量子集成光学芯片器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的电子集成芯片领域,纳米加工技术、量子隧穿效应、功耗和散热等方面制约着基于电子芯片的信息技术的进一步发展。量子信息科学应运而生,基于量子态的叠加原理、量子不可克隆原理和量子精密测量、有望实现高效的量子计算、高速而安全的量子信息传输,并能够突破经典噪声和不确定性原理的限制实现更加精确的测量。经过近三十的努力,量子信息在很多物理体系中取得了卓有成效的进展,包括电子和空穴自旋、核自旋、光子、机械振子、超导约瑟芬结、原子和离子阱。其中,光子具有多重自由度、室温环境下的退相干小、信息传输速率高以及技术成熟等多方面的优势,因此人们已经在基于光子的量子态的量子信息处理方面取得了众多突破性的进展。然而,传统光学元件尺寸较大并且光路受到环境温度、气流和振动的影响非常大,限制了光子量子信息处理的进一步扩展。
     在集成光学芯片上,固态介质组成的光学元件和光路性能稳定、能耗更小可扩展性强,因而是光子量子信息处理的必然发展趋势。本论文致力于研究集成光学芯片上的量子信息处理。一方面,研究各种集成光学元件的基本性质,与实验结合设计各种新的器件,并开发新的材料和物理体系来提高器件的性能,从而实现对量子态的制备和操控。另外一方面,光的传播可以类比量子态的演化,因而赋予集成芯片的光学研究新的内涵和物理,可以利用集成光学芯片模拟量子模型或者基于量子力学原理设计新颖的集成光学元件。
     本论文具体的研究内容包括以下几个方面:
     1.集成光学芯片器件基本性质
     集成光学芯片上最基本的组成部分是光子的载体,即波导和微谐振腔。波导可以传输光子,连接不同的集成器件;谐振腔可以局域光子,增强光子与物质的相互作用,基于两者可以实现各种不同功能的光学器件。我们研究小组深入研究了各种波导结构和回音壁模式微谐振腔的基本性质。结合过去几年我们小组的实验进展,本论文详细介绍了回音壁模式光学微腔的基本性质、实际的材料和制备方法。本人在理论上研究了回音壁模式的耦合模式理论,研究了其与近场波导的平行和垂直耦合,对实验中的回音壁模式的高效激发和收集提供理论支持。为了避免在低温腔内进行实验时对微腔近场操控的限制,本人还研究了非对称的回音壁模式微腔的方向性发射。首次给出高Q单向性发射的回音壁模式的基本原理,并基于此设计和优化了实用的方向性发射微腔。另外还首次给出远场激发回音壁模式微腔的自洽理论,为自由空间耦合高Q回音壁模式微腔提供理论指导。
     2.集成芯片上光子与二能级体系相互作用
     二能级原子是最简单的量子体系,利用光子与其作用,可以实现单光子光源、原子媒介的光子光子相互作用以及光子媒介的原子原子相互作用,从而用于量子纠缠、量子态的制备和存储等应用。我们小组致力于实现固态量子点和微腔的强耦合实验,希望基于此构造固态量子信息处理器。因此,本人开展了这个方面的理论研究。在波导和回音壁模式微腔附近,由于局部的电磁场模式密度的改变会造成原子自发辐射速率的改变。基于此,我们提出利用纳米光纤和表面等离子体的复合结构,实现高效的单光子源。实验上已经观测到了回音壁模式腔对量子点荧光寿命的调制效应。我们提出了各种改进的实验方案来帮助解决在单个量子点和回音壁模式微腔的强耦合实验中遇到的一些困难。例如,通过用混杂有量子点的聚合物包裹微腔表面,可以实现更加高效和稳定的强耦合。
     3.光与机械相互作用
     本人将机械振子这样一个新的元素引入到集成光学芯片上,从而实现更多实用的光学器件和量子信息处理。光机械作用的一个特点就是任意波长的光子携带的动量都可以转移到机械体系上,光与机械相互作用无需频率共振。本人的研究包括两个方面:(1)用经典的光力控制机械振子的运动从而实现对光路的调制。在集成芯片上,微纳结构的质量和弹性系数非常小而更容易变形,利用波导和微腔对光的束缚,可以在输入光能量很小的情况下调节机械振子的状态。利用这种光机械相互作用使得光与光间接地相互作用,可以实现相位和能量的调制器,具有全光特性和低功耗的优势。(2)利用简谐振子的量子态实现量子信息处理,包括量子纠缠和光子频率转换等。我们首次提出了一种室温下实现光机械量子纠缠的实验体系。该体系由一个高机械品质因子(Qm)的机械谐振子和高光学品质因子(Qo)的微盘腔组成,均由Si3N4材料制备,与其它光学集成器件兼容。在这个体系中,如果固定其他参数不变,纠缠只与温度和机械Qm的比值有关,也就是说Qm越高,量子纠缠就能在越高的温度下存在。机械体系其独有的性质有望在集成光学芯片量子信息处理中发挥重要的作用。
     4.集成光学量子模拟
     利用集成光学芯片,可以构造特定的结构来模拟和类比其他物理体系,实现对某些量子物理问题的模拟研究。本人利用集成光学芯片模拟了量子开放体系,并研究了系统与环境相互作用的马尔科夫、非马尔科夫动力学过程。通过直接观测电磁场的能量分布和演化,可以直观的理解系统与环境相互作用的内在物理机制。在集成光学芯片上,可以非常方便的控制环境的尺寸以及系统与环境的相互作用强度,从而研究其中各个细节。值得一提的是,我们还证明了通过对系统施加周期性的调制可以改变系统的演化,加快或者减慢系统能量的耗散速率。类似于自旋体系的动力学解耦,我们的研究为集成光学芯片提供了一种新的方法来控制光学耗散。更重要的是,这种光学与量子的模拟或者类比为我们研究基本物理过程和现象提供了新的视角。
     5.量子力学启发的新器件设计
     通过量子力学与集成光学芯片的模拟类比,本人借鉴量子力学中的一些有趣的现象和原理来设计新的集成光学器件。(1)基于绝热量子态演化模型的激发方式,首次提出介质波导模式与表面等离子体模式的高效转化。在实验上这一激发方式已经被证实。在此基础上进一步提出了新颖的利用表面等离子体模式的高效集成偏振器件:起偏器和偏振分束器,可以实现光学芯片上的偏振量子态的操控。(2)基于连续体中的局域态模型实现一种全新的金刚石光学芯片,突破了传统的芯片上器件只能在低折射率基底上制备高折射率微纳光学结构的限制,提供了一个新的集成光学实验平台,有望用于光子与金刚石内的NV色心的强相互作用以及基于此的量子信息处理和量子网络。
Since great progresses have been achieved in both science and technology recent-ly, efficient and quick information acquisition, processing and transmission are urgently required. However, further development of the traditional electronic chips is limited, be-cause further reducing the size of various electronic components will lead to inevitable quantum effect and the heating problem. Thus, the electronic circuits are facing the chal-lenges of fabrication, power consumption and heat dissipation. As the times require, the quantum information science arises:quantum no-cloning theorem guarantees the safety of quantum information communication; utilizing the superposition principle of quantum states, quantum algorithm is efficient for the information processing; quantum metrology can break the limitations of classical noise and quantum uncertainty princi-ple, thus very small quantities can be measured accurately. During the last thirty years, great efforts have been dedicated to the quantum information processing in various sys-tems, such as electron and hole spins, nuclear spins, photons, mechanical oscillators, superconducting qubits, atoms and ions. Among them, photons have many advantages, including:they possesses multiple degrees of freedom to encode quantum information, which is potential for higher signal processing speed and information transmission rate; the decoherence of photon at room temperature is very weak, thus information can be transmitted with high fidelity; there is a very long history of study on optics and the op-tical technology has been very mature. Therefore, many breakthroughs on the quantum information processing have been achieved by photons, such as quantum computation, quantum simulation and quantum teleportation.
