进水口漩涡形成机理及缩尺效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进水口漩涡现象很普遍,如水电站、水泵站、通航船闸、调节流量水位的建筑物及核电站的中央应急冷却系统的集水井等建筑的进水口处容易产生。漩涡的运动形态极为复杂,有大尺度的准稳定性漩涡和小尺度的随机出现的漩涡,两种漩涡中又分别存在表面凹陷漩涡、间歇吸气和贯通吸气漩涡等运动形态。
     当漩涡转变为贯通性吸气漩涡时,对工程结构会产生危害。如减少进流量、降低流量系数;引起机组或结构物的振动;降低机组效率;卷吸漂浮物、堵塞或损坏拦污栅等。目前针对具体工程项目的试验研究多,但规律性的研究和探讨漩涡的形成机理的基础理论研究较为欠缺;关于进水口漩涡试验的缩尺效应尚未有统一的观点;三维数值模拟的研究也很少。因此,本文通过理论分析、模型试验以及数值模拟对水电站进水口漩涡的形成机理和缩尺效应进行了研究。
     (1)进水口准稳定性漩涡形成机理的理论分析。讨论了涡管的扭曲变形对涡量的影响,并对实际流体中侧式和底部孔口的漩涡的拉伸原因作了解释,依据紊流复合涡模型和能量级联结构,分析水面漩涡的能量平衡过程以及准稳定性漩涡的形成演变过程。
     (2)进水口随机出现的吸气漩涡的试验研究。通过水槽试验,考虑来流边界的时均流速分布、紊动强度、水面波动强度以及进水口周边脉动压力等,对进水口随机出现的吸气漩涡的特征和影响因素进行研究。结果表明:进水口附近水面随机出现的吸气漩涡数量的历时过程具有和紊流相似的“拟序结构”特性。
     (3)以随机出现的吸气漩涡的试验研究为基础,采用现代紊流理论中的紊流拟序结构的概念,对进水口漩涡的形成机理进行分析。结果表明:来流边界的水流紊动显现的水面微波是进水口附近随机出现的漩涡的诱因。
     (4)通过系列模型试验研究了侧式进水口漩涡的缩尺效应。得到不同缩尺下漩涡类型与佛汝德数Fr及雷诺数Re关系,分析了可能引起缩尺效应的原因。在一定几何边界条件下,建立了为消除缩尺效应而增加的流量倍数与淹没水深和模型缩尺的定量关系,对现有进水口漩涡的模型设计与试验方法进行了改进。
     (5)结合VOF法的标准k -ε模型、RNG k -ε模型和Relizable k -ε模型分别对底部进水口漩涡进行数值模拟,并分析比较三种模型结果。结果表明:RNG k-ε模型考虑了紊流中涡流因素的影响,计算精度良好,模拟漩涡流场具有优越性,是三种模型中较适于进水口漩涡流场数值仿真计算的紊流模型。将优选后的RNG k -ε模型应用于实际工程,对进水口低水位运行时漩涡的变化和进水口周围的流场进行了数值模拟,数值模拟结果和试验吻合较好。
The vortex have been observed frequently at hydraulic intakes such as hydroelectric power station, pumps, navigation locks, flow and level regulation and withdrawal from sumps in Emergency Core Cooling Systems (ECCS) of nuclear power stations. Movement forms of vortex are complicated including large-scale quasi-stability vortex and small-scale stochastic vortex. These two kinds of vortex could be generally classified as surface dimple, vortex pulling air bubbles to intake and full air-core to intake.
     The presence of air-core vortex at an intake can cause discharge reduction, increase the fluctuation of hydraulic structure, reduce pumping efficiency, and in extreme cases, completely disable the intake. Despite the universal familiarity of the problem, existing literature provides little on the detailed mechanics of vortex formation and mathematical simulation. No agreement has been reached referring to the scale effects on modeling vortex. An analytical, computational, and experimental study was conducted to describe formation mechanisms and scale effects of vortex at hydraulic intakes. The principal contents and achievements of this dissertation are as follows:
     (1) The theoretical analysis of quasi-stability vortex at intakes was completed. The reason for vortex stretching at the bottom and the side intakes was explained. According to Rankine’s combined vortex model and Cascade structure of energy, free surface vortex energy-balance process and the quasi-stability vortex forming, developing and varying were probed.
