of numerical simulations of hybrid testing with model updating for a six story frame with BRBs are conducted. The numeirical and physical substructures are simulated by OpenSees, and online identification of the model parameters is realized by Matlab programming. A new twoNodeLink element is set up by modifying source codes of twoNodeLink element in the original OpenSees program to realized online model updating. The data transmission between OpenSees and Matlab is realized using Socket communication technology. The classical Bouc-Wen and Bouc-Wen considering the strength and stiffness degradation are respectively selected to analyze the influences of model error on accuracy of the hybrid testing with model updating. Simulation results show that parameter identification values are difficult to converge to a steady value due to the model error, which can reduce precision of hybrid test with model updating. Combining model updating with distributed hybrid test is put forward to reduce the negative influence of model error. Try to select more than one key component as testing substructure, then update respectively model of the numerical substructure which has the similar loading path and degree of the nonlinear to case of the corresponding testing substructure. Results show that when the model error is inevitable, the proposed method can effectively reduce the effect of model error on model updating, and the precision of hybrid testing with model updating is improved further.
引文
[1]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1997.1-20.
    [2]邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000:1-40.
    [3]张敏政,孟庆利,刘晓明.建筑结构的地震模拟实验研究[J].工程抗震,2003(4):31-35.
    [4]吕西林,蒋欢军.建筑结构抗震研究的若干进展[J].同济大学学报(自然科学版),2004,32(10):1278-1284.
    [5]王进廷,金峰,张楚汉.结构抗震试验方法的发展[J].地震工程与工程振动,2005,25(4):37-43.
    [6]邱法维,潘鹏.结构拟静力加载实验方法及控制[J].土木工程学报,2002,35(1):1-5.
    [7]邱法维,潘鹏,宋贻焱,等.结构多维拟静力加载实验方法及控制[J].土木工程学报,2001,34(2):32-38.
    [8]邱法维,杜问博,刘中田,等.结构在复杂加载路径下的拟静力加载实验方法及控制[J].土木工程学报,2003,36(12):8-13.
    [9]赵刚,潘鹏,聂建国,等.基于力和位移混合控制的多自由度结构拟静力实验方法研究[J].结构工程师,2011,27(增刊):37-41.
    [10]黄浩华.地震模拟振动台的发展情况介绍[J].世界地震工程,1986(1):47-51.
    [11]方重.地震模拟振动台的近况及其发展[J].世界地震工程,1999,15(2):89-96.
    [12]蔡新江,田石柱.振动台试验方法的研究进展[J].结构工程师,2011,27(增刊):42-46.
    [13]吕西林,朱玉华,施卫星,等.组合基础隔震房屋模型振动台试验研究[J].土木工程学报,2001,34(2):43-49.
    [14]朱江杰,吕西林,邹昀.上海环球金融中心模型结构振动台试验与理论分析的对比研究[J].土木工程学报,2005,38(10):18-26.
    [15] Ji X, Fenves G, Kajiwara K, et al. Seismic damage detection of a full-scaleshaking table test structure[J]. Journal of Structural Engineering,2011,137(1):14-21.
    [16] Lu X, Zhou Y, Lu W, et al. Shaking table model test on Shanghai world financialcenter tower[J]. Earthquake Engineering and Structural Dynamics,2007,36:439-457.
    [17] Zhou X, Li G. Shaking table model test of a steel-concrete composite high-risebuilding[J]. Journal of Earthquake Engineering,2010,14(4):601-625.
    [18]凌贤长. E-Defense建设与相关研究[J].地震工程与工程振动,2008,28(4):111-116.
    [19] Tagawa Y, Kajiwara K. Controller development for the E-Defense shakingtable[C]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2007,221(2):171-181.
    [20] Kawashima K, Sasaki T, Ukon H, et al. Shake table experiment on reinforcedconcrete bridge columns using E-defense[C]. Proceedings of InternationalConference on Earthquake Engineering-The First Anniversary of WenchuanEarthquake, Chengdu,2009:25-32.
    [21]宗周红,陈亮,黄福云.地震模拟振动台台阵试验技术研究及应用[J].结构工程师,2011,27(增刊):6-14.
    [22]纪金豹,李晓亮,闫维明,等.九子台地震模拟振动台台阵系统及应用[J].结构工程师,2011,27(增刊):31-36.
    [23]房贞政,张超,陈永健,等.基于三台振动台的多塔斜拉桥试验研究[J].土木工程学报,2012,45(增刊I):25-29.
    [24] Hakuno M, Shidawara M, Hara T. Dynamic destructive test of a cantilever beam,controlled by an analog-computer[J]. Transactions of the Japan Society of CivilEngineers,1969,171:1-9.
    [25] Takanashi K, Udagawa K, Seki M, et al. Non-linear earthquake response analysisof structuresby a computer actuator on-line system (part1details of the system)[J].Transactions of the Architectural Institute of Japan,1975,229:77-83.
    [26] Mahin S, Shing P, Thewalt C, et al. Pseudodynamic test method-current status andfuture directions[J]. Journal of Structural Engineering,1989,115(8):2113-2128.
    [27] Wiliams M, Blakeborough A. Laboratory testing of structures under dynamicloads: an introductory review[J]. Philosphical Transactions of the Royal Society A,2001,359:1651-1669.
    [28]赵西安.用计算机-试验联机系统进行结构拟动力实验的方法[J].建筑科学,1985(2):32-41.
    [29]田石柱,赵桐.抗震拟动力实验技术研究[J].世界地震工程,2001,17(4):60-66.
    [30]程绍革,白雪霜,赵鹏飞,等.结构抗震混合实验技术初探[J].工程抗震与加固改造,2005,27(5):68-70.