     However, there are also constraints on the photon-based quantum information pro-cessing in traditional space optical circuits. For example, the them are large and occupy considerable space, and the distance between optical devices is very sensitive to the environment temperature, airflow and vibrations. Therefore, for further scalable quan-tum information processing, all the optical components need to be integrated on chip. The photonic integrated circuits (PICs) with compact optical devices can greatly save the material, spaces and less power consumption. In addition, the PIC made of solid material are more stable, enable further scalable quantum information processing.
     This thesis is devoted to the study of PIC and quantum information processing based on it. On the one hand, the basic properties of optical waveguides and resonators are studied, and a variety of devices for PICs are designed. New materials and structures are also introduced to PIC to improve the optical performance and functionality. On the other hand, I explored the analogues between the quantum physics and optics in PIC, proposed the schemes to simulate quantum mechanics by PIC, and borrowed ideas from quantum mechanics to design novel integrated optical devices.
     There are several topics studied in this thesis, including:
     1. The basic properties of the integrated optical devices
     In the PIC, the basic components are waveguide and resonant cavity. Waveguide can guide photons and connect different devices; resonant cavity can trap photon and enhance the light-matter interaction. A variety of optical devices with different func-tionalities are constructed by waveguides and resonant cavities. Our group is dedicating to study the basic properties of waveguide and resonator structures. We have studied the fundaments of whispering gallery (WG) microresonators, including the optical proper-ties of WG modes, the practical fabrication of WGM microcavities and their applica-tions. In addition, the near field waveguide coupled to WG modes are studied theoreti-cally, both parallel and perpendicular configures investigated. To avoid the limitation of near-field coupler, we also studied the free space excitation and collection of asymmet-ric resonant cavities. Our theoretical studies provide a guideline for the experimental studies on the high-Q WG modes.
     2Interaction between photon and two level systems
     The two-level atom is the simplest quantum system, and it can interact with photon-s. The photon-atom interaction, atomic-mediated photon-photon interaction and photon-mediated atom-atom interaction can be applied for generating single photon source, preparing and storing quantum states and quantum entanglements. Our group focused on the strong coupling between solid-state quantum dots and microcavities. Therefore, we have studied the photon-atom interaction in theory. The spontaneous emission rate of two-level system will be changed when putting two-level system in the vicinity of waveguide or WG microresonators. Based on this, we proposed a hybrid structure com-posed of nanofiber and metal substrate for efficient single photon source. We have also demonstrated the modulation of the fluorescence of quantum dots near WG microres-onator experimentally. In addition, we presented experimental schemes to improve the behavior of experiment systems or solve the problems encountered in experiment. For example, with a polymer coated microcavity, efficient and stable strong coupling can be achieved.
     3. Optomechanics
     The mechanical oscillators are introduced to the PIC, enabling more practical opti-cal devices and quantum information processors. The characteristic of the optomechan-ical interaction is that the momentum of light at any wavelengths can be transferred to the mechanical system. Our study includes two aspects:(1) Controlling of the classi-cal movement of mechanical oscillator through light. In the integrated chip, the micro-and nanomechanical oscillators are soft and easy to distort. In addition, waveguide or cavity can increase local intensity of light and enhance the optomechanical interaction-s. Therefore, we used the light in the waveguide to control the position of a nearby nanostring oscillator, so as to tune the effective index of waveguide modes and mod-ulate the phase of transmitted light in waveguide.(2) Utilizing the quantum state of the harmonic oscillator for quantum information processing, including quantum entan-glement generation and photon frequency conversion. We proposed an experimental system for optomechanical entanglement at room temperature. The system consists of a nanostring oscillator with high mechanical quality factor (Qm) and a microdisk res-onator with ultrahigh optical quality factor (Qo). The system is fabricated by Si3N4, which is compatible to other silicon-based components. We demonstrated that in this system, the entanglement depends on the ratio of temperature to Qm. That means that quantum entanglement can exist at high temperature for ultrahigh Qm mechanical os-cillators. The unique properties of optomechanics are expected to play important roles in the PIC-based quantum information processing.
     4. Integrated photonic quantum simulator
     With photons, we can construct specific structures to simulate other physical mod-els, such as quantum models. We proposed to simulate the quantum open system by PIC. In this simulation of system-environment interaction, the quantum Markovian and non-Markovian dynamics processes are studied. By directly observing the energy dis-tribution of the electromagnetic field, the intrinsic physical mechanisms of system-environment interaction are understood. Taking advantages of the PIC that the sizes of environment and system and the interaction between them can be controlled precisely, the physics therein can be studied in detail. It is worth noting that, we also demonstrated the photonic dynamical decoupling through a sequence of modulations to the system, and we observed the accelerated and inhibited system energy dissipation. Our research thus provides a new method to control the optical dissipation of PIC. More important-ly, the photonic quantum simulation provides a different perspective to study the basic physical processes and phenomena.
     5. Novel optical devices inspired by quantum mechanics
     There is intrinsic analogue between the Schrodinger equation and the Maxwell e-quation, therefore we can borrow interesting phenomena and principles from quantum mechanics to the design novel integrated optical devices.(1) The adiabatic mode con-verter. Based on the model of adiabatic evolution of quantum states, we proposed an efficient conversion between dielectric waveguide modes and surface plasmon mode. This converter has been demonstrated in our experiment. Furthermore, we proposed novel and efficient integrated devices, polarizer and polarization beam splitter, to ma-nipulate the polarization states of photons.(2) Novel photonic chip made by low re-fractive index material on a high refractive index substrate. Based on the bound state in the continuum model, we proposed a novel diamond optical chip, which broke the limitation of traditional optical chips that light can only be confined in high refractive index structures. This provides a new PIC platform, and is expected to be used for strong interaction between photon and NV centers in diamond.
引文
[1]Moore G E, et al. Cramming more components onto integrated circuits. Proceedings of the IEEE,1998,86(1):82-85.
    [2]Landauer R. Irreversibility and heat generation in the computing process. IBM journal of research and development,1961,5(3):183-191.
    [3]Bennett C H. Notes on Landauer's principle, reversible computation, and Maxwell's Demon. Studies In History and Philosophy of Science Part B:Studies In History and Philosophy of Modern Physics,2003,34(3):501-510.
    [4]Feynman R P. Simulating physics with computers. International j ournal of theoretical physics, 1982,21(6):467-488.
    [5]Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum com-puter. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985,400(1818):97-117.
    [6]Shor P W. Algorithms for quantum computation:discrete logarithms and factoring. Proceed-ings of Foundations of Computer Science,1994 Proceedings.,35th Annual Symposium on. IEEE,1994.124-134.
    [7]Bennett C H, Brassard G, et al. Quantum cryptography:Public key distribution and coin toss-ing. Proceedings of Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, volume 175. Bangalore, India,1984.
    [8]Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements:beating the standard quantum limit. Science,2004,306(5700):1330-1336.
    [9]Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Physical Review Letters,2006, 96(1):010401.
    [10]Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nature Photonics, 2011,5(4):222-229.
    [11]Khilo A, Spector S J, Grein M E, et al. Photonic ADC:overcoming the bottleneck of electronic jitter. Optics Express,2012,20(4):4454-4469.
    [12]Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics, nature,2001,409(6816):46-52.
    [13]Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics,2007,79(1):135.
    [14]Politi A, Cryan M J, Rarity J G, et al. Silica-on-silicon waveguide quantum circuits. Science, 2008,320(5876):646-649.
    [15]Matthews J C, Politi A, Stefanov A, et al. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photonics,2009,3(6):346-350.
    [16]Shadbolt P, Verde M, Peruzzo A, et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics,2011,6(1):45-49.
    [17]Politi A, Matthews J C, O'Brien J L. Shor's quantum factoring algorithm on a photonic chip. Science,2009,325(5945):1221-1221.