     (2) An experiment was conducted with turbulent strength distribution, wave height and fluctuating pressure at inflow section to study mechanics of stochastic vortex formation. Experimental study of flume shows that the variation of the number of stochastic vortex with time in the intake has the characteristics of turbulent coherent structures.
     (3) Based on the experimental study, formation mechanizes of stochastic vortex was completed. It is indicated that stochastic vortex near the intake are caused by short-period wave induced by turbulent strength on the water surface.
     (4) Experiments were conducted using serial models of scale1:1, 1:2, 1:4 to determine whether scale effects distort the predictive ability of hydraulic models. The relational expression between the formed type of vertical vortex and the intake Froude number and Reynolds number is founded. On the certain geometric boundary conditions, the quantitative relationship between flow increasing to overcome scale effects and submergence and model scales was provided.
     (5) The calculated results of standard k -ε, RNG k -εand Relizable k -εturbulent models with VOF model are compared. The results show that RNG k -εmodel is more suitable than standard k -εand Relizable k -εmodel for the vortex as the rapidly strained and the great curving streamline flows. The RNG k -εare applied in an actual project to simulate the change of free surface with the reservoir level under the pumping condition and flow characteristics. The simulated results are consistent with the experimental results.
引文
[1]杨欣先,李彦硕.水电站进水口设计[M].大连:大连理工大学出版社,1990.
    [2]水利部国际合作与科技司编著.当代水利科技前沿[M].北京:中国水利水电出版社,2005.
    [3] Denny D F. An experimental study of air-entraining vortices in pump sumps[J]. Journal of the Institution of Mechanical Engineers, 1956, 170(2):106-116.
    [4] Hecker G E. Model-Prototype comparison of free surface vortices[J]. Journal of the Hydraulics Division, ASCE, 1981,107 (10):1243-1259.
    [5]索丽生.抽水蓄能电站的水力学专门问题—94年抽水蓄能工程国际学术讨论会论文综述(二)[J].水力水电科技进展,1995,15(2):8-12.
    [6] Knauss J. Swirling flow problems at intakes[M]. IAHR hydraulic structures design manual, 1987.
    [7]胡去劣.低水头进水口的布置及漩涡试验研究[R].南京:南京水利水电科学研究院,1985.
    [8]王水田.水工建筑物漏斗状吸气漩涡问题的研究和进展[R].南京水利水电科学研究院,1964.
    [9] Posey C.J, Hsu H. How the vortex affects orifice discharge[J].Engineering News Record,1950,114(9):30-32..
    [10] Gordon J L. Vortices at intakes [J]. Water power, 1970, 22(4):137-138.
    [11]陈蕴莲译.抽水蓄能电站进水口模型试验的综合资料,1979.
    [12] Gulliver J.S.etc Designing intakes to avoid free-surface vortices[J]. Water power and dam construction. 1936,9
    [13]马吉明,梁元博.电站双孔进水口临界淹没水深的试验研究[J].清华大学学报(自然科学版),2000,40(5):122-124.
    [14] Reddy Y R, Pickford J A. Vortices at Intakes in conventional Sumps [J]. Water Power, 1972, 24(3):122-126.
    [15]何学民,汝树勋.水工建筑物进水口串通漏斗漩涡发生规律研究[J].四川水利,1992,13(4):7-8.
    [16] Odgaard A J. Free―surface air core vortex [J]. Journal of Hydraulic Engineering, ASCE, 1986, 112 (7):610-620.
    [17] Daggett L.L., Similitude in free surface vortex formation [J].Journal of hydraulic division, 1974,11.
    [18]夏毓常.水力计算论文集[M].北京:中国水利水电出版社,1996
    [19]卢永金.进水口前的水流运动[J].水动力学研究与进展, 1989, 4(1): 74-78.
    [20]朱卫国.水平进水口前立轴漩涡特性探讨[D].南京:河海大学,1988.
    [21] Anwar H O, Well J A, Amphlett M B. Similarity of Free-Vortex at Horizontal Intake [J].Journal of Hydraulic Research, 1978,l16(2): 95-105.