    [31]陈伯望.筒体结构拟动力试验及理论研究[D].长沙:湖南大学博士学位论文,2006:87-112.
    [32]柴俊.型钢高强性能混凝土框架拟动力试验研究[D].西安:西安建筑科技大学硕士学位论文,2008:25-74.
    [33]陈再现.框支配筋砌块短肢砌体结构拟动力子结构试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:39-135.
    [34]陆铁坚.高层建筑筒体结构理论分析与拟动力试验研究[D].长沙:中南大学博士学位论文,2008:91-135.
    [35]梁兴文,王庆霖,梁羽凤.底部框架抗震墙砖房1/2比例模型拟动力试验研究[J].土木工程学报,1999,32(1):14-21.
    [36]马乐为,吴敏哲.12层异形柱小型混凝土空心砌块组合结构拟动力试验研究[J].世界地震工程,2002,18(4):159-162.
    [37]唐岱新,朱本全,王凤来,等.底层大开间框剪组合墙1/3比例模型房屋子结构拟动力试验研究[J].建筑结构,2001,31(4):20-23.
    [38]杨春侠.混凝土多孔砖砌体结构房屋拟动力试验研究及抗震性能分析[D].西安:湖南大学博士学位论文,2007:69-110.
    [39]印文铎,冯世平,沈聚敏.两层钢筋混凝土框架结构拟动力地震反应试验研究[J].土木工程学报,1990,23(3):23-35.
    [40]朱荣华,沈聚敏.砖填充墙钢筋混凝土框架结构拟动力地震反应试验研究及理论分析[J].建筑结构学报,1996,14(4):27-34.
    [41] Chang S, Yang Y, Wang S, et al. Hybrid testing of a multi-span bridge[C].Advances in Experimental Structural Engineering, Nagoya, Japan,2005.
    [42] Dorka U. Hybrid experimental-numerical simulation of vibrating structures[C].Proceedings of WAVE2002, Okayama, Japan,2002.
    [43] Nakashima M. Feasibility of pseudynamic test using substructuringtechniques[C]. Proceedings of Ninth World Conference on EarthquakeEngineering, Tokyo-Kyoto, Japan,1988.
    [44] Nakashima M, Takai H. Use of substructure techniques in pseudodynamictesting[J]. BRI Research Paper, No.111,1985.
    [45] Dermitzalds S, Mahin S. Development of substructuring techniques for on-linecomputer controlled seismic performance testing[M]. Report No. UCB/EERC-85/04.
    [46] Nakashima M, Kaminosono T, Ishida M, et al. Integration techniques forsubstructure pseudo dynamic test[C]. Fourth U.S. National Conference onEarthquake Engineering, Palm Springs,1990:515–524.
    [47] Shing P, Bursi O, Vannan M. Pseudodynamic tests of concentrically braced frameusing substructuring techniques[J]. Journal of Constructional Steel Research,1994,29:121-148.
    [48] Kuramoto H, Matsumoto K, Kabeyasawa T. Sub-structure pseudo dynamic teston RC frames of pilotis type[C]. Proceedings of the First InternationalConference on Advances in Experimental Structural Engineering, Nagoya,Japan,2005:259-266.
    [49] Pinto A, Pegon P, Magonette G, et al. Pseudo-dynamic testing of bridges usingnon-linear substructuring[J]. Earthquake Engineering and Structural Dynamics,2004,33:1125-1146.
    [50]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:82-126.
    [51] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamictesting[J]. Earthquake Engineering and Structural Dynamics,1992,21(1):79-92.
    [52] Blakeborough A, Williams M, Darby A, et al. The development of real-timesubstructure testing[J]. Phil. Trans. R. Soc. Lond,2001,359:1869-1891.
    [53] Bayer V, Dorka U, Füllekrug U, et al. On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental Results[J]. AerospaceScience and Technology,2005,9:223-232.
    [54]王倩颖,吴斌,欧进萍.实时子结构实验的研究与应用[J].世界地震工程,2008,24(1):40-46.
    [55] Jung R, Shing P. Performance evaluation of a real-time pseudodynamic testsystem[J]. Earthquake Engineering and Structural Dynamics,2006,25(4):333-355.
    [56] Jung R, Shing P, Stauffer E, et al. Performance of a real-time pseudodynamictest system considering nonlinear structural response[J]. EarthquakeEngineering and Structural Dynamics,2007,36:1785–1809.
    [57]袁涌,朱宏平,熊世树.运用新型实时子结构实验验证橡胶隔震垫的隔震效果[J].防灾减灾工程学报,2007,27(增刊):378-382.
    [58]袁涌,熊世树,朱昆.橡胶隔震支座对桥梁隔震性能的实时子结构拟动力试验研究[J].华中科技大学学报(城市科学版),2008,25(1):35-38.
    [59] Christenson R, Lin Y, Emmons A, et al. Large-scale experimental verificationof semiactive control through realtime hybrid simulation[J]. Journal ofStructural Engineering,2008,134(4):522-534.
    [60] Mercan O, Ricles J, Sause R, et al. Real-time large-scale hybrid testing forseismic performance evaluation of smart structures [J]. Smart Structures andSystems,2008,4(5):667-684.
    [61] Mercan O, Ricles J. Experimental studies on real-time testing of structures withelastomeric dampers[J]. Journal of Structural Engineering,2009,135(9):1124-1133.
    [62] Ricles J, Sause R, Karavasilis T, et al. Experimental validation ofperformance-based seismic design of building systems with dampers usingreal-time hybrid simulation[C]. Proceedings of the Third InternationalConference on Advances in Experimental Structural Engineering, No.31, SanFransico,2009.