    [18]Sansoni L, Sciarrino F, Vallone G, et al. Polarization entangled state measurement on a chip. Physical Review Letters,2010,105(20):200503.
    [19]Crespi A, Ramponi R, Osellame R, et al. Integrated photonic quantum gates for polarization qubits. Nature Communications,2011,2:566.
    [20]Duan L M, Kimble H. Scalable photonic quantum computation through cavity-assisted inter-actions. Physical Review Letters,2004,92(12):127902.
    [21]Turchette Q A, Hood C, Lange W, et al. Measurement of conditional phase shifts for quantum logic. Physical Review Letters,1995,75(25):4710-4713.
    [22]Englund D, Faraon A, Fushman I, et al. Controlling cavity reflectivity with a single quantum dot. Nature,2007,450(7171):857-861.
    [23]Fushman I, Englund D, Faraon A, et al. Controlled phase shifts with a single quantum dot. Science,2008,320(5877):769-772.
    [24]Muller A, Fang W, Lawall J, et al. Creating polarization-entangled photon pairs from a semi-conductor quantum dot using the optical stark effect. Physical Review Letters,2009,103 (21): 217402.
    [25]Aspuru-Guzik A, Walther P. Photonic quantum simulators. Nature Physics,2012,8(4):285-291.
    [26]Peruzzo A, Lobino M, Matthews J C, et al. Quantum walks of correlated photons. Science, 2010,329(5998):1500-1503.
    [27]Sansoni L, Sciarrino F, Vallone G, et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Physical Review Letters,2012,108(1):010502.
    [28]Longhi S. Quantum-optical analogies using photonic structures. Laser & Photonics Review, 2009,3(3):243-261.
    [29]Garanovich Ⅰ, Longhi S, Sukhorukov A, et al. Light propagation and localization in modulated photonic lattices and waveguides. Physics Reports,2012,518(1-2):1-79.
    [30]Christodoulides D N, Lederer F, Silberberg Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature,2003,424(6950):817-823.
    [31]Topolancik J, Ilic B, Vollmer F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Physical Review Letters,2007,99(25):253901.
    [32]Smith D D, Chang H, Fuller K A, et al. Coupled-resonator-induced transparency. Physical Review A,2004,69(6):063804.
    [33]Dreisow F, Szameit A, Heinrich M, et al. Bloch-Zener oscillations in binary superlattices. Physical Review Letters,2009,102(7):076802.
    [34]Longhi S, Della Valle G, Ornigotti M, et al. Coherent tunneling by adiabatic passage in an optical waveguide system. Physical Review B,2007,76(20):201101.
    [35]Hafezi M, Demler E A, Lukin M D, et al. Robust optical delay lines with topological protec-tion. Nature Physics,2011,7(11):907-912.
    [36]Mohan A, Felici M, Gallo P, et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photonics,2010,4(5):302-306.
    [37]Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics,2010,4(3):174-177.
    [38]Dousse A, Suffczynski J, Beveratos A, et al. Ultrabright source of entangled photon pairs. Nature,2010,466(7303):217-220.
    [39]Pernice W, Schuck C, Minaeva O, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Communications,2012, 3:1325.
    [40]Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature,2011,469(7331):512-515.
    [41]Liu J, Beals M, Pomerene A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photonics,2008,2(7):433-437.
    [42]Fan S, Baets R, Petrov A, et al. Comment on Nonreciprocal light propagation in a silicon photonic circuit, science,2012,335(6064):38-38.
    [43]Fan L, Wang J, Varghese L T, et al. An all-silicon passive optical diode. Science,2012, 335(6067):447-450.
    [44]Feng L, Ayache M, Huang J, et al. Nonreciprocal light propagation in a silicon photonic circuit. Science,2011,333(6043):729-733.
    [45]Kang M, Butsch A, Russell P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photonics,2011,5(9):549-553.
    [46]Manipatruni S, Robinson J T, Lipson M. Optical nonreciprocity in optomechanical structures. Physical Review Letters,2009,102(21):213903.
    [47]Yu Z, Fan S. Complete optical isolation created by indirect interband photonic transitions. Nature Photonics,2009,3(2):91-94.
    [48]Wang Z, Chong Y, Joannopoulos J M S. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature,2009,461(7265):772-775.
    [49]Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nature Pho-tonics,2010,4(9):611-622.
    [50]Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics,2010,4(5):297-301.
    [51]Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011,474(7349):64-67.
    [52]Schurig D, Mock J, Justice B, et al. Metamaterial electromagnetic cloak at microwave fre-quencies. Science,2006,314(5801):977-980.
    [53]Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a nega-tive refractive index. Nature,2008,455(7211):376-379.
    [54]Rakhmanov A, Zagoskin A, Savel'ev S, et al. Quantum metamaterials Electromagnetic waves in a Josephson qubit line. Physical Review B,2008,77(14):144507.
    [55]Crespi A, Osellame R, Ramponi R, et al. Experimental boson sampling in arbitrary integrated photonic circuits. arXiv preprint arXiv:1212.2783,2012..
    [56]Spring J B, Metcalf B J, Humphreys P C, et al. Boson sampling on a photonic chip. Science, 2013,339(6121):798-801.
    [57]Taflove A, Brodwin M E. Numerical solution of steady-state electromagnetic scattering prob-lems using the time-dependent Maxwell's equations. Microwave Theory and Techniques, IEEE Transactions on,1975,23(8):623-630.
    [58]Taflove A, Hagness S C. Computational electrodynamics, volume 160. Artech house Boston, 2000.
    [59]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics,1994,114(2):185-200.
    [60]Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on,1966,14(3):302-307.
    [61]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. Electromagnetic Compatibility, IEEE Transactions on,1981,(4):377-382.
    [62]Ang W T. A beginner's course in boundary element methods. Universal-Publishers,2007.
    [63]Boriskina S V, Sewell P, Benson T M, et al. Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization. Journal of the Optical Society of America A,2004,21(3):393-402.
    [64]Wiersig J. Boundary element method for resonances in dielectric microcavities. Journal of Optics A:Pure and Applied Optics,2003,5(1):53.
    [65]Zou C L, Yang Y, Xiao Y F, et al. Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B, 2009,26(11):2050-2053.
    [66]Zou C L, Schwefel H G, Sun F W, et al. Quick root searching method for resonances of dielectric optical microcavities with the boundary element method. Optics Express,2011, 19(17):15669-15678.
    [67]Prather D W, Mirotznik M S, Mait J N. Boundary integral methods applied to the analysis of diffractive optical elements. Journal of the Optical Society of America A,1997,14(1):34-43.
    [68]Wang L, Cox J A, Friedman A. Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the NystrSm method. Journal of the Optical Society of America A,1998,15(1):92-100.
    [69]Coggon J. Electromagnetic and electrical modeling by the finite element method. Geophysics, 1971,36(1):132-155.
    [70]Jin J. The Finite element method in electromagnetics. Wiley,2002.
    [71]Van Roey J, Donk J, Lagasse P. Beam-propagation method:analysis and assessment. Journal of the Optical Society of America,1981,71(7):803-810.
    [72]Chung Y, Dagli N. An assessment of finite difference beam propagation method. Quantum Electronics, IEEE Journal of,1990,26(8):1335-1339.
    [73]Huang W, Xu C. Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. Quantum Electronics, IEEE Journal of,1993,29(10):2639-2649.
    [74]Zhang Z Q, Liu Q H. A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects. Antennas and Wireless Propagation Letters, IEEE,2002, 1(1):102-105.
    [75]Guo J L, Li J Y. Liu Q Z. Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation. Antennas and Propagation, IEEE Trans-actions on,2006,54(7):1910-1916.
    [76]Hafner C, Ballisti R. The multiple multipole method (MMP). COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1983, 2(1):1-7.
    [77]Kuster N. Multiple multipole method for simulating EM problems involving biological stud-ies. Biomedical Engineering, IEEE Transactions on,1993,40(7):611-620.