    [22] Granger R. Steady Three-dimensional Vortex Flow [J]. Journal of Fluid Mechanics, 1980, 25(3) :1151-1160.
    [23]杨正骏,林宗燊,谢佩珍等.水工建筑物进水口自由表面漩涡试验研究[J].水力发电学报,1987, 16(1):22-35.
    [24]林宗燊.进水口立轴漩涡区流速特性[J].水力发电学报,1987,17(2):11-19.
    [25] Anwar H O. Turbulent Flow in A Vortex[J] . Journal of Hydraulic Research, 1978, 7(1): 55-67.
    [26] Rankine WJM. Manual of Applied Mechanics[M]. Charles Griffen and Co, London, England,1872.
    [27] Hite J. E, Mih W. C. Velocity of air core vortices at hydraulic intakes[J].Journal of hydraulic Engineering, ASCE, 1994, 120(3):284-297.
    [28] Schlichting H.Boundary layer theory [M]. McGraw-Hill Book Co,New York, 1979.
    [29] Burgers, J. M. A mathematical model illustrating the theory of turbulence[J]. Advances in applied mechanics,1948, 1:171-199.
    [30]童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].国防工业出版社,1993.
    [31] Montazerin N., Rahimzadeh H.&Marghzar Sh.H. Prediction of critical condition at a horizontal intake through pressure contours[C]. Proceedings of XIV IAHR Congress in Hydraulics , China ,434-441.
    [32]童秉纲,伊协远,朱克勤.涡运动理论[M].中国科学技术大学出版社,1994.
    [33]王水田,钱炳法.黄坛口水电站进水口漩涡运动的初步观测研究[R].水利电力部南京水利科学研究所,1964.
    [34] Levi E. Vortices in hydraulics [J], Journal of Hydraulic Engineering, ASCE, 1991,117(4):399-413.
    [35] Padmanabhan M. Design recommendation(1),Swirling flow problem at intakes [M]. 1987.
    [36] Yildirim N., Kocabas F. Prediction of critical submergence for an intake pipe[J]. Journal of Hydraulic Research, ASCE, 2002, 40(4):507-518.
    [37] Ma J.M., Liang Y.B.,and Huang J.T., Minimum submergence before double-entrance pressure intakes [J]. J. Hydr. Eng., ASCE, 2000, 26(8):628-631.
    [38] Novak P, CABELKA J. Models in hydraulic engineering physical principles and design Applications [M]. Boston:Pitman Advanced Publishing Program, 1981.
    [39] Padmanabhan M.A. Parametric study of the hydraulic performance of containment emergency sumps with horizontal double-outlets[R].Alden research laboratory report NO.46A-82, 1982.
    [40] Nystrom J B, Padmanabhan M., and Hecker G E. Modeling flow characteristics of reactor sumps [J]. Journal of the energy division,ASCE,1982,108(10):169-183.
    [41] Zajdlik ,M.New checking mode of model parameter for vortex formation in pump tanks[C], Proceedings of the 17th congress,IAHR,Baden-Baden,West Germany ,Aug.,1977,5:379-386.
    [42] Sharp J J. Hydraulic modelling[M]. Butter Worth&Co.Ltd, 1981.
    [43]福原华一.抽水蓄能电站进出口的水理设计[J].日本电力土木,1959,161:48-57.
    [44] Amphlett M B. Air-entraining vortices at a horizontal intake [R]. England: Hydraulic Research Station, 1976.
    [45] Jain A K, Ranga K G, Garde R J. Vortex formation at vertical pipe intake [J]. Journal of the Hydraulics Division, ASCE, 1978, 104(10): 1429-1445.
    [46] Padmanabhan M, Hecker G E. Scale effects in pump sump models [J]. Journal of Hydraulic Engineering, ASCE, 1984, 110(11): 1540-1556.
    [47]高学平,张效先,王志国等.西龙池抽水蓄能电站竖井式进出水口水力学试验研究[J].水力发电学报,2002,76(1):52-60.
    [48]倪汉根,杨玉庆.消除进水口前漩涡漏斗的一个方法[J].水利学报,1986,(12):52-56.
    [49] Knauss J. Swirling flow problems at intakes[M]. IAHR hydraulic structuresdesign manual,1987 .
