光波导中古斯汉欣位移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当一束光入射到界面,几何光学认为入射和反射在同一点发生,只不过产生一个相移。但实际上却不然,古斯和汉欣在1947年作了一个实验,证明反射点离入射点有一段距离,这就是所谓的古斯-汉欣(Goos-H?nchen,简称GH)位移。这是由于入射光中不同的单色平面波分量具有不同的反射相移所造成的。
     在一般单层界面的情况下,GH位移通常只是入射光波长的量级,这使得它很难在试验中被观察到。在过去的二十年中,各种装置被用来增强古斯-汉欣效应,比如非对称双棱镜结构,半无限大弱吸收介质中的布儒斯特角处的反射以及光子晶体中的缺陷模式角等。
     事实上,当光入射到界面上时,电磁场能量渗透到第二层介质中并且建立一个迅衰场,在重新回到第一层介质中之前它会沿着界面传播一段距离。因而很自然的GH位移就与渗透深度成比例,如何有效地增加穿透深度进而方便GH位移的直接测量就成为了研究重点。在本文中,我们利用双面对称金属包覆波导中的超高阶模式,我们得到了毫米量级的GH位移,在进一步的研究中,我们发现当导波层厚度增大时,相应的GH位移也会增大。
     在对称双面金属包覆波导的基础上,我们提出了一个新型可调谐的光学滤波器,通过改变小孔的位置,我们可以调谐该滤波器获得想要中心波长。
It is thought by geometric optics that the reflection point and the incidence point coincide with each other when a light beam impinge onto an interface, only a phase shift is introduced. But this is not the truth, Goos and H(a|¨)nchen made an experiment in 1947 which proves a lateral shift between them, this is so called Goos-H(a|¨)nchen (GH) shift. It is because each plane wave component of the incident beam undergoes a slight different phase change after total internal reflection.
     At a single dielectric interface, the GH shift is of the order of wavelength. The smallness of the shift for optical wavelengths had impeded its direct observation in a single reflection. In the past two decades, various schemes were proposed to enhance the effect, such as asymmetric double-prism structure, near the Brewster dip on reflection from a weakly absorbing semi-infinite medium, at the angle of defect mode of photonic crystals and so on.
     In fact, when a light beam impinges on the interface between two dielectric media, the electromagnetic energy of the incoming beam penetrates into the second medium and builds up an evanescent wave which would propagate along the interface for some distance before re-emerging into the former medium. The lateral displacement is then proportional to the penetration depth of the light field; the question resolves itself into how to effectively increase the penetration depth for direct measurement of the GH shift. In this paper, by using the ultrahigh order modes in a symmetrical metal-cladding optical waveguide (SMCW), we obtain tremendous GH shift greater than 1700 wavelengths, and in further investigate we show that the lateral displacement increases with the thickening of the guiding slab at the well excitation of ultrahigh order modes.
     A new tunable optical filter is fabricated based on the enhanced GH effect in the SMCW structure; we can tune the filter to get the desired centre wavelength through changing the position of the aperture.
引文
[1]曹庄琪,《导波光学》,科学出版社,2007.
    [2] F. Goos and H. H?nchen,―Ein neuer and fundamentaler versuch zur totalreflexion ,‖Ann. Phys., (1947), 1, 333.
    [3] F. Goos and H. H?nchen,―Neumessung des Strahlversetzungseffektes bei Totalreflexion,‖Ann. Phys., (1949), 5, 251.
    [4] K. Artmann,―Berechnung der Seitenversetzung des totalreflektieren Strahles,‖Ann. Phys., (1948), 2, 87.
    [5] T. Tamir and H. L. Bertoni,―Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,‖J. Opt. Soc. Am., (1971), 61, 1397.
    [6] B. R. Horowitz and T. Tamir,―Lateral Displacement of a Light Beam at a Dielectric Interface,‖J. Opt. Soc. Am., (1971), 61, 586.
    [7] V. Shah and T. Tamir,―Absorption and lateral shift of beams incident upon lossy multilayered media,‖J. Opt. Soc. Am. A, (1983), 73, 37.
    [8] C.-W. Hsue and T. Tamir,―Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,‖J. Opt. Soc. Am. A, (1985), 2, 978.
    [9] T. Tamir,― Nonspecular phenomena in beam fields reflected by multilayered media,‖J. Opt. Soc. Am. A, (1986), 3, 558.