    [63] Lamarche C, Tremblay R, L′eger P, et al. Comparison between real-timedynamic substructuring and shake table testing techniques for nonlinearseismic applications[J]. Earthquake Engineering and Structural Dynamics,2010,39(12):1299-1320.
    [64] Kammula V, Erochko J, Kwon O, et al. Performance assessment of the selfcentering energy dissipative(SCED) bracing system using hybrid simulation[C].15th World Conference on Earthquake Engineering, Lisbon, Portugal,2012.
    [65] Horiuchi T, Inoue M, Konno T. Development of a real-time hybridexperimental system using a shaking table[C]. Proc.12th World Conf.Earthquake Engineering, Auckland, New Zealand,2000.
    [66] Igarashi H, Tanaka I. Development of substructure hybrid shake table test methodand application to verification tests of vibration control devices[C]. China-JapanWorkshop on Vibration Control and Health Monitoring of Structures and ThirdChinese Symposium on Structural Vibration Control, Shanghai, China,2002.
    [67] Neild S, Stoten D, Drury D, et al. Control issues relating to real-timesubstructuring experiments using a shaking table[J]. Earthquake Engineering andStructural Dynamics,2005,34(9):1171-1192.
    [68] Reinhorn A, Sivaselvan M, Liang Z, et al. Large scale real-time dynamic hybridtesting technique:Shaking tables substructure testing[J]. Advances inExperimental Structural Engineering,2005:457-464.
    [69] Lee S, Park E, Min K, et al. Real-time substructuring technique for the shakingtable test of upper substructures[J]. Engineering Structures,2007,29(9):2219-2232.
    [70] Ji X, Kajiwara K, Nagae T, et al. A substructure shaking table test for reproductionof earthquake responses of high-rise buildings[J]. Earthquake Engineering andStructural Dynamic,2009,38(12):1381-1399.
    [71]保海娥,张自平,程绍革.振动台混合实验系统实验设备研究[J].工程抗震和加固改造,2006,28(6):61-65.
    [72]杨现东.振动台子结构试验的数值仿真分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [73]王向英,田石柱.子结构地震模拟振动台混合试验原理与实现[J].地震工程与工程振动,2009,29(4):46-52.
    [74]王向英,田石柱,张洪涛,等.位移控制的子结构地震模拟振动台混合试验方法[J].世界地震工程,2009,25(2):30-35.
    [75]周惠蒙,吴斌. TLD振动台子结构试验的数值仿真分析[J].震灾防御技术,2010,5(1):9-19.
    [76] NEES. Network for earthquake engineering simulation [J/OL]. http://www. nees.org/,2004.
    [77]茹继平,肖岩.美国地震工程模拟网络系统NEES计划及在我国实现远程协同结构试验的设想[J].建筑结构学报,2002,23(6):91-94.
    [78] EUROSEISMICNET. European network for seismic risk mitigation[J/OL].http://www.forum.ecore.org,2000.
    [79] Ohtani K, Ogawa N, Katayama T, Shibata H. Project E-Defense(3-D Full-Scale Earthquake Testing Facility)[C]. Proceedings of Joint NCREE/JRCWorkshop on International Collaboration on Earthquake Disaster MitigationResearch, Taipei,2003:321-343.
    [80] Yang Y, Wang K, Wang S, et al. Networked pseudo-dynamic testing part I:database approach[J]. Earthquake Engineering and Structural Dynamics,2007,36:2291-2306.
    [81] Yang Y, Wang K, Wang S, et al. Networked pseudo-dynamic testing part II:application protocol approach[J]. Earthquake Engineering and StructuralDynamics,2007,36:2307-2323.
    [82] Kim J. KOCED collaboratory program[J]. Proceedings of ANCER AnnualMeeting: Networking of Young Earthquake Engineering Researchers andProfessionals, Hawaii,2004:658-674.
    [83] NZNEES. New Zealand network for earthquake engineering simulation[J/OL].http://www.nznees.auckland.ac.nz,2006.
    [84] Uk-NEES. The UK network for earthquake engineering simulation [J/OL].http://research.cen.bris.ac.uk/ukness,2008.
    [85] Xiao Y, Hu Q, Guo Y, et al. Development of a network plaform for remote hybriddynamic testing[C].13th world conference on earthquake engineering. Vancouver,B. C., Canada: Canadian Association for Earthquake Engineering,2004.
    [86]肖岩,胡庆,郭玉荣,等.结构拟动力远程系统试验网络平台的开发研究[J].建筑结构学报,2005,26(3):122-129.
    [87]郭玉荣,张国伟,肖岩,等.单自由度结构远程分析及拟动力实验平台.湖南大学学报,2006,33(2):18-21.
    [88]田石柱,蔡新江.远程协同结构试验方法研究与发展[J].地震工程与工程振动,2006,26(5):47-54.
    [89] Pan P, Tada M, Nakashima M. Online hybrid test by internet linkage ofdistributed test-analysis domains[J]. Earthquake Engineering and StructuralDynamics,2005,34(11):1407-1425.
    [90] Pan P, Tomofuji H, Wang T, et al. Development of peer-to-peer (P2P) internetonline hybrid test system[J]. Earthquake Engineering and Structural Dynamics,2006,35:867-890.
    [91] Wang T, Nakashima M, Pan P. On-line hybrid test combining with general-purpose finite element software[J]. Earthquake Engineering and StructuralDynamics,2006,35(12):1471-1488.
    [92] Wang T, McCormick J, Yoshitake N, et al. Collapse simulation of a four-storysteel moment frame by a distributed online hybrid test[J]. EarthquakeEngineering and Structural Dynamics,2008,37(6):955-974.