    [50]谭颖.抽水蓄能电站取水口水力学的基本问题[J].水利水电勘测设计,1988 ,(3):64-103.
    [51] Hecker G E.漩涡模拟的比尺效应[C].国际水工模拟缩尺影响专题讨论会译文选,长江水利水电科学研究院, 1985:219-237.
    [52] Prosser, M.J.,The hydraulic design of pump sumps and intakes[M]. BHRA, C1RlA(UK),1977.
    [53] Denny D F, Young G A. The Prevention of vortices and swirls at intakes [C]. Lisbon, Portugal: Proceedings of the Seventh International Association of Hydraulic Research Congress, 1957.
    [54] Zielinksi P B., and Viliemonte J R. Effect of viscosity on vortex-orifice flow[J]. Journal of hydraulics division,ASCE,1968.
    [55] Kraus N C, Lohrmann A and CABrera R. New acoustic meter for measuring 3D laboratory flows [J]. Journal of Hydraulic Engineering, ASCE, 1994,120(3): 406-412.
    [56]声学多普勒流速计(ADV)的工作原理[M].北京大学特赛流动测量研究中心译.北京:2000.
    [57]杨敏官,高波,顾海飞.旋流式模型泵内部三维湍流流场的测量[J].排灌机械,2008,26(1):60-64.
    [58]张占峰,汤荣铭,许宏庆.旋流器内流场的研究[J].流体力学实验与测量,2004,18(4):88-92.
    [59] Grant, Lasers&Smith, G.H. Modern developments in Particle image velocimetry[J]. Optics and lasers in Engineering, 1988, (9):245-264
    [60]任佐皋,渠时勤.流场显示学[M].南京:河海人学出版社,1992.
    [61]李永,李小明.水泵吸水池内部流动PIV试验的深入分析[J].工程热物理学报,2002,23(2):190-192.
    [62] Rajiendran V P, Patel V C. Measurement of vortices in model pump-intake bay by PIV [J]. Journal of Hydraulic Engineering,ASCE,2000 ,126(5) :322-334.
    [63]唐洪武,徐夕荣,张志军.粒子图像测速技术及其在垂直进水口漩涡流场中的应用[J].水动力学研究与进展,1999,14(1):128-134.
    [64] Constantineseu S G, Patel V C. Numerical model for simulation of pump–intake flow and vortices [J].Journal of Hydraulic Engineering. ASCE, 1998, 124(2):123-134.
    [65] Constantinescu S.G., and Patel V. C. Role of turbulence model in prediction ofpump-bay vortices [J]. J. of Hydr. Eng,ASCE, 2000,126(5):387-391.
    [66] Rajendran V. P., Constantinescu G. S., and Patel V. C.Experimental validation onumerical model of flow in pump intake bays[J]. J. of Hydr. Eng. ASCE, 1999, 125(11):1119-1125.
    [67]赵永志,顾兆林,郁永章等.自由水涡结构及运动特征的数值研究[J].西安交通大学学报,2003,37(1):85-88.
    [68]赵永志,顾兆林,郁永章等.盆池涡涡动过程数值研究[J].水利学报,2002, (12):1-6.
    [69] Lugt H J. Vortex flow in nature and technology[M].New York:John willy&Sons,1983.
    [70] Saffman P G Baker G R.Vortex interactions[J].Fluid Mech,1979 :95-112.
    [71]吴介之,马晖扬,周明德.涡动力学引论[M].北京:高等教育出版社,1991.
    [72] Lamb H. Hydrodynamic[M] (6th ed.)Cambridge University Press,1932.(中译本:理论流体动力学.北京:科学出版社,1990.)
    [73] Vanyo J.Rotating fluids in engineering and science[M]. New York:Dover publications, 1993.
    [74]夏震寰.现代水力学(二)—分析流动的理论[M].北京:高等教育出版社,1990.
    [75]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [76] Bradshaw P.An introduction to turbulence and its measurement[M]. Pergamon Press,1971.
    [77] Jackson R G. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows [J]. Journal of Fluid Mechanics,1976, 77(3):531-560.
    [78] John E H, Walter C M .Velocity of air core vortices at hydraulic intakes [J]. Journal of Hydraulic Engineering, 1994, 120(3):284-297.