    [10] J. L. Birman, D. N. Pattanayak, and A. Puri,―Prediction of a Resonance-Enhanced Laser-Beam Displacement at Total Internal Reflection in Semiconductors,‖Phys. Rev. Lett. (1983), 50, 1664.
    [11] F. Schreier, M. Schmitz, O. Bryngdahl,―Beam displacement at diffractive structures under resonance conditions,‖Opt. Lett. (1998), 23, 576.
    [12] C. F. Li, Q. Wang,―Prediction of simultaneously large and opposite generalized Goos-H?nchenshifts for TE and TM light beams in an asymmetric double-prism configuration,‖Phys. Rev. E, (2004), 69, 055601(R).
    [13] C. F. Li and X. Y Yang,―Thin-Film Enhanced Goos–H?nchen Shift in Total Internal Reflection,‖Chin. Phys. Lett., (2004), 21, 485.
    [14] L. G. Wang,―Beam Displacement in a Layered Configuration due to Formation of Standing Waves,‖Chin. Phys. Lett., (2006), 23, 113.
    [15] H. Lai and S. Chan,―Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,‖Opt. Lett., (2002), 27, 680.
    [16] L. Wang, H. Chen, and S. Zhou,―Large negative Goos-H?nchen shift from a weakly absorbing dielectric slab,‖Opt. Lett., (2005), 30, 2936.
    [17] N. F. Declercq, J. Degrieck, R. Briers, et al.,―Theoretical verification of the backward displacement of waves reflected from an interface having superimposed periodicity,‖Appl. Phys. Lett., (2003), 82, 2533.
    [18] C. F. Li,―Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects,‖Phys. Rev. Lett. (2003), 91, 133903.
    [19] X. Yin, L. Hesselink, Z. Liu, et al.―Large positive and negative lateral optical beam displacements due to surface plasmon resonance,‖Appl. Phys. Lett.(2004), 85, 372.
    [20] G. Abbate, P. Maddalena, and E. Santamato, P. Mormile, and G. Pierattini,―Observation of lateral displacement of an optical beam enhanced by surface plasmon excitation,‖J. Mod. Opt. (1988), 35, 1257.
    [21] S. L. Chuang,―Lateral shift of an optical beam due to leaky surface-plasmon excitations,‖J. Opt. Soc. Am. A. (1986), 3, 593-599.
    [22] P. Mazur, and B. Djafari-Rouhani,―Effect of surface polaritons on the lateral displacement of a light beam at a dielectric interface,‖Phys. Rev. B. (1984), 30,6759.
    [23] X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu,―Large positive and negative lateral optical beamshift in prism-waveguide coupling system,‖Phys. Rev. E(2006), 73, 056617.
    [24] L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao,―Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,‖Opt. Lett. (2007), 32, 1432-1434.
    [25] C. Bonnet, D. Chauvat, O. Emile, et al.,―Measurement of positive and negative Goos-H?nchen effects for metallic gratings near Wood anomalies,‖Opt. Lett., (2001), 26, 666.
    [26] H. Gilles, S. Girard and J. Hamel,―Simple technique for measuring the Goos-H?nchen effect with polarization modulation and a position-sensitive detector,‖Opt. Lett., (2002), 27, 1421.
    [27] R. H. Renard,―Total reflection: a new evaluation of the Goos-H?nchen shift,‖J. Opt. Soc. Am., (1964), 54, 1190.
    [28] M. McGuirk and C. K. Carniglia,―An angular spectrum representation approach to the Goos-H?nchen shift,‖J. Opt. Soc. Am., (1977), 67, 103.
    [1]曹庄琪,《导波光学》,科学出版社,2007.
    [2]周峰,曹庄琪,蒋毅等.双面金属包覆介质波导模序数的判别方法[J].光学学报, 2002, 22: 665-669.
    [3] Y.Suematsu,―Measurements of Refractive Index and Film Thickness of Glass Films by Use of Propagation Constants‖, Trans.Int.Electron.Commun.Eng.Japan, 55-C (1972)98.
    [4] K.H.Rollke and W.Sholer, IEEE J.Quant. Electron., QE-13 (1977)141.
    [5] LU H F, CAO Z Q, LI H G, et al. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide [J]. Applied Physics Letters, 2004, 85: 4579-4581.