    [93] Wang T, Mosqueda G, Jacobsen A, et al. Performance evaluation of adistributed hybrid test framework to reproduce the collapse behavior of astructure[J]. Earthquake Engineering and Structural Dynamics,2012,41(2):295-313.
    [94] Kwon O, Elnashai A, Spencer B. A framework for distributed analytical andhybrid simulation [J]. Structural Engineering and Mechanics,2008,30(3):331-350.
    [95] Shing P, Nakashima M, Bursi O. Application of pseudodynamic test mehthod tostructural research[J]. Earthquake Spectra,1996,12(1):29-56.
    [96] Nakashima M, kaminosomo T, Ishida M. Integration techniques for substructurepseudodynamic test[C]. Proc. of the4th U.S. National Conference on EarthquakeEngineering, Palm Springs, California,1990:515-524.
    [97] Shing P, Vannan M, Carter E. Implicit time integration for pseudo-dynamic tests[J].Earthquake Engineering and Structural Dynamics,1991,20(6):551-576.
    [98] Hilber H, Hughes T, Taylor R. Improved numerical dissipation for time integrationalgorithms in structural dynamics[J]. Earthquake Engineering and StructuralDynamics,1977,5:283-292.
    [99] Wu B, Bao H, Ou J, et al. Stability and accuracy analysis of the centraldifference method for real-time substructure testing[J]. EarthquakeEngineering and Structural Dynamics,2005,34:705-718.
    [100]保海娥.实时子结构试验逐步积分算法的稳定性和精度[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005:12-56.
    [101] Wu B, Xu G, Wang Q, et al. Operator-splitting method for real-timesubstructure testing[J]. Earthquake Engineering and Structural Dynamics,2006,35(3):293-314.
    [102] Chang S. Explicit pseudodynamic algorithm with unconditional stability[J].Journal of Engineering Mechanics,2002,128(9):935–947.
    [103]李进,王焕定,张永山,等.高阶单步实时动力子结构实验技术研究[J].地震工程与工程振动,2005,25(1):97-101.
    [104] Chen C, Ricles J. Development of direct integration algorithms for structuraldynamics using discrete control theory[J]. Journal of Engineering Mechanics,2008,134(8):676-683.
    [105] Chen C,Ricles J,Marullo T,et al. Real-time hybrid testing using theunconditionally stable explicit CR integration algorithm[J]. EarthquakeEngineering and Structural Dynamics,2009,38(1):23-44.
    [106] Chen C, Ricles J. Stability analysis of direct integration algorithms applied toMDOF nonlinear structural dynamics[J]. Journal of Engineering Mechanics,2010,136(4):485-495.
    [107] Bursi O, Gonzalez-Buelga A, Vulcan L, et al. Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing[J]. EarthquakeEngineering and Structural Dynamics,2008,37(3):339-360.
    [108]王贞.实时混合试验的控制和时间积分算法[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:1-193.
    [109] Wu B, Deng L, Yang X. Stability of central difference method for dynamic real-time substructure testing [J]. Earthquake Engineering and Structure Dynamics,2009,38:1649-1663.
    [110]邓丽霞.子结构试验的数值稳定性分析[D].哈尔滨:哈尔滨工业大学博士学位论文,2011:21-102.
    [111] Jung R, Shing P. Performance evaluation of a real-time pseudodynamic testsystem [J]. Earthquake Engineering and Structure Dynamics,2006,35(7):789-810.
    [112] Chen C, Ricles J. Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation[J]. Earthquake Engineering and Structural Dynamics,2012,41(5):1021-1041.
    [113] Mosqueda G, Ahmadizadeh M. Combined implicit or explicit integration stepsfor hybrid simulation[J]. Earthquake Engineering and Structural Dynamics,2007,36(15):2325-2343.
    [114] Jung R, Shing P, Stauffer E, et al. Performance of a real-time pseudodynamictest system considering nonlinear structural response[J]. Earthquake Engineeringand Structural Dynamics,2007,36:1785-1809.
    [115] Ahmadizadeh M, Mosqueda G. Hybrid simulation with improved operator-splitting integration using experimental tangent stiffness matrix estimation[J].Journal of Structural Engineering,2008,134(12):1829-1838.
    [116] Wu B, Wang Q, Shing P, et al. Equivalent force control method forgeneralized real-time substructure testing with implicit integration[J].Earthquake Engineering and Structural Dynamics.2007,36:1127-1149.
    [117] Wu B, Xu G, Shing P. Equivalent force control method for real-time testingof nonlinear structures[J]. Journal of Earthquake Engineering,2011,15(1):143-164.
    [118]王倩颖.实时子结构试验方法及应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:100-124.
    [119]许国山.实时子结构试验的等效力控制方法[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:1-193.
    [120]周惠蒙,吴斌.采用滑动模态控制在电液伺服系统中的应用研究[J].结构工程师,2011,27(增刊):88-94.
    [121]汤青波,张文汉.最优滑模控制在电液伺服系统中的应用研究[J].液压与气动,2007,(1):70-72.
    [122]王向英,吴斌,王倩颖,等.实时子结构的滑动模态控制[J].工程力学,2007,24(6):174-179.
    [123] Wagg D, Stoten D. Substructuring of dynamical systems via the adaptive minimalcontrol synthesis algorithm[J]. Earthquake Engineering and StructuralDynamics,2001,30:865-877.
    [124] Drury D, Stoten D, Wagg D, et al. Advances in numerical experimentalsubstructuring techniques using MCS control[C].12European Conference onEarthquake Engineering, Paper No.227,2002.