    [79]何学民,汝树勋.水工建筑物进水口三维旋涡流场的理论研究[J].水电站设计, 1993, 9(3): 71-76.
    [80] Anwar H.O. Flow in a free vortex[J]. Water Power,1965, 4.
    [81]陈云良,伍超,叶茂等.水电站进水口水流流态的研究[J].水动力学研究与进展(A辑), 2005, 20(3): 340-345.
    [82]胡去劣.进水口旋涡的试验研究[J].水利水运科学研究, 1982(3): 22-35.
    [83]何学民,汝树勋.水工建筑物进水口三维旋涡流场的实验研究[J].四川水力发电,1993,12 (4):73-79.
    [84] Rajendran V P and Patel V C. Characterization of vortices in model pump-bay using particle image velocimetry[R]. IIHR Technical Report No. 396,The University of Iowa,Iowa City,IA, USA.
    [85] Hattersley R.T. Hydraulic Design of Pump Intakes [J]. Journal of the Hydraulic Division, ASCE,1965,91(2):223-248.
    [86] Nezu I, Nakagawa H. Turbulence in Open-Channel Flow[M]. IAHR monograph, Rotterdam,1993.
    [87] Quick, M.C. Scale relationships between geometrically similar freespiral vortices[J].Civil Engineering and Public Works Review, PartⅠ.September,1962. PartⅡ.October 1962.
    [88] Haindl K.Contribution to air entrainment by a vortex[J]. International association for hydraulic research, Montreal, 1956.
    [89] Hatterley R.T. Hydraulic Design of Pump Intakes[J].Journal of the Hydraulic Division,ASCE , 1965.91(2).
    [90] Amphlett,M.B. Similarity of free-vortex at horizontal intake[J].Journal of hydraulic research ,1978,16(2):95-105.
    [91]窦国仁.紊流力学[M].北京:高等教育出版社,1985.
    [92]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [93]闻德荪.工程流体力学[M].北京:高等教育出版社,1990.
    [94] L.普朗特.流体力学概论[M].北京:科学出版社,1987.
    [95] Fluent培训教程.中国水利水电科学研究院水力学所,2003.8.
    [96] P.Rollet-miet, D Laurence,J.Ferziger . LES and RANS of turbulent flow in tube bundles[J].International journal of heat and fluid flow, 1999,20(3):241-254..
    [97] Nauta T A, Lee H S, Kwok A,et al .3D water quality modelling of deep bay[A]. Lee J H, Jayawardena A W, Wang Z Y. Environmental hydraulics[C].Netherlands: Balkema A A, 1998: 23-30.
    [98] Yasuyuki Shimizu, Hajime Yamaguchi, Tadaoki Itakura. Three-dimensional computation of flow and bed deformations [J] Journal of Hydraulic Engineering, 1990, 116( 9):1090-1108.
    [99] M. M. Gibson and B. E. Launder.Ground Effects on Pressure Fluctuations in theAtmospheric Boundary Layer[J]. J. Fluid Mech.,1978, 86: 491-511.
    [100] Launder B. E.Second-Moment Closure: Presentand Future[J]. J. Heat Fluid Flow,1989, 10(4): 282-300.
    [101] Rodi W. The prediction of free boundary layers by use of a 2-equation model of turbulence. Ph. D. Thesis, Faculty of Engineering, University of London, 1972.
    [102] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows[R].Technical Report AIAA-92-0439,American Institute of Aeronautics and Astronautics,1992.
    [103] Launder B E, Reece G J, and Rodi W. Progress in the Development of a Reynolds-Stress Turbulence Closure [J]. J. Fluid Mech., 1975, 68(3): 537-566.
    [104] Yakhot V and Orszag S A. Renormalization Group Analysis of Turbulence,I. Basic Theory [J]. Journal of Scientific Computing,1986,1(1): 1-51.
    [105] Choudhury D. Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc. Technical Memorandum TM-107,1993.
    [106] Shih T H, Liou W W, and Shabbir A. A New k ?εEddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation [J]. Computers Fluids, 1995, 24(3): 227-238.
    [107]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究[J] .湖泊科学,1998, 10( 4):17-25.
