Goos-H(?)nchen位移增强效应及Fabry-Perot振荡场传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古斯-汉欣(Goos-Hanchen,简称GH)位移指的是反射光的实际反射点和入射点(也即几何光学反射点)有一段距离的偏移的现象。这是由于入射光中不同的单色平面波分量具有不同的反射相移所造成的。研究Goos-H?nchen位移有多种方法,本文采用Artmann发展的静态位相(stationary phase)方法和高斯光束下的数值计算方法,主要研究了导波共振和表面等离子波共振时GH位移增强效应。
     在普通的两层介质的界面上,GH位移大小为波长量级。因此对光波单次反射所产生的GH位移在实验上难以直接观察。因此,长期以来,一方面,人们在实验上较多地采用微波波段进行实验,另一方面,很多人在理论上研究不同条件下的GH位移增强效应以获得较大的GH位移,到目前为止已经发现了许多种GH位移增强效应。其中,由表面等离子波共振引起的GH位移增强效应早在上世纪八十年代就开始被人注意到。但直到2004年,Yin Xiaobo等人在实验上才首次证实了表面等离子波共振引起的GH位移增强效应的存在。同时他们在实验上还发现了一个在理论上以前从未有过的新现象:如果金属层的厚度超过零反射率下的最佳金属层厚度,GH位移为负,反之为正,并且还发现金属层的厚度越接近零反射率下的最佳厚度,GH位移就越大,反之就越小。本文则在理论上把这个结果进行了推广,得出了一
Goos-H?nchen shift refers to the lateral shift of a totally reflected beam from the position predicted by geometrical optics. It is because each plane wave component of the incident beam undergoes a slight different phase change after total internal reflection. Many representation approaches to the Goos-H?nchen shift have been developed. In this paper, we examine theoretically the GH shift under the conditions of guided wave resonance and surface plasmon resonance by using the stationary phase method and numerical calculation method with an incident beam of the Gaussian shape.
     At a single dielectric interface, the GH shift is of the order of wavelength. The smallness of the shift for optical wavelengths had impeded its direct observation in a single reflection. Therefore, on the one hand, the wavelengths in the microwave range are selected to perform experiments. On the other hand, the enhancement effects of GH shift under different conditions were analyzed in many papers. Up to now, many kinds of enhancement effects of GH shift were reported. The enhancement effect of GH shift due to the surface plasmon resonance was discussed in 1980s. In 2004, Xiaobo Yin et al. firstly reported the
引文
[1]. F. Goos and H. H?nchen, “Ein neuer and fundamentaler versuch zur totalreflexion ,” Ann. Phys., (1947), 1, 333.
    [2]. F. Goos and H. H?nchen, “Neumessung des Strahlversetzungseffektes bei Totalreflexion,” Ann. Phys., (1949), 5, 251.
    [3]. K. Artmann, “Berechnung der Seitenversetzung des totalreflektieren Strahles,” Ann. Phys., (1948), 2, 87.
    [4]. R. H. Renard, “Total reflection: a new evaluation of the Goos-H?nchen shift,” J. Opt. Soc. Am., (1964), 54, 1190.
    [5]. M. McGuirk and C. K. Carniglia, “An angular spectrum representation approach to the Goos-H?nchen shift,” J. Opt. Soc. Am., (1977), 67, 103.
    [6]. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am., (1971), 61, 1397.
    [7]. B. R. Horowitz and T. Tamir, “Lateral Displacement of a Light Beam at a Dielectric Interface,” J. Opt. Soc. Am., (1971), 61, 586.
    [8]. V. Shah and T. Tamir, “Absorption and lateral shift of beams incident upon lossy multilayered media,” J. Opt. Soc. Am. A, (1983), 73, 37.
    [9]. C.-W. Hsue and T. Tamir, “Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,” J. Opt. Soc. Am. A, (1985), 2, 978.
    [10]. T. Tamir, “ Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A, (1986), 3, 558.