    [78]Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation:A pedestrian prescription. Antennas and Propagation Magazine, IEEE,1993,35(3):7-12.
    [79]White T, Kuhlmey B, McPhedran R, et al. Multipole method for microstructured optical fibers. I. Formulation. Journal of the Optical Society of America B,2002,19(10):2322-2330.
    [80]Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. Microwave Theory and Techniques, IEEE Trans-actions on,2007,55(6):1209-1218.
    [81]Saleh B E, Teich M C. Fundamentals of photonics, volume 32. Wiley-Interscience Hoboken, NJ,2007.
    [82]Tong L, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature,2003,426(6968):816-819.
    [83]Tong L. Brief introduction to optical microfibers and nanofibers. Frontiers of Optoelectronics in China,2010,3(1):54-60.
    [84]Tong L, Lou J, Mazur E, et al. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express,2004,12(6):1025-1035.
    [85]Knight J, Cheung G, Jacques F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Optics Letters,1997,22(15):1129-1131.
    [86]Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Physical Review Letters,2000,85(1):74-77.
    [87]Le Kien F, Balykin V, Hakuta K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Physical Review A,2004,70(6): 063403.
    [88]Vetsch E, Reitz D, Sague G, et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Physical Review Letters,2010, 104(20):203603.
    [89]Zhu J, Ozdemir S K, Yang L. Optical Detection of S ingle Nanoparticles With a Sub wavelength Fiber-Taper. Photonics Technology Letters, IEEE,2011,23(18):1346-1348.
    [90]Xu C, Lei H, Zhang Y, et al. Backward transport of nanoparticles in fluidic flow. Optics express,2012,20(3):1930-1938.
    [91]Yan R, Gargas D, Yang P. Nanowire photonics. Nature Photonics,2009,3(10):569-576.
    [92]Barrelet C J, Greytak A B, Lieber C M. Nanowire photonic circuit elements. Nano Letters, 2004,4(10):1981-1985.
    [93]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. sci-ence,2001,292(5523):1897-1899.
    [94]Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature,2003, 421(6920):241-245.
    [95]Almeida V R, Xu Q, Barrios C A, et al. Guiding and confining light in void nanostructure. Optics Letters,2004,29(11):1209-1211.
    [96]Xu Q, Almeida V R, Panepucci R R, et al. Experimental demonstration of guiding and con- fining light in nanometer-size low-refractive-index material. Optics Letters,2004,29(14): 1626-1628.
    [97]Yang A H, Moore S D, Schmidt B S, et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature,2009,457(7225):71-75.
    [98]Koos C, Vorreau P, Vallaitis T, et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics,2009,3(4.):216-219.
    [99]Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics,1988,111.
    [100]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature,2003, 424(6950):824-830.
    [101]Ozbay E. Plasmonics:merging photonics and electronics at nanoscale dimensions, science, 2006,311(5758):189-193.
    [102]Schuller J A, Barnard E S, Cai W,. et al. Plasmonics for extreme light concentration and manipulation. Nature Materials,2010,9(3):193-204.
    [103]Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. nature photonics,2009,3(7):388-394.
    [104]Altewischer E, Van Exter M, Woerdman J. Plasmon-assisted transmission of entangled pho-tons. Nature,2002,418(6895):304-306.
    [105]Ditlbacher H, Hohenau A, Wagner D, et al. Silver nanowires as surface plasmon resonators. Physical Review Letters,2005,95(25):257403.
    [106]Huck A, Kumar S, Shakoor A, et al. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Physical Review Letters,2011,106(9):96801.
    [107]Zou C L, Sun F W, Xiao Y F, et al. Plasmon modes of silver nanowire on a silica substrate. Applied Physics Letters,2010,97(18):183102-183102.
    [108]Rayleigh L. CXII. The problem of the whispering gallery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1910,20(120):1001-1004.
    [109]Richtmyer R. Dielectric Resonators. Journal of Applied Physics,1939,10(6):391-398.
    [110]Garrett C, Kaiser W, Bond W. Stimulated emission into optical whispering modes of spheres. Physical Review,1961,124:1807-1809.
    [111]Ashkin A, Dziedzic J. Observation of resonances in the radiation pressure on dielectric spheres. Physical Review Letters,1977,38(23):1351-1354.
    [112]Qian S X, Snow J B, Tzeng H M, et al. Lasing droplets:highlighting the liquid-air interface by laser emission. Science,1986,231(4737):486-488.
    [113]Qian S X, Chang R K. Multiorder Stokes Emission from Micrometer-Size Droplets. Physical Review Letters,1986,56:926-929.
    [114]Braginsky V, Gorodetsky M, Ilchenko V. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A,1989,137(7):393-397.
    [115]McCall S, Levi A, Slusher R, et al. Whispering-gallery mode microdisk lasers. Applied Physics Letters,1992,60:289.
    [116]Levi A, Slusher R, McCall S, et al. Room temperature operation of microdisc lasers with submilliamp threshold current. Electronics Letters,1992,28(11):1010-1012.
    [117]Rokhsari H, Vahala K. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. Physical Review Letters,2004,92(25):253905.
    [118]Tazawa H, Steier W H. Bandwidth of linearized ring resonator assisted Mach-Zehnder mod-ulator. Photonics Technology Letters, IEEE,2005,17(9):1851-1853.
    [119]Xiao X, Xu H, Li X, et al.25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Optics Express,2012,20(3):2507-2515.
    [120]Chu S T, Little B E, Pan W, et al. An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid. Photonics Technology Letters, IEEE,1999,11(6): 691-693.
    [121]Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. Lightwave Technology, Journal of,1997,15(6):998-1005.
    [122]Zhu J, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics,2009,4(1):46-49.
    [123]Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to sin-gle molecules. Nature Methods,2008,5(7):591-596.
    [124]Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. Proceedings of the National Academy of Sciences,2008,105(52):20701-20704.
    [125]Lu T, Lee H, Chen T, et al. High sensitivity nanoparticle detection using optical microcavities. Proceedings of the National Academy of Sciences,2011,108(15):5976-5979.
    [126]Sandoghdar V, Treussart F, Hare J, et al. Very low threshold whispering-gallery-mode mi-crosphere laser. Physical Review A,1996,54(3):R1777-R1780.
    [127]Cai M, Painter O, Vahala K, et al. Fiber-coupled microsphere laser. Optics Letters,2000, 25(19):1430-1432.
    [128]Dong C H, Xiao Y F, Han Z F, et al. Low-threshold microlaser in Er:Yb phosphate glass coated microsphere. Photonics Technology Letters, IEEE,2008,20(5):342-344.
    [129]Li H, Shang L, Tu X, et al. Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser. Journal of the American Chemical Society, 2009,131(46):16612-16613.
    [130]Dong C, Yang Y, Shen Y, et al. Observation of microlaser with Er-doped phosphate glass coated microsphere pumped by 780nm. Optics Communications,2010,283(24):5117-5120.
    [131]Spillane S, Kippenberg T, Vahala K. Ultralow-threshold Raman laser using a spherical di-electric microcavity. Nature,2002,415(6872):621-623.
    [132]Kippenberg T J A. Nonlinear optics in ultra-high-Q whispering-gallery optical microcavi-ties[D]. California Institute of Technology,2004.
    [133]Kippenberg T, Spillane S, Vahala K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Physical Review Letters,2004,93(8):083904.
    [134]Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Physics,2007,3(6):430-435.
    [135]DelHaye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a mono-lithic microresonator. Nature,2007,450(7173):1214-1217.
    [136]Grudinin I S, Matsko A B, Maleki L. Brillouin Lasing with a CaF_{2} Whispering Gallery Mode Resonator. Physical Review Letters,2009,102(4):043902.
    [137]Bahl G, Zehnpfennig J, Tomes M, et al. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Communications,2011,2:403.