    [125] Bonnet P, Lim C, William M, et al. Real-time hybrid experiments withNewmark integration, MCSmd outer-loop control and multi-taskingstrategies[J]. Earthquake Engineering and Structural Dynamics,2007,36(1):119-141.
    [126]邓丽霞.实时子结构试验的自适应控制方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:1-50.
    [127]宁西占.实时混合试验的H∞控制[D].哈尔滨:哈尔滨工业大学硕士学位论文,2013:1-30.
    [128] Mahin S, Shing P. Pseudodynamic method for seismic testing [J]. Journal ofStructural Engineering,1985,111(7):1482-1503.
    [129] Dyke S, Spencer B, Quast P, et al. Role of control-structure interaction inprotective system design[J]. Journal of Engineering Mechanics,1995,121(2):322-338.
    [130] Dimig J, Shield C, French C, et al. Effective force testing: A method ofseismic simulation for structural testing[J]. Journal of Structural Engineering,1999,125(9):1028-1037.
    [131] Shield K, French C, Timm J. Development and implementation of theeffective force testing method for seismic simulation of large-scale structure[J].The Royal Society,2001,395:1911-1929.
    [132] Zhao J, Shield C, French C, et al. Nonlinear system modeling and velocityfeedback compensation for effective force testing[J]. Journal of EngineeringMechanics,2005,131(3):244-253.
    [133] Sivaselvan M, Reinhorn A, Shao X, et al. Dynamic force control withhydraulic actuators using added compliance and displacement compensation[J]. Earthquake Engineering and Structural Dynamics,2008,37(15):1785-1800.
    [134] Nakata N. Effective force testing using a robust loop shaping controller[J].Earthquake Engineering and Structural Dynamics,2013,42(2):261-275.
    [135] Nakata N, Krug E. Multidegrees-of-freedom effective force testing:a feasibilitystudy and robust stability assessment[J]. Earthquake Engineering and StructuralDynamics,2013,42(13):1985-2002.
    [136]刘季,李暄,张培卿.大刚度结构力控制拟动力实验方法[J].地震工程与工程振动,1996,16(4):55-59.
    [137]李暄,刘季,田石柱.结构拟动力试验力控制实现技术[J].地震工程与工程振动,1997,17(1):49-53.
    [138] Pan P, Nakashima M, Tomofuji H. Online test using displacement-force mixedcontrol. Earthquake Engineering and Structural Dynamics,2005,34:869-888.
    [139]谭晓晶.大刚度试件拟动力试验方法.哈尔滨:哈尔滨工业大学博士学位论文,2013:1-115.
    [140] Horiuchi T, Inoue M, Konno T, et al. Real-time hybrid experimental systemwith actuator delay compensation and its application to a piping system withenergy absorber[J]. Earthquake Engineering and Structural Dynamics,1999,28(10):1121-1141.
    [141] Mercan O, Ricles M. Stability and accuracy analysis of outer loop dynamics inreal-time pseudodynamic testing of SDOF systems[J]. Earthquake Engineeringand Structural Dynamics,2007,36(11):1523-1543.
    [142] Horiuchi T, Konno T. A new method for compensating actuator delay in real-time hybrid experiment[J]. Philosophical Transactions of the Royal Society ofLondon,2001,359:1893-1909.
    [143] Zhao J, French C, Shield C, et al. Considerations for the development of real-time dynamic testing using servo-hydraulic actuation[J]. EarthquakeEngineering and Structural Dynamics,2003,32(11):1773-1794.
    [144] Carrion J, Spencer B. Real-time hybrid testing using model-based delaycompensation[J]. Smart Structures Systems,2008,4(6):809-828.
    [145] Chen C. Development and numerical simulation of hybrid effective force testingmethod [D]. Ph.D. dissertation, Dept. of Civil and Environmental Engineering,Lehigh University, Bethlehem, PA,2007.
    [146] Chen C, Ricles J. Improving the inverse compensation method for real-timehybrid simulation through a dual compensation scheme[J]. EarthquakeEngineering and Structural Dynamics,2009,38(10):1237-1255.
    [147] Phillips B, Spencer B. Model-based feedforward-feedback actuator control forreal-time hybrid simulation[J]. Journal of Structural Engineering,2012,139(2):219-228.
    [148] Chen P, Tsai K. Dual compensation strategy for real-time hybrid testing [J].Earthquake Engineering and Structural Dynamics,2013,42:1-23.
    [149] Wu B, Wang Z, Bursi O. Actuator dynamics compensation based on upper bounddelay for real-tme hybrid simulation[J]. Earthquake Engineering and StructuralDynamics,2013,42(12):1749-1765.
    [150] Darby A, Blakeborough A, Williams M. Stability and delay compensating forreal-time substructure testing[J]. Journal of Engineering Mechanics,2002,128(12):1276-1284.
    [151] Wallace M, Sieber J, Neild S, et al. Stability analysis of real-time dynamicsubstructuring using delay differential equation models[J]. EarthquakeEngineering and Structural Dynamics,2005,34(15):1817-1832.
    [152] Ahmadizadeh M, Mosqueda G, Reinhorn A. Compensation of actuator delayand dynamics for real-time hybrid structural simulation[J]. EarthquakeEngineering and Structural Dynamics,2008,37(1):21-42.
    [153]王贞,吴斌.基于最小二乘法的时滞实时在线估计方法[J].振动工程学报,2009,22(6):625-631.
    [154] Shing P, Mahin S. Cumulative experimental errors in pseudodynamic tests[J].Earthquake Engineering and Structural Dynamics,1987,15(4):409-424.
    [155] Shing P, Mahin S. Experimental error effects in pseudodynamic testing[J].Journal of Engineering Mechanics,1990,116(4):805-821.