    [11]. J. L. Birman, D. N. Pattanayak, and A. Puri, “Prediction of a Resonance-Enhanced Laser-Beam Displacement at Total Internal Reflection in Semiconductors,” Phys. Rev. Lett. (1983), 50, 1664.
    [12]. F. Schreier, M. Schmitz, O. Bryngdahl, “Beam displacement at diffractive structures under resonance conditions,” Opt. Lett. (1998), 23, 576.
    [13]. C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetricdouble-prism configuration,” Phys. Rev. E, (2004), 69, 055601(R).
    [14]. C. F. Li and X. Y Yang, “Thin-Film Enhanced Goos–H?nchen Shift in Total Internal Reflection,” Chin. Phys. Lett., (2004), 21, 485.
    [15]. L. G. Wang, “Beam Displacement in a Layered Configuration due to Formation of Standing Waves,” Chin. Phys. Lett., (2006), 23, 113.
    [16]. H. Lai and S. Chan, “Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett., (2002), 27, 680.
    [17]. L. Wang, H. Chen, and S. Zhou, “Large negative Goos-H?nchen shift from a weakly absorbing dielectric slab,” Opt. Lett., (2005), 30, 2936.
    [18]. N. F. Declercq, J. Degrieck, R. Briers, et al., “Theoretical verification of the backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett., (2003), 82, 2533.
    [19]. C. F. Li, “Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects,” Phys. Rev. Lett. (2003), 91, 133903.
    [20]. H. M. Lai, F. C. Cheng, and W. K. Tang, “Goos-H?nchen effect around and off the critical angle,” J. Opt. Soc. Am. A, (1986), 3, 550.
    [21]. H. M. Lai, C. W. Kwok, Y. W. Loo, et al., “Energy-flux pattern in the Goos-H?nchen effect,” Phys. Rev. E, (2000), 62, 7330.
    [22]. E. Pfleghaar, A. Marseille, and A. Weis, “Quantitative investigation of the effect of resonant absorbers on the Goos-H?nchen shift,” Phys. Rev. Lett., (1993), 70, 2281.
    [23]. W. J. Wild and C. L. Giles, “Goos-H?nchen shifts from absorbing media,” Phys. Rev. A, (1982), 25, 2099.
    [24]. J. J. Cowan and B. Anicin, “Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection,” J. Opt. Soc. Am., (1977), 67, 1307.
    [25]. J. A. Kong, B.-L. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett., (2002), 80, 2084.
    [26]. J. Broe and O. Keller, “Quantum-well enhancement of the Goos-H?nchen shift for p-polarized beams in a two-prism configuration,” J. Opt. Soc. Am. A, (2002), 19, 1212.
    [27]. X. Hu, Y. Huang, W. Zhang, D. K. Qing and J. Peng, “Opposite Goos-H?nchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials,” Opt. Lett., (2005), 30, 899.
    [28]. D. Felbacq, A. Moreau and R. Smaali, “Goos- H?nchen effect in the gaps of photonic crystals,” Opt. Lett., (2003), 28, 1633.
    [29]. A. Puri and J. L. Birman, “Goos-H?nchen beam shift at total internal reflection with application to spatially dispersive media,” J. Opt. Soc. Am. A, (1986), 3, 543.
    [30]. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurment of optical Goos- H?nchen shift,” Phys. Rev. Lett., (1992), 68, 931.
    [31]. C. Bonnet, D. Chauvat, O. Emile, et al., “Measurement of positive and negative Goos-H?nchen effects for metallic gratings near Wood anomalies,” Opt. Lett., (2001), 26, 666.
    [32]. H. Gilles, S. Girard and J. Hamel, “Simple technique for measuring the Goos-H?nchen effect with polarization modulation and a position-sensitive detector,” Opt. Lett., (2002), 27, 1421.
    [33]. D. J. Rhodes and C. K. Carniglia, “Measurement of the Goos-H?nchen shift at grazing incidence using Lloyd's mirror,” J. Opt. Soc. Am., (1977), 67, 679.