    [138]Yanik M F, Fan S. Stopping light all optically. Physical Review Letters,2004,92(8):083901.
    [139]Yariv A, Xu Y, Lee R K, et al. Coupled-resonator optical waveguide:a proposal and analysis. Optics Letters,1999,24(11):711-713.
    [140]Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2006,1(1):65-71.
    [141]Mookherjea S, Park J S, Yang S H, et al. Localization in silicon nanophotonic slow-light waveguides. Nature Photonics,2008,2(2):90-93.
    [142]Chiasera A, Dumeige Y, Feron P, et al. Spherical whispering-gallery-mode microresonators. Laser& Photonics Reviews,2010,4(3):457-482.
    [143]Ward J, Benson O. WGM microresonators:sensing, lasing and fundamental optics with microspheres. Laser & Photonics Reviews,2011,5(4):553-570.
    [144]Heebner J, Grover R, Ibrahim T A. Optical microresonators:theory, fabrication, and appli-cations. Springer Verlag,2008.
    [145]Armani D, Kippenberg T, Spillane S, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 2003,421(6926):925-928.
    [146]Wu X, Zou C, Wei W, et al. Photo luminescence from site-selected coupling between quantum dots and microtoroid cavities. Chinese Optics Letters,2010,8(7):709-712.
    [147]Savchenkov A A, Ilchenko V S, Matsko A B, et al. Kilohertz optical resonances in dielectric crystal cavities. Physical Review A,2004,70(5):051804.
    [148]Grudinin I S, Ilchenko V S, Maleki L. Ultrahigh optical Q factors of crystalline resonators in the linear regime. PHYSICAL REVIEW-SERIES A-,2006,74(6):063806.
    [149]Li B B, Wang Q Y, Xiao Y F, et al. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Applied Physics Letters,2010,96(25):251109-251109.
    [150]Dong C H, He L, Xiao Y F, et al. Fabrication of high-Q polydimethylsiloxane optical micro-spheres for thermal sensing. Applied Physics Letters,2009,94(23):231119-231119.
    [151]Grossmann T, Hauser M, Beck T, et al. High-Q conical polymeric microcavities. Applied Physics Letters,2010,96(1):013303-013303.
    [152]Xiao Y F, Zou C L, Xue P, et al. Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer. Physical Review A,2010,81(5):053807.
    [153]Dong C, Sun F, Zou C, et al. High-Q silica microsphere by poly (methyl methacrylate) coating and modifying. Applied Physics Letters,2010,96(6):061106-061106.
    [154]Chao C y, Guo L J. Polymer microring resonators fabricated by nanoimprint technique. Jour-nal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2002, 20(6):2862-2866.
    [155]Gorodetsky M L, Ilchenko V S. Optical microsphere resonators:optimal coupling to high-Q whispering-gallery modes. Journal of the Optical Society of America B,1999,16(1):147-154.
    [156]Walls D F, Milburn G G J. Quantum optics. Springer,2007.
    [157]Yariv A. Universal relations for coupling of optical power between microresonators and di-electric waveguides. Electronics Letters,2000,36(4):321-322.
    [158]Zou C L, Yang Y, Dong C H, et al. Taper-microsphere coupling with numerical calculation of coupled-mode theory. Journal of the Optical Society of America B,2008,25(11):1895-1898.
    [159]Wu X W, Zou C L, Cui J M, et al. Modal coupling strength in a fibre taper coupled silica microsphere. Journal of Physics B:Atomic, Molecular and Optical Physics,2009,42(8): 085401.
    [160]Dong C H, Zou C L, Xiao Y F, et al. Modified transmission spectrum induced by two-mode interference in a single silica microsphere. Journal of Physics B:Atomic, Molecular and Optical Physics,2009,42(21):215401.
    [161]Li B B, Xiao Y F, Zou C L, et al. Experimental observation of Fano resonance in a single whispering-gallery microresonator. Applied Physics Letters,2011,98(2):021116-021116.
    [162]Dong C, Zou C, Cui J, et al. Ringing phenomenon in silica microspheres. Chinese Optics Letters,2009,7(4):299-301.
    [163]Yan Y Z, Zou C L, Yan S B, et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application. Optics express,2011,19(7):5753-5759.
    [164]Yan Y Z, Zou C L, Yan S B, et al. Robust Spot-Packaged Microsphere-Taper Coupling Struc-ture for In-Line Optical Sensors. Photonics Technology Letters, IEEE,2011,23(22):1736-1738.
    [165]Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Optics Express,2009,17:23010.
    [166]Wang S J, Lin J D, Huang Y Z, et al. AlGalnAs-InP microcylinder lasers connected with an output waveguide. Photonics Technology Letters, IEEE,2010,22(18):1349-1351.
    [167]Shu F J, Zou C L, Sun F W. Perpendicular coupler for whispering-gallery resonators. Optics Letters,2012,37(15):3123-3125.
    [168]Zou C L, Shu F J, Sun F W, et al. Theory of free space coupling to high-Q whispering gallery modes. arXiv preprint arXiv:1209.1442,2012..
    [169]Nockel J U, Stone A D. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997,385(6611):45-47.
    [170]Gmachl C, Capasso F, Narimanov E, et al. High-power directional emission from microlasers with chaotic resonators. Science,1998,280(5369):1556-1564.
    [171]Schwefel H, Tureci H, Stone A D, et al. Progress in asymmetric resonant cavities; using shape as a design parameter in dielectric microcavity lasers. Optical Microcavities,2004.415-496.
    [172]Xiao Y F, Zou C L, Li Y, et al. Asymmetric resonant cavities and their applications in optics and photonics:areview. Frontiers of Optoelectronics in China,2010,3(2):109-124.
    [173]Lacey S, Wang H, Foster D H, et al. Directional tunneling escape from nearly spherical optical resonators. Physical Review Letters,2003,91(3):033902.
    [174]Xiao Y F, Dong C H, Han Z F, et al. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses. Optics Letters,2007,32(6):644-646.
    [175]Shinohara S, Hentschel M, Wiersig J, et al. Ray-wave correspondence in limacon-shaped semiconductor microcavities. Physical Review A,2009,80(3):031801.
    [176]Shang L, Liu L, Xu L. Highly collimated laser emission from a peanut-shaped microcavity. Applied Physics Letters,2008,92(7):071111-071111.
    [177]Shu F J, Zou C L, Sun F W, et al. Mechanism of directional emission from a peanut-shaped microcavity. Physical Review A,2011,83(5):053835.
    [178]Xiao Y F, Dong C H, Zou C L, et al. Low-threshold micro laser in a high-Q asymmetrical microcavity. Optics Letters,2009,34(4):509-511.
    [179]Zou C L, Sun F W, Dong C H, et al. High Q and Unidirectional Emission Whispering Gallery Modes:Principles and Design.2012..
    [180]Jiang X F, Xiao Y F, Zou C L, et al. Highly Unidirectional Emission and Ultralow-Threshold Lasing from On-Chip Ultrahigh-Q Microcavities. Advanced Materials,2012,24(35):OP260-OP264.
    [181]Maioli P, Meunier T, Gleyzes S, et al. Nondestructive Rydberg atom counting with mesoscopic fields in a cavity. Physical Review Letters,2005,94(11):113601.
    [182]Volz J, Gehr R, Dubois G, et al. Measurement of the internal state of a single atom without energy exchange. Nature,2011,475(7355):210-213.
    [183]Nogues G, Rauschenbeutel A, Osnaghi S, et al. Seeing a single photon without destroying it. Nature,1999,400(6741):239-242.
    [184]Moehring D, Maunz P, Olmschenk S, et al. Entanglement of single-atom quantum bits at a distance. Nature,2007,449(7158):68-71.
    [185]Weber B, Specht H, Muller T, et al. Photon-photon entanglement with a single trapped atom. Physical Review Letters,2009,102(3):030501.
    [186]Ritter S, Nolleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities. Nature,2012,484(7393):195-200.