    [6] Lu H., Cao Z., Li H., and Shen Q., Study of ultrahigh-order modes, Appl. Phys. Lett.,2004,85(21):1~3
    [7] Yi Jiang , Zhuangqi Cao, Guang Chen, Xiaoming Dou, Yingli Chen,―Low voltage electro-optic polymer light modulator using attenuated total internal reflection‖, Opt. Laser Technol., 33 (2001) 417.
    [8] YANG Yan-Fang, SHEN Qi-Shun, ZHANG Shui-Ying, CAO Zhuang-Qi, LI Xu-Hua, YUAN Wen,―Wavelength Dependence of Electro-Optic Coefficients in Chromophore-Incorporated Polymers‖, CHIN.PHYS.LETT., 20 (2003)1165.
    [9] Wang W, Shi Y, Olson DJ, Lin W, Bechtel JH.―Push-pull poled polymer Mach-Zehnder modulators with a single microstrip line electrode‖, IEEE Photon Tech. Lett., 11(1999)51-3.
    [10] Caldwell ME, Yeatman EM.―Surface-plasmon spatial light modulators based on liquid crystal‖, Appl Opt., 31 (1992)3880-91.
    [11] Solgaard O, Ho F, Thackara JI, Bloom DM.―High frequency attenuated total internal reflection light modulator‖, Appl Phys Lett., 61 (1992)2500-2.
    [12] Jung C, Yee S, Kuhn K.―Electro-optic polymer light modulator based on surface plasmon resonance‖, Appl Opt., 34 (1995)946-9.
    [1] G. Levy-Yurista and A. A. Friesem,―Very narrow spectral filters with multilayered grating-waveguide structures‖, Appl. Phys. Lett., 77, (2000)1596.
    [2] M. Blomqvist, S. Khartsev, and A. Grishin,―Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates‖, Appl. Phys. Lett., 82 (2003) 439.
    [3] R.Ulrich, Theroy of Prism-Film Coupler by Plane-Wave Analysis, J.Opt.Soc.Ammer., 1970,60(10):1337~1349
    [4] T.Tamir and S.T.Peng, Analysis and design of grating couplers, Appl.Phys., 1977,14(3):235~253
    [5] J.T.Boya and D.B.Anderson, Radiation Pattern of an End-Fire Optical Waveguide Coupler. Opt.Commun., 1975,13(3):353~358
    [6]邓元龙,姚建铨,阮双琛,孙秀泉,“大功率激光光纤透镜耦合系统设计”,光电技术应用,2005,Vol. 20(3):p7~9。
    [7] Uematsu Y , Ozeki T , Unno Y . Efficient power coupling between an MH L ED and a taper ended multimode fiber[J ] . IEEE J . Quantum Electron. , 1979, QE215 : 86~92.
    [8] DiVita P , Rossi U. Theory of power coupling between multimode optical fibers [ J ] . Opt . Quantum Electron. ,1978 , 10 : 107~117
    [9] P.K.Tien and R.J Martin,Experiments on Light Waves in a Thin Tapered Film and a New Lightwave Coupler,Appl. Phy.Lett., 1971, 18(9):398~400.
    [10] Y. Takano and J. Hamasaki,―Propagating modes of a metalclad-dielectric-slab waveguide for integrated optics,‖IEEE J.Quantum Electron. (Part II of Two Parts-Special Issue on 1971IEEEIOSA Cant on Laser Engineering and Applications),‖, IEEE J. Quantum Electron., 8 (1972)206.
    [11] T. E. Batchman and S. C. Rashleigh,―Mode-selective. properties. of a metal-clad dielectric-slab. waveguide for integrated optics‖, IEEE J. Quantum Electron., 8 (1972)848.
    [12] E. M. Garmire and H. Stoll,―Propagation losses in metal-film-substrate optical waveguide‖, IEEE J. Quantum Electron., 8 (1972)763.
    [13] W. L. Mammel and H. P. Weber,―Metal-clad optical waveguides: analytical and experimental study‖, Appl. Opt., 13 (1974) 396.
    [14] M. Zaluzny and W. Zietkowski,―On the propagation characteristics of metal clad waveguides with a quantum well‖, Solid State Commun., 125 (2003)287.
    [15] K.-T. Kim, H.-W. Kwon, J.-W. Song, S. Lee, W.-G. Jung, and S.-H. Kang, Opt. Commun.,―Polarizing properties of optical coupler composed of single. mode side-polished fiber and multimode metal-clad planar waveguide‖, 180 (2000)37.