    [108] Sanjiv K Sinha, Fotis Sotiropoulos, A Jacob Odgaard. Three-dimensional numerical model for flow through natural rivers [J].Journal of Hydraulic Engineering, 1998, 124( 1):13-24.
    [109] Marco D J P Bijvelds, C Kranenburg, Guus S Stelling. 3D Numerical simulation of turbulent shallow-water flow in square harbor [J] .Journal of Hydraulic Engineering, 1999, 125(1):26-31.
    [110] Nils R B Olsen, Hilde M Kjellesvig. Three-dimension numerical flow modeling for estimation of maximum local scour depth [J].Journal of Hydraulic Research, 1998, 36( 4):579-589.
    [111] Meselhf E A, Sotiropoulos F. Three-dimensional numerical model for openchannels with free-surface variations [J].Journal of Hydraulic Research, 2000, 38( 2):115-121.
    [112] Fischer-Antze T, Stosser T, Bates P. 3D numerical modelling of open-channelflow with submerged vegetation[J].Journal of Hydraulic Reserach, 2001,39:303-310.
    [113]华祖林.拟合曲线坐标下弯曲河段水流三维数学模型[J].水利学报,2000, l: 1- 8.
    [114] Constantinescu G S, Patel V C.Numerical Model for Simulation of Pump-intake Flow and Vortices [J].Journal of Hydraulic Engineering, 1998, 124(2):139-146.
    [115] Constantinescu G, Patel V C, Ansar, M, and Nakato, T. Computational fluid dynamics model for pump-intake flow and users' guide. IIHR Rep. No. 387, Iowa Inst. of Hydr. Res., The University of Iowa, Iowa City, Iowa, I997.
    [116] Roberge Jennifer Anne. Use of computational fluid dynamics (CFD) to model flow at pump intake[D] .M. Sc. Thesis, Worcester Polytechnic Institute, Worcester City, USA,1999.
    [117] Li, S., hai, Y, Weber, L., Silva, J. M. and Patel. Validation of a 3D numerical model for water pump-intakes [J].Hydr. Research, 2004, 42(2):282-292.
    [118] Harlow F H and Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J].The Physics of Fluids,1965, 8:2182-2189.
    [119]金忠青.N- S方程的数值解和紊流模型[M].南京:河海大学出版社,1989.
    [120] Hirt C W,Nichols B D. Volume of fluid(VOF)Method for the Dynamics of Free Boudaries[J].J. Comput. Phys. 1981,39(3): 201-225.
    [121] Yakhot V and Orszag S A.Renormalization Group Analysis of Turbulence: I. Basic Theory[J].Journal of Scientific Computing,1986,1(1):1-51.
    [122] Chen Shiyi, Doolen Gary D. Lattice boltzann method for fluid flows[J].Annu Rev Fluid Mech, 1998, 30: 329-364.
    [123]汪德爟.计算水力学理论与应用[M].南京:河海大学出版社,1989.
    [124] Thompson Joe F, Warsi Z U A, C Wayne Martin. Numerical grid generation: foundations and applications[M].New York: North-Holland,1985.
    [125]魏文礼,王玲玲,金忠青.曲线网格生成技术研究[J] .河海大学学报,1998, 26( 3) : 92- 96.
    [126]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [127] Weare T J. Recent advances in computational hydraulics[A].Jayawardena A W, Lee J H W, Wany, Z Y. Environmental Hydraulics[C].Netherlands: Balkema A A,1998: 13-22.
    [128] Shankar N J, Chan E S and Zhang Q Y. Three-dimensional simulation foran open channel flow with a constrictions[J].Journal of Hydraulic Reserach, 2001,39(2):187-201.
    [129]谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998.
    [130]陶文铨.数值传热学[M].西安:西安交通大学出版社,1989.
    [131]李铁骊,林焰,王言英.三维定常船尾绕流的不定常数值计算[J].水动力学研究与进展(A辑),1998, 13(1):21-27.
    [132]王晓建,张廷芳.非正交网格有限体积法在三维潮流场计算中的应用[J].水动力学研究与进展(A辑),1997,12(1):56-61.
    [133]王福军,计算流体动力学分析—CFD软件原理及应用[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700