    [187]Kubanek A, Koch M, Sames C, et al. Photon-by-photon feedback control of a single-atom trajectory. Nature,2009,462(7275):898-901.
    [188]Sayrin C, Dotsenko I, Zhou X, et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature,2011,477(7362):73-77.
    [189]Zhou X, Dotsenko I, Peaudecerf B, et al. Field locked to a fock state by quantum feedback with single photon corrections. Physical Review Letters,2012,108(24):243602.
    [190]Specht H P, Nolleke C, Reiserer A, et al. A single-atom quantum memory. Nature,2011, 473(7346):190-193.
    [191]Timoney N, Baumgart I, Johanning M, et al. Quantum gates and memory using microwave-dressed states. Nature,2011,476(7359):185-188.
    [192]Gleyzes S, Kuhr S, Guerlin C, et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature,2007,446(7133):297-300.
    [193]Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review,1946, 69:681.
    [194]Shen J, Fan S. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Optics Letters,2005,30(15):2001-2003.
    [195]Shen J T, Fan S. Theory of single-photon transport in a single-mode waveguide. Ⅰ. Coupling to a cavity containing a two-level atom. Physical Review A,2009,79(2):023837.
    [196]Chang D E, S(?)rensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons. Nature Physics,2007,3(11):807-812.
    [197]Lacroute C, Choi K, Goban A, et al. A state-insensitive, compensated nanofiber trap. New Journal of Physics,2012,14(2):023056.
    [198]Stiebeiner A, Garcia-Fernandez R, Rauschenbeutel A. Design and optimization of broadband tapered optical fibers with a nanofiber waist. Optics Express,2010,18(22):22677-22685.
    [199]Le Kien F, Hakuta K. Slowing down of a guided light field along a nanofiber in a cold atomic gas. Physical Review A,2009,79(1):013818.
    [200]Goban A, Choi K, Alton D, et al. Demonstration of a state-insensitive, compensated nanofiber trap. Physical Review Letters,2012,109(3):033603.
    [201]Schwagmann A, Kalliakos S, Farrer Ⅰ, et al. On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Applied Physics Letters,2011, 99(26):261108-261108.
    [202]Chen Y, Gregersen N, Nielsen T R, et al. Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes. Optics Express,2010, 18(12):12489-12498.
    [203]Thyrrestrup H, Sapienza L, Lodahl P. Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide. Applied Physics Letters,2010,96(23):231106-231106.
    [204]Yalla R, Le Kien F, Morinaga M, et al. Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Physical Review Letters,2012, 109(6):063602.
    [205]Hung C L, Meenehan S, Chang D, et al. Trapped Atoms in One-Dimensional Photonic Crys-tals. arXiv preprint arXiv:1301.5252,2013..
    [206]Bajcsy M, Hofferberth S, Peyronel T, et al. Laser-cooled atoms inside a hollow-core photonic-crystal fiber. Physical Review A,2011,83(6):063830.
    [207]Bajcsy M, Hofferberth S, Balic V, et al. Efficient all-optical switching using slow light within a hollow fiber. Physical Review Letters,2009,102(20):203902.
    [208]Akimov A, Mukherjee A, Yu C, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature,2007,450(7168):402-406.
    [209]Sorger V J, Pholchai N, Cubukcu E, et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Letters,2011, 11(11):4907-4911.
    [210]Zou C L, Sun F W, Dong C H, et al. Movable fiber-integrated hybrid plasmonic waveguide on metal film. Photonics Technology Letters, IEEE,2012,24(6):434-436.
    [211]Martiin-Cano D, Martin-Moreno L, Garcia-Vidal F J, et al. Resonance energy transfer and superradiance mediated by plasmonic nano waveguides. Nano Letters,2010,10(8):3129-3134.
    [212]Wang L L, Zou C L, Ren X F, et al. Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence. Applied Physics Letters,2011,99:061103.
    [213]Cheng M T, Luo Y Q, Wang P Z, et al. Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot. Applied Physics Letters,2010,97(19):191903-191903.
    [214]Xiao Y F, Zou C L, Hu Y W, et al. Broadband Enhancement of Light Harvesting in a Lu-minescent Solar Concentrator. Quantum Electronics, IEEE Journal of,2011,47(9):1171-1176.
    [215]Kimble H. Strong interactions of single atoms and photons in cavity QED. Physica Scripta, 1998,1998(T76):127.
    [216]Guerlin C, Bernu J, Deleglise S, et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature,2007,448(7156):889-893.
    [217]Rauschenbeutel A, Nogues G, Osnaghi S, et al. Step-by-step engineered multiparticle entan-glement. Science,2000,288(5473):2024-2028.
    [218]Kimble H. The quantum internet. Nature,2008,453(7198):1023-1030.
    [219]Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Physical Review Letters,2005,95(6):067401.
    [220]Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature,2006,443(7112):671-674.
    [221]Srinivasan K, Painter O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature,2007,450(7171):862-865.
    [222]Dayan B, Parkins A, Aoki T, et al. A photon turnstile dynamically regulated by one atom. Science,2008,319(5866):1062-1065.
    [223]Aoki T, Parkins A, Alton D, et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Physical Review Letters,2009,102(8):083601.
    [224]Maxwell J C. A treatise on electricity and magnetism, volume 1. Clarendon press,1873.
    [225]Nichols E, Hull G. The pressure due to radiation.(second paper.). Physical Review (SeriesⅠ), 1903,17(1):26.
    [226]Nichols E, Hull G. A Preliminary Communication on the Pressure of Heat and Light Radia-tion. Physical Review (SeriesⅠ),1901,13(5):307.
    [227]Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters,1970,24(4):156-159.
    [228]Ashkin A, Dziedzic J, Bjorkholm J, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters,1986,11(5):288-290.
    [229]Ashkin A, Dziedzic J, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature,1987,330(6150):769-771.
    [230]Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Physical Review Letters,1988,61(7):826-829.
    [231]Diedrich F, Bergquist J, Itano W M, et al. Laser cooling to the zero-point energy of motion. Physical Review Letters,1989,62(4):403-406.
    [232]Padgett M, Bowman R. Tweezers with a twist. Nature Photonics,2011,5(6):343-348.
    [233]Braginski V, Manukin A. Ponderomotive effects of electromagnetic radiation. Soviet Physics-JETP,1967,25:653.
    [234]Braginsky V, Strigin S, Vyatchanin S P. Parametric oscillatory instability in Fabry-Perot interferometer. Physics Letters A,2001,287(5):331-338.
    [235]Rokhsari H, Carmon T, Kippenberg T, et al. Radiation-pressure-driven micro-mechanical oscillator. Proceedings of Optical Communication,2005. ECOC 2005.31st European Con-ference on, volume 4. IET,2005.831-832.
    [236]Kippenberg T, Rokhsari H, Carmon T, et al. Analysis of radiation-pressure induced mechan-ical oscillation of an optical microcavity. Physical Review Letters,2005,95(3):033901.
    [237]Ma R, Schliesser A, Del'Haye P, et al. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Optics Letters,2007,32(15):2200-2202.
    [238]Ding L, Baker C, Senellart P, et al. High frequency GaAs nano-optomechanical disk resonator. Physical Review Letters,2010,105(26):263903.
    [239]Aspelmeyer M, Groblacher S, Hammerer K, et al. Quantum optomechanics-throwing a glance [Invited]. Journal of the Optical Society of America B,2010,27(6):A189-A197.
    [240]Kippenberg T, Vahala K. Cavity optomechanics:back-action at the mesoscale. science,2008, 321(5893):1172-1176.
    [241]Kippenberg T J, Vahala K J. Cavity opto-mechanics. Optics Express,2007,15(25):17172-17205.
    [242]Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity Optomechanics. arXiv preprint arXiv: 1303.0733,2013..