    [156] Nakashima M. Part1: Relationship between integration time interval andresponse stability in pseudodynamic testing[J]. Journal of Structural ConstructionEngineering,1985,353:29-34.
    [157] Nakashima M. Part2: Relationship between integration time interval andresponse stability in pseudodynamic testing[J]. Journal of Structural ConstructionEngineering,1985,358:35-40.
    [158] Nakashima M, Kato H. Part3: Experimental error growth in pseudo dynamictesting. Journal of Structural Construction Engineering,1988,386:36-48.
    [159] Nakashima M, Kato H. Part4: Control of experimental error growth in pseudodynamic testing. Journal of Structural Construction Engineering,1989,401:129-138.
    [160] Peek R, Yi W. Error analysis for pseudodynamic test method I: Analysis[J].Journal of Engineering Mechanics,1990,116(7):1618-1637.
    [161] Peek R, Yi W. Error analysis for pseudodynamic test method II: Application[J]. Journal of Engineering Mechanics,1990,116(7):1638-1658.
    [162]许国山.实时子结构试验算子分解法的数值性能研究[D].哈尔滨工业大学硕士学位论文,2005.
    [163] Chang S. Nonlinear error propagation analysis for explicit pseudodynamicalgorithm[J]. Journal of Engineering Mechanics,2003,129(8):841-850.
    [164] Chang S. Extensions of nonlinear error propagation analysis for explicitpseudodynamic testing[J]. Earthquake Engineering and Engineering Vibration,2009,8(1):77-86.
    [165] Mosquedal G, Stojadinovic B, Mahin S. Real-time error monitoring for hybridsimulation. Part I: methodology and experimental verification[J]. Journal forStructural Engineering,2007,133(8):1100-1108.
    [166] Mosquedal G, Stojadinovic B, Mahin S. Real-time error monitoring for hybridsimulation. Part II: Structural response modification due to errors [J]. Journalfor Structural Engineering,2007,133(8):1109-1117.
    [167] Hessabi R, Mercan O. Phase and amplitude error indices for error quantificationin pseudodynamic testing [J]. Earthquake Engineering and EngineeringVibration,2012,41:1347-1364.
    [168] Kammula V, Erochko J, Kwon O, et al. Performance assessment of the selfcentering energy dissipative(SCED) Bracing System using Hybrid Simulation[C].15th World Conference on Earthquake Engineering, Lisbon, Portugal,2012.
    [169] Mercan O, Ricles J. Experimental studies on real-time testing of structures withelastomeric dampers [J]. Journal of Structural Engineering,2009,135(9):1124-1133.
    [170] Christenson R, Lin Y, Emmons A, et al. Large-scale experimental verification ofsemiactive control through realtime hybrid simulation[J]. Journal of StructuralEngineering,2008,134(4):522–534.
    [171]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [172] Bouc R. Forced vibration of mechanical systems with hysteresis[C]. Proceedingsof the Fourth Conference on Nonlinear Oscillation, Prague, Czechoslovakia,1967,P315.
    [173] Wen Y. Method for random vibration of hysteretic systems[J]. Journal ofEngineering Mechanics,1976,102(2):249-263.
    [174] Baber T, Wen Y. Random vibration hysteretic, degrading systems[J]. Journal ofEngineering Mechanics,1981,107(6):1069-1087.
    [175] Yang W, Nakano Y. Substructure online test by using real-time hysteresismodeling with a neural network[J]. Proceedings of the first internationalconference on Advances in Experimental structural Engineering, Nagaya,2005:267-274.
    [176]张健.自适应子结构拟动力试验方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [177]杜文晨.基于Bouc-Wen模型的RC框架梁-柱节点与结构抗震性能分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2013.
    [178] McVerry G. Structural identification in the frequency domain from earthquakerecords [J]. Structural Engineering and Mechanics,1980,8:161-180.
    [179] Kitada Y. Identification and uncertainty estimation of structural parameters[J].Journal of Engineering Mechanics,1998,124(10):1059-1066.
    [180] Sues R, Mau S, Wen Y. Systems identification of degrading hysteretic restoringforces[J]. Journal of Engineering Mechanics,1988,114(5):833-846.
    [181] Kunnath S, Mander J, Fang L. Parameter identification for degrading and pinchedhysteretic structural concrete systems[J]. Engineering Structure,1997,19(3):224-232.
    [182] Zhang H, Foliente G, Yang Y, et al. Parameter identification of inelasticstructures under dynamic loads[J]. Earthquake Engineering and StructuralDynamics,2002,31(5):1113-1130.
    [183] Li S, Suzuki Y, Noori M. Identification of hysteretic systems with slip usingbootstrap filter [J]. Mech Syst Signal Process,2004,18(4):781-795.
    [184] Sato T, Qi K. Adaptive H∞filter:its application to structural identification[J].Journal of Engineering Mechanics,1998,124(11):1233-1240.
    [185] Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking[J]. IEEE Trans Signal Process,2002,50(2):174-188.
    [186] Van der Merwe R, Wan E. Guassian mixture sigma-point particle filters forsequential probalilistic inference in dynamic state-space models[C]. Proceedingsof IEEE International Conference on Acoustics, Speech and SignalProcessing(ICASSP), Hong Kong,2003.
    [187] Li S, Suzuki Y, Noori M. Identification of hysteretic systems with slip usingbootstrap filter[J]. Mech. Syst. Signal Process,2004,18(4):781–795.
    [188] Li S, Suzuki Y, Noori M. Improvement of parameter estimation for non-linearhysteretic systems with slip by a fast bayesian bootstrap filter[J]. Int. J. Non-Linear Mech,2004,39(9):1435–1445.