    [34]. B. M. Jost, A. R. Al-Rashed, and B. E. A. Saleh, “Observation of the Goos-H?nchen Effect in a Phase-Conjugate Mirror,” Phys. Rev. Lett., (1998), 81, 2233.
    [35]. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker, “Measurement of the Nonlinear Goos-H?nchen Effect for Gaussian Optical Beams,” Phys. Rev. Lett., (1995), 75, 1511.
    [36]. R. Schlesser and A. Weis, “Light-beam deflection by cesium vapor in a transverse-magnetic field,” Opt. Lett., (1992), 17, 1015.
    [37]. T. Sakata, H. Togo and F. Shimokawa, “Reflection-type 2×2 optical waveguideswitch using the Goos–H?nchen shift effect,” Appl. Phys. Lett., (2000), 76, 2841.
    [38]. X. Yin, L. Hesselink, Z. Liu, et al. “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett., (2004), 85, 372.
    [39]. G. Abbate, P. Maddalena, and E. Santamato, P. Mormile, and G. Pierattini, “Observation of lateral displacement of an optical beam enhanced by surface plasmon excitation,” J. Mod. Opt. (1988), 35, 1257.
    [40]. S. L. Chuang, “Lateral shift of an optical beam due to leaky surface-plasmon excitations,” J. Opt. Soc. Am. A. (1986), 3, 593-599.
    [41]. P. Mazur, and B. Djafari-Rouhani, “Effect of surface polaritons on the lateral displacement of a light beam at a dielectric interface,” Phys. Rev. B. (1984), 30, 6759.
    [42]. R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction”, Science, (2001), 292, 77.
    [43]. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ”, Sov. Phys. Usp., (1968), 10, 509.
    [44]. C. Luo et al., “Cerenkov radiation in photonic crystals”, Science, (2003), 299, 368.
    [45]. J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett., (2000), 85, 3966.
    [46]. Z. Liu et al., “Rapid growth of evanescent wave by a silver superlens”, Appl. Phys. Lett., (2003), 83, 5184.
    [47]. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett., (2003), 82, 2215.
    [48]. J. Li et al., “Photonic band gap from a stack of positive and negative index materials”, Phys. Rev. Lett., (2003), 90, 083901.
    [49]. I. V. Shadrivov, A. A. Sukhorukov and Y. S. Kivshar, “Beam shaping by a periodic structure with negative refraction”, Appl. Phys. Lett., (2003), 82, 3820.
    [50]. I. V. Shadrivov, A. A. Sukhorukov and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides”, Phys. Rev. E, (2003), 67, 057602.
    [51]. B. Wu et al., “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability”, J. Appl. Phys., (2003), 93, 9386.
    [52]. P. R. Berman, “Goos-H?nchen shift in negatively refractive media,” Phys. Rev. E, (2002), 66, 067603.
    [53]. D.-K. Qing and G. Chen, “Goos-H?nchen shifts at the interfaces between left- and right-handed media,” Opt. Lett., (2004), 29, 872.
    [54]. X. Chen and C. F. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E, (2004), 69, 066617.
    [55]. L. G. Wang and S. Y. Zhu, “Large positive and negative Goos-H?nchen shifts from a weakly absorbing left-handed slab,” J. Appl. Phys., (2005), 98, 043522.
    [56]. I. V. Shadrivov, A. A Zharov, and Y. S. Kivshar, “Giant Goos-H?nchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett., (2003), 83, 2713.
    [57]. I. Shadrivov, R. Ziolkowski, A. Zharov and Y. Kivshar, “ Excitation of guided waves in layered structures with negative refraction,” Opt. Express, (2005), 13, 481.
    [58]. 曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000。
    [59]. 方竣鑫,曹庄琪,杨傅子,《光波导技术物理基础》,上海交通大学出版社,1987。
    [60]. M. 玻恩,E. 沃耳夫,《光学原理》,科学出版社,1978。
    [61]. P. V. Lambeck, “Integrated opto-chemical sensors, ” Sens. Actuators B (1992), 8, 103.