    [243]Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 micron wavelength, author=Tsang, Hon Ki and Wong, CS and Liang, TK and Day, IE and Roberts, SW and Harpin, A and Drake, J and Asghari, M, journal=Applied Physics Letters, volume=80, number=3, pages=416-418, year=2002, publisher=AIP..
    [244]Almeida V R, Barrios C A, Panepucci R R, et al. All-optical switching on a silicon, chip. Optics Letters,2004,29(24):2867-2869.
    [245]Xu Q, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure. Nature Physics,2007,3(6):406-410.
    [246]Song J, Fang Q, Tao S, et al. Fast and low power Michelson interferometer thermo-optical switch on SOI. Optics Express,2008,16(20):15304-15311.
    [247]Cocorullo G, Rendina I. Thermo-optical modulation at 1.5μm in silicon etalon. Electronics Letters,1992,28(1):83-85.
    [248]Pruessner M W, Stievater T H, Ferraro M S, et al. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Optics express,2007,15(12):7557-7563.
    [249]Ma J, Povinelli M L. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides. Optics Express,2011,19(11):10102-10110.
    [250]Povinelli M L, Loncar M, Ibanescu M, et al. Evanescent-wave bonding between optical waveguides. Optics Letters,2005,30(22):3042-3044.
    [251]Zhu L. Frequency dependence of the optical force between two coupled waveguides. Optics Letters,2009,34(18):2870-2872.
    [252]Pernice W H P, Li M, Tang H. Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Optics express,2009,17(3):1806-1816.
    [253]Pernice W, Li M, Fong K Y, et al. Modeling of the optical force between propagating light-waves in parallel 3D waveguides. Optics express,2009,17(18):16032-16037.
    [254]Rakich P T, Popovic M A, Wang Z. General treatment of optical forces and potentials in mechanically variable photonic systems. Optics Express,2009,17(20):18116-18135.
    [255]Li M, Pernice W, Xiong C, et al. Harnessing optical forces in integrated photonic circuits. Nature,2008,456(7221):480-484.
    [256]Fong K Y, Pernice W H, Li M, et al. Tunable optical coupler controlled by optical gradient forces. Optics Express,2011,19(16):15098-15108.
    [257]Cleland A N. Foundations of nanomechanics:from solid-state theory to device applications. Springer Verlag,2003.
    [258]Tsang H K, Liu Y. Nonlinear optical properties of silicon waveguides. Semiconductor Science and Technology,2008,23(6):064007.
    [259]Xu Q, Manipatruni S, Schmidt B, et al.12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express,2007,15(2):430-436.
    [260]Schwab K C, Roukes M L. Putting mechanics into quantum mechanics. Physics Today,2005, 58(7):36-42.
    [261]Ekinci K, Roukes M. Nanoelectromechanical systems. Review of scientific instruments, 2005,76(6):061101-061101.
    [262]Mancini S, Vitali D, Tombesi P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Physical Review Letters,1998,80(4):688-691.
    [263]Marquardt F, Chen J P, Clerk A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Physical Review Letters,2007,99(9):093902.
    [264]Schliesser A, Riviere R, Anetsberger G, et al. Resolved-sideband cooling of a micromechan-ical oscillator. Nature Physics,2008,4(5):415-419.
    [265]Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics,2009,5(7):489-493.
    [266]O'Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature,2010,464(7289):697-703.
    [267]Riviere R, Deleglise S, Weis S, et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Physical Review A,2011,83(6):063835.
    [268]Teufel J, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature,2011,475(7356):359-363.
    [269]Chan J, Alegre T M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature,2011,478(7367):89-92.
    [270]Groblacher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature,2009,460(7256):724-727.
    [271]Verhagen E, Deleglise S, Weis S, et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature,2012,482(7383):63-67.
    [272]Wang Y D, Clerk A A. Using interference for high fidelity quantum state transfer in optome-chanics. Physical Review Letters,2012,108(15):153603.
    [273]Stannigel K, Rabl P, S(?)rensen A, et al. Optomechanical transducers for long-distance quantum communication. Physical Review Letters,2010,105(22):220501.
    [274]Stannigel K, Komar P, Habraken S, et al. Optomechanical quantum information processing with photons and phonons. Physical Review Letters,2012,109(1):013603.
    [275]Aspelmeyer M, Meystre P, Schwab K. Quantum optomechanics. Physics Today,2012,65(7): 29-35.
    [276]Dong C, Fiore V, Kuzyk M C, et al. Optomechanical Dark Mode. Science,2012,338(6114): 1609-1613.
    [277]Vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field. Physical Review Letters,2007,98(3):030405.
    [278]Genes C, Mari A, Tombesi P, et al. Robust entanglement of a micromechanical resonator with output optical fields. Physical Review A,2008,78(3):032316.
    [279]Hartmann M J, Plenio M B. Steady state entanglement in the mechanical vibrations of two dielectric membranes. Physical Review Letters,2008,101(20):200503.
    [280]Verbridge S S, Craighead H G, Parpia J M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Applied Physics Letters,2008,92(1):013112- 013112.
    [281]Fong K Y, Pernice W, Li M, et al. High Q optomechanical resonators in silicon nitride nanophotonic circuits. Applied Physics Letters,2010,97(7):073112-073112.
    [282]Hertzberg J, Rocheleau T, Ndukum T, et al. Back-action-evading measurements of nanome-chanical motion. Nature Physics,2009,6(3):213-217.
    [283]Schliesser A, Arcizet O, Riviere R, et al. Resolved-sideband cooling and position measure-ment of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Physic-s,2009,5(7):509-514.
    [284]Carmon T, Rokhsari H, Yang L, et al. Temporal behavior of radiation-pressure-induced vi-brations of an optical microcavity phonon mode. Physical Review Letters,2005,94(22): 223902.
    [285]Schliesser A, Del'Haye P, Nooshi N, et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Physical Review Letters,2006,97(24):243905.
    [286]Metzger C H, Karrai K. Cavity cooling of amicrolever. Nature,2004,432(7020):1002-1005.
    [287]Favero Ⅰ, Metzger C, Camerer S, et al. Optical cooling of a micromirror of wavelength size. Applied Physics Letters,2007,90(10):104101-104101.
    [288]Metzger C, Ludwig M, Neuenhahn C, et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Physical Review Letters,2008,101(13):133903.
    [289]Zwickl B, Shanks W, Jayich A, et al. High quality mechanical and optical properties of com-mercial silicon nitride membranes. Applied Physics Letters,2008,92(10):103125-103125.
    [290]Thompson J, Zwickl B, Jayich A, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature,2008,452(7183):72-75.
    [291]Jayich A, Sankey J, Zwickl B, et al. Dispersive optomechanics:a membrane inside a cavity. New Journal of Physics,2008,10(9):095008.
    [292]Monteiro T, Millen J, Pender G, et al. Dynamics of levitated nanospheres:towards the strong coupling regime. New Journal of Physics,2013,15(1):015001.
    [293]Chang D, Regal C, Papp S, et al. Cavity opto-mechanics using an optically levitated nanosphere. Proceedings of the National Academy of Sciences,2010,107(3):1005-1010.
    [294]Li T, Kheifets S, Medellin D, et al. Measurement of the instantaneous velocity of a Brownian particle. Science,2010,328(5986):1673-1675.
    [295]Li T, Kheifets S, Raizen M G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics,2011,7(7):527-530.
    [296]Anetsberger G, Arcizet O, Unterreithmeier Q, et.al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Physics,2009,5(12):909-914.
    [297]Anetsberger G, Gavartin E, Arcizet O, et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit. Physical Review A,2010,82(6):061804.
    [298]Li M, Pernice W H, Tang H X. Reactive cavity optical force on microdisk-coupled nanome-chanical beam waveguides. Physical Review Letters,2009,103(22):223901.
    [299]Barclay P E, Srinivasan K, Painter O, et al. Integration of fiber-coupled high-Q SiNx mi-crodisks with atom chips. Applied Physics Letters,2006,89(13):131108-131108.