    [189] Smyth A, Masri S, Chassiakos A, et al. On-line parametric identification ofMDOF nonlinear hysteretic systems[J]. Journal of Engineering Mechanics,1999,125(2):133-142.
    [190] Lin J, Betti R, Smyth A, et al. On-line identification of non-linear hystereticstructural systems using a variable trace approach [J]. Earthquake Engineeringand Structural Dynamics,2001,30:1279-1303.
    [191] Smyth A, Masri S, Kosmatopoulos E, et al. Development of adaptive modelingtechniques for non-linear hysteretic systems[J]. Int J Non-Linear Mech,2002,37(8):1435-1451.
    [192] Yang J, Lin S. On-line identification of non-linear hysteretic structures using anadaptive tracking technique[J]. International Journal of Non-Linear Mechanics,2004,39(9):1481-1491.
    [193] Yang J, Huang H. Sequential non-linear least-square estimation for damageidentification of structures with unknown inputs and unknown outputs[J].International Journal of Non-Linear Mechanics,2007,42(5):789-801.
    [194] Zhang J, Wu B, Wang T. Adaptive substructure testing method based on leastsquare[C].2011International Conference on Electric Technology and CivilEngineering, IEEE, Lushan, China,2011,3:1907-1910.
    [195] Kalman R. A new approach to linear filtering and prediction theory[J]. Trans.ASME. Journal of Basic Eng,1960,82D:35-46.
    [196] Bellantoni J, Dodge K. A square root formulation of the Kalman-Schmidt filter[J].AIAA Journal,1967,5:1309-1314.
    [197] Yun C, Shinozuka M. Identification of nonlinear structural dynamics systems [J].Journal of Engineering Mechanics,1980,8(2):187-203.
    [198] Hoshiya M, Saito E. Structural identification by extended Kalman filter [J].Journal of Engineering Mechanics,1984,110(12):1757-1772.
    [199] Zhang H, Foliente G, Yang Y, et al. Parameter identification of inelasticstructures under dynamic loads[J]. Earthquake Engineering and StructuralDynamics,2002,31(5):1113-1130.
    [200] Mariani S, Corigliano A. Impact induced composite delamination: state andparameter identification via joint and dual extended Kalman filters. ComputMethods Appl Mech Eng,2005,194(50-52):5242-5272.
    [201] Yang J, Lin S, Huangl H, et al. An adaptive extended Kalman filter for structuraldamage identification [J]. Structural Control and Health Monitoring,2006,13(4):849-867.
    [202] Song W, Dyke S. Application of nonlinear observers in hysteretic model updating[J]. Proceeding of SPIE, Sensors and Smart Structures Technologies for Civil,Mechanics, and Aerospace Systems,2010, San Diego, CA, USA.
    [203] Li H, Mao C, Ou J. Identification of hysteretic dynamic systems by using hybridextended Kalman filter and wavelet multi-resolution analysis with limitedobservation[J]. Journal of Engineering Mechanics,2013,139(5):547-558.
    [204] Julier S, Uhlmann J. A general method for approximating nonlineartransformations of probality distrbutions. http:/www. Robots.ox.ac.uk/`siju,1994.
    [205] Julier S, Uhlmann J, Durrant-Whte H. A new approach for filtering nonlinearsystems[C]. Proceendings of the American Control Conference, Seattle,Washington,1995:1628-1632.
    [206] Julier S, Uhlmann J, Durrant-Whte H. A new method for the nonlineartransformation of means and covariances in filters and estimators[J]. IEEETransactions on Automatic Control,2000,45(3):477-482.
    [207] Julier S, Uhlmann J. Reduced sigma point filters for the propagation of meansand covariances through nonlinear transformations[C]. Proceendings of theAmerican Control Conference, Anchorage, Ak May8-10,2002:887-892.
    [208] Julier S. The scaled unscented transformation[C]. Proceedings of AmericanControl Conference,2002,6:4555-4559.
    [209] Julier S. The spherical simplex unscented transformation[C]. Proceendings of theAmerican Control Conference,2003:2430-2434.
    [210] Julier S, Uhlmann J. Unscented Filtering and Nonlinear Estimation[J].Proceendings of the IEEE,2004,92(3):401-422.
    [211] Van Der Merwe R, Wan E. The Square-root unscented Kalman filter for state andparameter estimation[C]. Proceedings of the International Conference onAcoustics, Speech, and Signal Processing, Salt Lake City, USA,2001:3461-3464.
    [212] Wan E, Van Der Merwe R. Kalman filtering and neural networks[M]. Wiley,Chapter7,2001:221-280.
    [213] Wan E, Van Der Merwe R. The unscented Kalman filter for nonlinearestimation. In: Adaptive systems for signal processing, communications,andcontrol symposium, AS-SPCC[C]. Lake Louise, Alberta, Canada: IEEE,2000:153-158.
    [214] Xiong K, Zhang H, Chan C. Performance evaluation of UKF-based nonlinearfiltering[J]. Automatica,2006,42(2):261-270.
    [215] Xiong K, Wei C, Liu L. Robust unscented Kalman filtering for nonlinearuncertain systems[J]. Asian journal of Control,2010,12:426-433.
    [216] Wu M, Smyth A. Application of the unscented Kalman filter for real-timenonlinear structural system identification[J]. J Struct Control Monitor,2007,14(7):971-990.
    [217] Wu M, Smyth A. Real-time parameter estimation for degrading and pinchinghysteretic models[J]. International Journal of Non-Linear Mechanics,2008,43:822-833.
    [218] Ashrafi A, Smyth A. Adaptive parametric identification scheme for a class ofnondeteriorating and deteriorating nonlinear hysteretic behavior[J]. Journal ofEngineering Mechanics,2008,134(6):482-494.