    [62]. J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review, ” Sens. Actuators B (1999), 54, 3.
    [63]. H. Kano and S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. (1994), 33, 5166.
    [64]. R. C. Jorgenson, C. Jung and S. S. Yee, L. W. Burgess, “Multi-wavelengthsurface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B (1993), 13-14, 721.
    [65]. K. Matsubara, S. Kawata, and S. Minami, “ Multilayer system for a high-precision surface plasmon resonance sensor,” Opt. Lett. (1990), 15, 75.
    [66]. K. J. Kasunic, “Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index, ” Appl. Opt. (2000), 39, 61.
    [67]. J. Villatoro and A. G.. Valenzuela, “Sensitivity of optical sensors based on laser-excited surface-plasmon waves,” Appl. Opt. (1999), 38, 4837.
    [68]. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance, ” Appl. Opt. (1997), 36, 6539.
    [69]. K. Matsubara, S. Kawata and S. Minami, “Optical chemical sensor based on surface plasmon measurement, ” Appl. Opt. (1988), 27, 1160.
    [70]. T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A, (2000), 17, 1880.
    [71]. K. Sasaki, H. Takahashi, Y. Kudo, and N. Suzuki, “Determining the absorption coefficient of absorbing thin films with optical waveguides,” Appl. Opt., (1980), 19, 3018.
    [72]. J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron., (1971), QE-7, 339.
    [73]. S.-W. Kang, K. Sasaki, and H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt., (1993), 32, 3544.
    [74]. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev., (1997), 4, 354.
    [75]. D. K. Qing and I. Yamaguchi, “Analysis of the sensitivity of optical waveguide chemical sensors for TM modes by the group-index method,” J. Opt. Soc. Am. B, (1999), 16, 1359
    [76]. G.. G.. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens.Actuators B, (2001), 74, 145.
    [77]. S. Toyama, N. Doumae, A. Shoji, Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B (2000), 65, 32-34.
    [1] 曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    [2] W. P. Chen, G. Ritchie, and E. Burstein, “Excitation of surface electromagnetic-waves in attenuated total reflection prism configuration,” Phys. Rev. Lett., (1976), 37, 993,
    [3] D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett., (1981), 47, 1927.
    [4] F. Z. Yang, and J. R. Sambles, “Optical characterization of liquid-crystals by means of half-leaky guided modes,” J Opt. Soc. Am. B, (1993), 10, 858.
    [5] A. Otto, “Excitation of nonradiative surface plasmon waves in silver by the method of frustrated total reflection,” Z. Physik, (1968), 216, 398.
    [6] E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwinggungen,” Z. Physik, (1971), 248, p313.
    [7] R. T. Deck, Dror Sarid, “Enhancement of second-harmonic generation by coupling to long-range surface plasmons,” J. Opt. Soc. Am., (1982), 72, 1613.
    [8] P. K. Tien, R. Ulrich and R. J. Martin, Research Conference on Electron Devices, Rochester, New York, 1969.
    [9] T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A, (2000), 17, 1880.
    [10] W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am., (1981), 71, 189.
    [1]. 曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000。
    [2]. 方竣鑫,曹庄琪,杨傅子,《光波导技术物理基础》,上海交通大学出版社,1987。
    [3]. R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction”, Science, (2001), 292, 77.
    [4]. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ”, Sov. Phys. Usp., (1968), 10, 509.
    [5]. C. Luo et al., “Cerenkov radiation in photonic crystals”, Science, (2003), 299, 368.
    [6]. J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett., (2000), 85, 3966.
    [7]. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett., (2003), 82, 2215.
    [8]. I. V. Shadrivov, A. A. Sukhorukov and Y. S. Kivshar, “Beam shaping by a periodic structure with negative refraction”, Appl. Phys. Lett., (2003), 82, 3820.
    [9]. P. R. Berman, “Goos-H?nchen shift in negatively refractive media”, Phys. Rev. E, (2002), 66, 067603.