    [300]Shah Hosseini E, Yegnanarayanan S, Atabaki A H, et al. High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Optics Express, 2009,17(17):14543-14551.
    [301]Tien M, Bauters J, Heck M, et al. Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Optics express,2011,19(14):13551-13556.
    [302]Giovannetti V, Vitali D. Phase-noise measurement in a cavity with a movable mirror under-going quantum Brownian motion. Physical Review A,2001,63(2):023812.
    [303]Ford G, Lewis J, O'Connell R. Quantum Langevin equation. Physical Review A,1988, 37(11):4419.
    [304]Biancofiore C, Karuza M, Galassi M, et al. Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane:Effect of membrane absorption. Physical Review A,2011, 84(3):033814.
    [305]DeJesus E X, Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Physical Review A,1987,35(12):5288.
    [306]VIDAL G, WERNER R. Computable measure of entanglement. Physical Review A,2002, 65(3A):032314-1.
    [307]Eisert J, Plenio M B. Quantum and classical correlations in quantum brownian motion. Phys-ical Review Letters,2002,89(13):137902.
    [308]Plenio M B. Logarithmic negativity:A full entanglement monotone that is not convex. Phys-ical Review Letters,2005,95(9):090503.
    [309]Breuer H P, Petruccione F. The theory of open quantum systems. New York:Oxford Uni-versity Press,2002.
    [310]Zurek W H. Decoherence, einselection, and the quantum origins of the classical. Review Modern Physics,2003,75:715-775.
    [311]Fischer M, Gutierrez-Medina B, Raizen M. Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Physical Review Letters,2001,87(4):40402.
    [312]Koshino K, Shimizu A. Quantum Zeno effect by general measurements. Physics Reports, 2005,412(4):191-275.
    [313]Liu B H, Li L, Huang Y F, et al. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Physics,2011,7(12):931-934.
    [314]Wolf M M, Eisert J, Cubitt T S.et al. Assessing Non-Markovian Quantum Dynamics. Physical Review Letters,2008,101:150402.
    [315]Viola L, Knill E, Lloyd S. Dynamical Decoupling of Open Quantum Systems. Physical Review Letters,1999,82:2417-2421.
    [316]Du J, Rong X, Zhao N, et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature,2009,461(7268):1265-1268.
    [317]De Lange G, Wang Z, Riste D, et al. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science,2010,330(6000):60-63.
    [318]Diehl S, Micheli A, Kantian A, et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Physics,2008,4(11):878-883.
    [319]Verstraete F, Wolf M, Cirac J. Quantum computation and quantum-state engineering driven by dissipation. Nature Physics,2009,5(9):633-636.
    [320]Barreiro J, Schindler P, Guhne O, et al. Experimental multiparticle entanglement dynamics induced by decoherence. Nature Physics,2010,6(12):943-946.
    [321]Krauter H, Muschik C, Jensen K, et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters,2011,107(8):80503.
    [322]Yariv A. Quantum Electronics. Wiley and Sons, New York,1989.
    [323]Hauge E, St(?)vneng J. Tunneling times:a critical review. Reviews of Modern Physics,1989, 61(4):917.
    [324]Snyder A, Love J. Goos-Hanchen shift. Applied Optics,1976,15(1):236-238.
    [325]Xiao Y F, Lin X M, Gao J, et al. Realizing quantum controlled phase flip through cavity QED. Physical Review A,2004,70(4):042314.
    [326]Kiesel N, Schmid C, Weber U, et al. Linear optics controlled-phase gate made simple. Physical Review Letters,2005,95(21):210505.
    [327]Johnson P B, Christy R. Optical constants of the noble metals. Physical Review B,1972, 6(12):4370.
    [328]Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nature Photonics,2007, 1(10):589-594.
    [329]Matula R A. Electrical resistivity of copper, gold, palladium, and silver. Journal of Physical and Chemical Reference Data,1979,8:1147.
    [330]Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopi-cally engineered diamond. Nature Materials,2009,8(5):383-387.
    [331]Robledo L, Childress L, Bernien H, et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature,2011,477(7366):574-578.
    [332]Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin. Science, 2010,329(5991):542-544.
    [333]Bernien H, Hensen B, Pfaff W, et al. Heralded entanglement between solid-state qubits sep-arated by 3 meters, preprint arXiv:1212.6136,2012..
    [334]Maurer P, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science,2012,336(6086):1283-1286.
    [335]Sar T, Wang Z, Blok M, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature,2012,484(7392):82-86.
    [336]Prawer S, Greentree A. Diamond for quantum computing. Science,2008,320(5883):1601-1602.
    [337]Ladd T, Jelezko F, Laflamme R, et al. Quantum computers. Nature,2010,464(7285):45-53.
    [338]Faraon A, Barclay P, Santori C, et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photonics,2011,5(5):301-305.
    [339]Faraon A, Santori C, Huang Z, et al. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Physical Review Letters,2012,109(3):33604.
    [340]Hausmann B, Choy J, Babinec T, et al. Diamond nanophotonics and applications in quantum science and technology. Physica Status Solidi A,2012,209:1619-1630.
    [341]Hausmann B, Shields B, Quan Q, et al. Integrated diamond networks for quantum nanopho-tonics. Nano Letters,2012,12(3):1578-1582.
    [342]Barclay P, Fu K, Santori C, et al. Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Applied Physics Letters,2009,95(19):191115-191115.
    [343]Zou C, Xiao Y, Han Z, et al. High-Q nanoring surface plasmon microresonator. The Journal of the Optical Society of America B,2010,27(12):2495-2498.
    [344]Neumann J, Wigner E. Uber merkwurdige diskrete Eigenwerte. Phys. Z.,1929,30:465-467.
    [345]Stillinger F, Herrick D. Bound states in the continuum. Physical Review A,1975,11(2):446.
    [346]Capasso F, Sirtori C, Faist J, et al. Observation of an electronic bound state above a potential well.1992,358:565-567.
    [347]Marinica D, Borisov A, Shabanov S. Bound states in the continuum in photonics. Physical Review Letters,2008,100(18):183902.
    [348]Diaz-Tendero S, Borisov A, Gauyacq J. Extraordinary Electron Propagation Length in a Metallic Double Chain Supported on a Metal Surface. Physical Review Letters,2009, 102(16):166807.
    [349]Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Physical Review Letters,2011,107(18):183901.
    [350]Molina M, Miroshnichenko A, Kivshar Y. Surface bound states in the continuum. Physical Review Letters,2012,108(7):70401.
    [351]Fairchild B, Olivero P, Rubanov S, et al. Fabrication of Ultrathin Single-Crystal Diamond Membranes. Advanced Materials,2008,20(24):4793-4798.
    [352]Aharonovich I, Lee J, Magyar A, et al. Homoepitaxial growth of single crystal diamond membranes for quantum information processing. Advanced Materials,2012,24(10):OP54-OP59.
    [353]Lee J, Magyar A, Bracher D, et al. Fabrication of thin diamond membranes for photonic applications. Diamond and Related Materials,2012..
    [354]Magyar A, Lee J, Limarga A, et al. Fabrication of thin, luminescent, single-crystal diamond membranes. Applied Physics Letters,2011,99(8):081913-081913.
    [355]Yatsui T, Nomura W, Naruse M, et al. Realization of an atomically flat surface of diamond using dressed photon-phonon etching. Journal of Physics D:Applied Physics,2012,45(47): 475302.
    [356]Zaghlous A, Abou-El-Fadl A. A simple analytical, approach to optical rib waveguides. Pro-ceedings of Radio Science Conference,1999. NRSC'99. Proceedings of the Sixteenth Na-tional. IEEE,1999. B9-1.
    [357]Zou C L, Chen X D, Xiong X, et al. Photonic Analogue of System-Environment Interaction: Non-Markovian quantum dynamics and Dynamical Decoupling. Jan.,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700