    [16]C. H. Chen and L. Wang,―Maximization of Extinction Ratios of Thin-Metal-Clad Optical Waveguide Polarizers with Proper Dielectric-Cover-Layer Thickness‖, Jpn. J. Appl. Phys., Part 1 39 (2000)4130.
    [17] D. Sun, D. W. Treat, and D. P. Bour,―High performance 660 nm. InGaP/AlGaInP quantum well metal cladding ridge waveguide laser. diode,‖, Electron. Lett., 32 (1996)1488.
    [18] Honggen Li, Zhuangqi Cao, Haifeng Lu, and Qishen Shen,―Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide‖, Appl. Phys. Lett., 83 (2003)2757.
    [19] P.K.Tien, R.Ulrich. and R.J.Martin, Research Conference on Electron Devices, Rochester, New York,1969.
    [20] Saravanamuttu K, Du Xm, Najafi SI, et al.,―Photoinduced structural relaxation and densification in sol-gel-derived nanocomposite thin films: implications for integrated optics device fabrication‖, Canadian Journal of Chemsitry-Revue Canadienne De Chimie 1998, 76 (11): 1717-1729
    [21] Blom FC, vanDijk DR, Hoekstra HJWM, et al.,―Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device‖Appl. Phys. Lett. 1997, 71 (6): 747-749
    [22] Berends JH, Veldhuis GJ, Lambeck PV, et al., Device Equivalence In Integrated-optics, Journal of Lightwave Technology 1995, 13 (10): 2082-2086
    [23] Jerominek H, Tremblay R, Delisle C, Bisrability and Blocking Oscillations in A Total Internal-Reflection Integrated-Optics Device‖, Optics Communications, 1985, 52 (6): 397-400
    [24] H. Lai and S. Chan,―Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,‖Opt. Lett., (2002), 27, 680.
    [25] M.玻恩,E.沃耳夫,《光学原理》,科学出版社,1978。
    [26] L. Wang, H. Chen, and S. Zhou,―Large negative Goos-H?nchen shift from a weakly absorbing dielectric slab,‖Opt. Lett., (2005), 30, 2936.
    [27] C. F. Li and X. Y Yang,―Thin-Film Enhanced Goos–H?nchen Shift in Total Internal Reflection,‖Chin. Phys. Lett., (2004), 21, 485.
    [1] X. Liu, Z. Cao, P. Zhu, Q. Shen and X. Liu,―Large positive and negative lateral optical beam shift in prism-waveguide coupling system,‖Phys. Rev. E, (2006), 73, 056617.
    [2] T. Okamoto, M. Yamamoto, and I. Yamaguchi,―Optical waveguide absorption sensor using a single coupling prism,‖J. Opt. Soc. Am. A, (2000), 17, 1880.
    [3] K. Artmann,―Berechnung der Seitenversetzung des totalreflektieren Strahles,‖Ann. Phys., (1948), 2, 87.
    [4] T. Okamoto, M. Yamamoto, and I. Yamaguchi,―Optical waveguide absorption sensor using a single coupling prism,‖J. Opt. Soc. Am. A, (2000), 17, 1880.
    [5] W. P. Chen, J. M. Chen,―Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,‖J. Opt. Soc. Am., (1981), 71, 189.
    [6] F. Goos and H. H?nchen,―Ein neuer und fundamentaler Versuch zur Totalreflexion‖, Ann. Phys. 1, 333 (1947).
    [7] Xuanbin Liu, Zhuangqi Cao, Pengfei Zhu, Qishun Shen, and Xiangmin Liu,―Large positive and negative lateral optical beam shift in prism-waveguide coupling system‖, Phys. Rev. E 73, 056617 (2006)
    [8] H. M. Lai, F. C. Cheng, and W. K. Tang,―Goos-H?nchen effect around and off the critical angle‖, J. Opt. Soc. Am. A 3,550(1986)
    [9] T. Tamir, and H. L. Bertoni,―Lateral displacement of optical beams at multilayered and periodic structures‖, J. Opt. Soc. Am. 61, 1379(1971)
    [10] X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang,―Large positive and negative lateral optical beam displacements due to surface plasmon resonance‖, Appl. Phys. Lett. 85,372(2004)
    [11] F. Schreier, M. Schmitz, and O .Bryngdahl,―Beam displacement at diffractive structures under resonance conditions‖, Opt. Lett. 23, 576(1998)
    [12] Zhenyue Luo , Xu Liu , Weidong Shen , Hui Xue and Peifu Gu,―Large positive and negative lateral beam displacement in a guided-mode resonant filter‖, J. Opt. A: Pure Appl. Opt. 10, 115008 (2008)
    [13] H. Li, Z. Cao, H. Lu, and Q. Shen,―Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,‖Appl. Phys. Lett 83, 2757 (2004).