    [10]. D.-K. Qing and G. Chen, “Goos-H?nchen shifts at the interfaces between left- and right-handed media,” Opt. Lett., (2004), 29, 872.
    [11]. X. Chen and C. F. Li, “Lateral shift of the transmitted light beam through a left-handed slab,” Phys. Rev. E, (2004), 69, 066617.
    [12]. L. G. Wang and S. Y. Zhu, “Large positive and negative Goos-H?nchen shifts from a weakly absorbing left-handed slab,” J. Appl. Phys., (2005), 98, 043522.
    [13]. I. V. Shadrivov, A. A Zharov, and Y. S. Kivshar, “Giant Goos-H?nchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett., (2003), 83, 2713.
    [14]. I. Shadrivov, R. Ziolkowski, A. Zharov and Y. Kivshar, “ Excitation of guided waves in layered structures with negative refraction,” Opt. Express, (2005), 13, 481.
    [15]. H. Lai and S. Chan, “Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett., (2002), 27, 680.
    [16]. M. 玻恩,E. 沃耳夫,《光学原理》,科学出版社,1978。
    [17]. L. Wang, H. Chen, and S. Zhou, “Large negative Goos-H?nchen shift from a weakly absorbing dielectric slab,” Opt. Lett., (2005), 30, 2936.
    [18]. C. F. Li and X. Y Yang, “Thin-Film Enhanced Goos–H?nchen Shift in Total Internal Reflection,” Chin. Phys. Lett., (2004), 21, 485.
    [1]. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am., (1971), 61, 1397.
    [2]. V. Shah and T. Tamir, “Absorption and lateral shift of beams incident upon lossy multilayered media,” J. Opt. Soc. Am. A, (1983), 73, 37.
    [3]. P. Mazur, and B. Djafari-Rouhani, “Effect of surface polaritons on the lateral displacement of a light beam at a dielectric interface,” Phys. Rev. B. (1984), 30, 6759.
    [4]. S. L. Chuang, “Lateral shift of an optical beam due to leaky surface-plasmon excitations,” J. Opt. Soc. Am. A. (1986), 3, 593.
    [5]. G. Abbate, P. Maddalena, and E. Santamato, P. Mormile, and G. Pierattini, “Observation of lateral displacement of an optical beam enhanced by surface plasmon excitation,” J. Mod. Opt., (1988), 35, 1257.
    [6]. X. Yin, L. Hesselink, Z. Liu, et al. “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett., (2004), 85, 372.
    [7]. F. Schreier, M. Schmitz, O. Bryngdahl, “Beam displacement at diffractive structures under resonance conditions,” Opt. Lett. (1998), 23, 576.
    [8]. X. Liu, Z. Cao, P. Zhu, Q. Shen and X. Liu, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E, (2006), 73, 056617.
    [9]. T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A, (2000), 17, 1880.
    [10]. K. Artmann, “Berechnung der Seitenversetzung des totalreflektieren Strahles,” Ann. Phys., (1948), 2, 87.
    [11]. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev., (1997), 4, 354.
    [12]. C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E, (2004), 69, 055601(R).
    [13]. C.-W. Hsue and T. Tamir, “Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,” J. Opt. Soc. Am. A, (1985), 2, 978.
    [14]. I. Shadrivov, R. Ziolkowski, A. Zharov and Y. Kivshar, “ Excitation of guided waves in layered structures with negative refraction,” Opt. Express, (2005), 13, 481.
    [15]. W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am., (1981), 71, 189.
    [16]. S. Shen, T. Liu, J. Guo, “Optical Phase-Shift Detection of Surface Plasmon Resonance,” Appl. Opt., (1998), 37, 1747.
    [17]. J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett., (1983), 8, 377.
    [18]. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett., (1981), 47, 1927.
    [1]. H. Lai and S. Chan, “Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett., (2002), 27, 680.
    [2]. X. Yin, L. Hesselink, Z. Liu, et al. “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett., (2004), 85, 372.