    [219]陶冬旺.基于数据驱动和物理模型的结构地震损伤识别方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2013.
    [220] Xie Z, Feng J. Real-time nonlinear structural system identification via iteratedunscented Kalman filter[J]. Mechanical Systems and Signal Processing,2012,28:309-322.
    [221] Chatzi E, Smyth A, Masri S. Experimental application of on-line parametricidentification for nonlinear hysteretic systems with model uncertainty[J].Structural Safety,2010,32(5):326-337.
    [222] Tasbihgoo F, Caffrey J, Masri S. Development of data-based model-freerepresentation of non-conservative dissipative systems[J]. Int J Non-Linear Mech,2007,42(1):99-117.
    [223] Song W, Dyke S. Real-time dynamic model updating of a hysteretic structuralsystem[J]. J.Struct. Eng.,10.1061/(ASCE)ST,1943-541X.0000857,2013.
    [224] Song W, Dyke S. Development of a cyber-physical experimental platform forreal-time dynamic model updating[J]. Mechanical Systems and SignalProcessing,2013,37(1-2),388-402.
    [225] Song W. Dynamic model updating with applications in structural and dampingsystems:from linear to nonlinear, from off-line to real-time[D]. Ph.D.3481154, Purdue University, Inidiana, United States,2011.
    [226] Yang Y, Tsai K, Elnashai A,et al. Preliminary study on online updating hybridsimulation[C]. NCREE Technical Report09-001, National Center for Research onEarthquake Engineering, Taipei, Taiwan,2009.
    [227] Lagarias J, Reeds J, Wright M, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions[J]. SIAM Journal on Optimization,1998,9(1):112-147.
    [228] Yang Y, Tsai K, Elnashai A, et al. An online optimization method for bridgedynamic hybrid simulations[J]. Simulation Modelling Practice and Theory,2012,28:42-54.
    [229] Hashemi M, Masroor A, Mosqueda G. Implementation of online modelupdating in hybrid simulation[J]. Earthquake Engineering and StructuralDynamics,2014,43(3):395-412.
    [230] Kwon O, Kammula V. Model updating method for substructure pseudo-dynamichybrid simulation[J]. Earthquake Engineering and Structural Dynamics,2013,42(13):1971-1984.
    [231] Simon D. Optimal state estimation[M]. John Wiley&Sons, Inc., New Jersey,2006.
    [232] Yang F, Wang Z, Hung Y. Robust Kalman filtering for discrete time-varinguncertain systems with multiplicative noises[J]. IEEE Transactions AutomaticControl,2002,47(7):1179-1183.
    [233]焦尚彬,谢国,钱富才.乘性噪声系统滤波问题研究[J].西安理工大学学报,2011,27(2):160-164.
    [234] Kailath T, Sayed A, Hassibi B. Linear estimation[M]. Prentice Hall Informationand System Sciences Series, Upper Saddle River, New Jersey07458,2000.
    [235] Vachhani P, Narasimhan S, Rengaswamy R. Robust and reliable estimationvia unscented recursive nonlinear dynamic data reconciliation[J]. Journal ofProcess Control,2006,16(10):1075-1086.
    [236] Kandepu R, Foss B, Imsland L. Applying the unscented Kalman filter fornonlinear state estimation[J]. Journal of Process Control,2008,18(7-8):753-768.
    [237] Kolas S, Foss B, Schei T. Constrained nonlinear state estimation based on theUKF approach[J]. Computers and Chemical Engineering,2009,33(8):1386-1401.
    [238] Kadu S, Bhushan M, Gudi R, et al. Modified unscented recursive nonlineardynamic data reconciliation for constrained state estimation[J]. Journal of ProcessControl,2010,20:525-537.
    [239] Mandela R, Kuppuraj V, Rengaswmy R, et al. Constrained unscentedrecursive estimator for nonlinear dynamic systems[J]. Journal of ProcessControl,2012,22(4):718-728.
    [240] Simon D, ChiaHIA T. Kalman filtering with state equality constraints[J].IEEE Trans. Aerospace Electron. Syst.,2002,38(1):128-136.
    [241] Simon D, Simon D. Kalman filtering with inequality constraints for Turbofanengine health estimation[J]. IEEE Proc. Control Theory Appl.,2006,153(3):371-378.
    [242] Haseltine E, Rawlings J. A critical evaluation of extended Kalman filteringand moving horizon estimation[M]. Technical Report, Texas-WisconsinModeling and Control Consortium (TWMCC),2002-2003.
    [243] Rao C, Rawlings J, Mayne D. Constrained state estimation for nonlineardiscrete-time systems: stability and moving horizon approximations[J]. IEEETrans. Autom. Control,2003,48(2):246-258.
    [244] Ma F, Zhang H, Bockstedte A, et al. Parameter analysis of the differential model of hysteresis[J]. J. Appl. Mech. Trans. ASME,2004,71(3):342-349.
    [245] Ikhouane F, Maosa V, Rodellar J. Dynamic properties of the hysteretic Bouc Wen model[J]. Systems&Control Letters,2007,56(3):197-205.
    [246]何政,蒋碧聪. OpenSees混合模拟试验技术发展与应用[J].力学进展,2012,42(6):804-820.
    [247] Mazzoni S, McKenna F, Scott M, et al. OpenSees Command languagemanual[M]. Pacific Earthquake Engineering Research Center, University ofCalifornia at Berkeley,2007.
    [248]杨格,王贞,吴斌,等.建筑结构混合模拟与试验软件的开发[J].土木工程学报,2014(已投稿).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700