    [14] L. Chen, Z. Cao, Fang Ou, Honggen Li, Qishun Shen, and Huicong Qiao,―Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides‖Opt. Lett. 32, 1432(2007)
    [15] Xuanbin Liu, Zhuangqi Cao, Pengfei Zhu, Qishun Shen, and Xiangmin Liu,―Large positive and negative lateral optical beam shift in prism-waveguide coupling system‖, Phys. Rev. E 73, 056617 (2006)
    [16] C. F. Li and Q. Wang,―Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetric double-prism configuration,‖Phys. Rev. E 69, 055601 (2004).
    [17] A. M. Steinberg and R.Y. Chiao,―Measurement of the single-photon tunneling time‖, Phys. Rev. Lett. 71, 708(1993)
    [18] H. Gilles, S Girard, and J. Hamel,―Simple technique for measuring the Goos–H?nchen effect with polarization modulation and a position-sensitive detector,‖Opt. Lett. 27, 1421 (2002).
    [1]夏光群,《法布里—珀罗滤波器和光纤光栅滤波器》,[学位论文],四川大学,2002。
    [2] G. P. Li et al., IEEE Photo. Technol. Lett., 1996, 8 :22
    [3]宁提纲,张劲松,裴丽,简水生,光通信研究,2000,3:38
    [4] Shenoy MR, Kumar N, Pal BP,―A simple technique for implementing all-fiber interleaver for DWDM systems‖, 2005, 47 (2): 137-140
    [5] Wang QJ, Zhang Y, Soh YC,―Design of 100/300 GHz optical interleaver with IIR architectures‖,OPTICS EXPRESS, 2005, 13 (7): 2643-2652
    [6] Wang XF, Shayan YR, Zeng M,―On the code and interleaver design of broadband OFDM systems‖,IEEE COMMUNICATIONS LETTERS 2004,8 (11): 653-655
    [7] Zhang JA, Liu LR, Zhou Y,―A tunable interleaver filter based on analog birefringent units‖,OPTICS COMMUNICATIONS 2003, 227 (4-6): 283-294
    [8] Bae JK, Bae JH, Kim SH, et al.,―Dynamic EDFA gain-flattening filter using two LPFGs with divided coil heaters‖, IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (6): 1226-1228
    [9] Yokota H, Kamoto K, Igarashi J, et al.,―An ASE reduction filter using cascaded optical fiber grating couplers in EDFA repeater‖, 2002, OPTICAL REVIEW 9 (1): 9-12.
    [10] Bouzid B, Ali BM, Abdullah MK,―High-gain EDFA design using double-pass amplification with a double-pass filter‖, IEEE PHOTONICS TECHNOLOGY LETTERS 2003, 15 (9): 1195-1197.
    [11] Francois, Opt. Lett., 1987, 12: 847
    [12] Loh WH, Laming RI, Gu X, et al.―10cm chirped fibre Bragg grating for dispersion compensation at 10 Gbit/s over 400km of non-dispersion shifted fibre‖, ELECTRONICS LETTERS 1995, 31 (25): 2203-2204
    [13] L. J. Cimini et al., J. Lightware Technol., 1990, 5:649
    [14]. H. Macleod, Thin-Film Optical Filters (McGraw-Hill, 1989).
    [15]. R. B. Sargent and N. A. O’Brien,―Review of thin films in telecommunications applications,‖in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.
    [16]. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar,―Narrowband DWDM filters based on Fibonacciclass quasi-periodic structures,‖Opt. Express 15, 10520–10532 (2007).
    [17]. L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu,―Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moirégratings,‖Electron. Lett. 35, 584–585 (1999).
    [18]. E. Koteles, J. He, B. Lamontagne, A. Delage, L. Erickson, G.Champion, and M. Davies,―Recent advances in inp-based waveguide grating demultiplexers,‖in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 82–83.
    [19].曹庄琪,《导波光学》,科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700