    [3]. C. F. Li, Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetricdouble-prism configuration,” Phys. Rev. E, (2004), 69, 055601(R).
    [4]. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett., (2003), 83, 2757.
    [5]. H. Lu, Z. Cao, H. Li, et al, “Polarization-independent and tunable comb filter based on a free-space coupling technique,” Opt. Lett., (2006), 31, 386.
    [6]. H. Lu, Z. Cao, H. Li, et al., “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett., (2004), 85, 4579.
    [7]. R. Ulrich, “Theroy of Prism-Film Coupler by Plane-Wave Analysis,” J. Opt. Soc. Am., (1970), 60, 1337.
    [8]. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys., (1977), 14, 235.
    [9]. W. P. Chen and J. M. Chen, “Use of surface plasma waves fore determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am., (1981), 71, 189
    [10]. L. G.. Schulz, “The Optical Constants of Silver, Gold, Copper, and Aluminum (I. The Absorption Coefficient k),” J. Opt. Soc. Am., (1954), 44, 357.
    [11]. L. G.. Schulz and F. R. Tancherlini, “The Optical Constants of Silver, Gold, Copper, and Aluminum (II. The Index of Refraction n),” J. Opt. Soc. Am., (1954), 44, 362.
    [12]. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen and X. M. Liu, “Simultaneously large and opposite lateral beam shifts for TE and TM modes on a double metal-cladding slab,” Chin. Phys. Lett., (2006), 23, 2077.
    [1]. P. V. Lambeck, “Integrated opto-chemical sensors, ” Sens. Actuators B, (1992), 8, 103.
    [2]. H. Kano and S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt., (1994), 33, 5166.
    [3]. R. C. Jorgenson, C. Jung and S. S. Yee, Lloyd W. Burgess, “Multi-wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B, (1993), 13-14, 721.
    [4]. K. Matsubara, S. Kawata, and S. Minami, “ Multilayer system for a high-precision surface plasmon resonance sensor,” Opt. Lett., (1990), 15, 75.
    [5]. J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review, ” Sens. Actuators B, (1999), 54, 3.
    [6]. K. J. Kasunic, “Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index, ” Appl. Opt. (2000), 39, 61.
    [7]. S. Toyama, N. Doumae, A. Shoji, Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sens. Actuators B, (2000), 65, 32.
    [8]. J. Villatoro and A. Garcia-Valenzuela, “Sensitivity of optical sensors based on laser-excited surface-plasmon waves,” Appl. Opt. (1999), 38, 4837.
    [9]. A. A. Kolomenskii, P. D. Gershon and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance, ” Appl. Opt. (1997), 36, 6539.
    [10]. K. Matsubara, S. Kawata and S. Minami, “Optical chemical sensor based on surface plasmon measurement, ” Appl. Opt. (1988), 27, 1160.
    [11]. T. Okamoto, M. Yamamoto, and I. Yamaguchi, “Optical waveguide absorption sensor using a single coupling prism,” J. Opt. Soc. Am. A, (2000), 17, 1880.
    [12]. K. Sasaki, H. Takahashi, Y. Kudo, and N. Suzuki, “Determining the absorption coefficient of absorbing thin films with optical waveguides,” Appl. Opt., (1980), 19, 3018.
    [13]. J. E. Midwinter, “On the use of optical waveguide techniques for internal reflection spectroscopy,” IEEE J. Quantum Electron., (1971), QE-7, 339.
    [14]. S.-W. Kang, K. Sasaki, and H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt., (1993), 32, 3544.
    [15]. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev., (1997), 4, 354.
    [16]. D. K. Qing and I. Yamaguchi, “Analysis of the sensitivity of optical waveguide chemical sensors for TM modes by the group-index method,” J. Opt. Soc. Am. B, (1999), 16, 1359.
    [17]. X. Liu, Z. Cao, Q. Shen and S. Huang, “Optical Sensor Based on Fabry-Perot Resonance Modes,” Appl. Opt., (2003), 42, 7137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700