飞秒激光微精细加工—微量物质转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对金属薄膜飞秒激光诱导向前转移(fs-LIFT)规律进行了系统的实验研究。并理论研究了飞秒激光与金属材料作用的规律。论文的主要内容包括:
     一、采用双温模型对飞秒激光烧蚀金属材料的三维温度场进行了数值模拟。计算了铜、铝两种材料的单脉冲飞秒激光烧蚀能量阈值,电子-晶格能量耦合时间,以及材料开始烧蚀时间随单脉冲飞秒激光能量变化的规律等。并计算得到了铜材料的烧蚀半径、烧蚀深度随单脉冲飞秒激光能量变化的规律。模拟结果表明,随着单脉冲飞秒激光能量的增加,材料烧蚀引起的喷射出现的越早,完成烧蚀所用时间越长。同时,材料烧蚀孔半径、深度增加,最终达到饱和。
     二、首次系统地实验研究了飞秒激光诱导铜薄膜前向转移,并取得了重要进展。包括:1).铜薄膜fs-LIFT能量阈值实验研究。实验分别获得了厚度为40、80及450nm铜薄膜的fs-LIFT能量阈值。分析认为:在阈值能量时,较薄铜“源”膜的自由表面处于熔融态,而较厚铜“源”膜的自由表面处于固态;材料主要以液态形式转移。2).铜薄膜fs-LIFT沉积点尺寸与激光能量、“源”膜厚度的关系研究。实验结果表明:在阈值能量时,不存在“源”膜厚度越小,沉积点尺寸越小的规律。3).激光能量对fs-LIFT沉积点形貌影响的实验研究。实验结果表明:当激光能量相对较小,刚达到阈值能量附近时,沉积点呈现滴的形貌;随着能量的增加,沉积点呈现出岛状的形貌;对于较高的能量,沉积点呈现出环状形貌。4).接收距离对fs-LIFT沉积点形貌、尺寸影响的实验研究。实验结果表明:在接收距离为几十个微米的范围内,当铜膜厚度相对较薄时,沉积点的直径与接收距离成反比;而当铜膜厚度相对较厚时,沉积点的直径与接收距离成正比。
     三、实验研究了飞秒激光诱导铝薄膜前向转移的规律,并取得了重要进展。包括:得到了两种不同厚度铝薄膜的fs-LIFT能量阈值,沉积点的尺寸、形貌随激光能量变化的规律等。并实验研究了激光聚焦位置对沉积点形貌、尺寸的影响。
     四、实验研究了利用fs-LIFT技术制作线阵及微图形时,飞秒激光烧蚀点的点间距,激光能量,以及接收距离等参数的影响,研究制作了各种形状的微图形。
In this thesis, experimental studies on the micro-deposition of metal film by femtosecond laser-induced forward transfer (fs-LIFT) are presented. Mechanisms on interaction of femtosecond laser pulses with metal materials are studied. The main contents are classified as follows:
     1. The ablation processing of metal materials with femtosecond laser pulses were simulated by the 2D Two-Temperature Model. According to the characteristic of femtosecond laser ablation, the threshold fluence for single pulse ablation of copper and aluminium were calculated. And the dependence of the electronic-lattice coupling time on irradiated laser pulse energy was studied on the basis of the simulation of the electronic and lattice’s temperature, which present a steady increase with increasing the pulse fluence. Besides, the ablation depth and the ablation radius of copper for single pulse ablation were calculated. And the dependence of the start ablation (phase explosion arises) time of copper and aluminium on irradiated laser pulse energy was studied. The simulation results indicate that the material jet due to phase explosion is earlier and the duration of ablation lasts is longer with increasing the pulse fluence. And at the same time, the ablation depth and the ablation radius of material were increased until saturation.
     2. Systemic experimental study on deposition of copper film by femtosecond laser-induced forward transfer had been accomplished for the first time, in which the important headway had been acquired experimentally. Consist: (a). The threshold fluence for transfer researches experimentally. The threshold fluences of copper thin film of 40, 80 and 450 nm in thickness had been ascertained. It is wise up that the material is transferred and deposited on to the acceptor substrate in the form of liquid droplet mainly as the laser fluence was slightly above the threshold fluence. The droplet formation for the thinner film was a result of blow-off of molten film from the quartz substrate by compressive stress of plasma when the free surface was melted. Whereas for the thick film the higher pressure of plasma made the free surface of solid phase burst out, which resulted in the phenomenon that not only the solid material was sputtered but also the morphology of deposited film in the liquid state was made irregular. (b). Influence of the pulse fluence on the size of deposited film. The experimental results show that at threshold fluence, a thinner film generates a larger-sized of ablated and deposited dot. (c). Influence of the pulse fluence on the morphology of deposited film. The three typical morphologies of deposited dots was shown. At single laser pulse fluence slightly above the threshold, the material is transferred and deposited onto the acceptor substrate in the form of liquid droplet. With the increasing of the energy, the morphology of the deposited dots became island-like and circular. Whenas for higher energies, the transferred dots show ring-like morphology. (d). Influence of the accept distance on the size and morphology of deposited film. The experimental results show that the diameters of deposited dots are inversely proportional to the accept distance for the thinner film as the accept distance is within the range of several ten micron. Whereas for the thicker film that are inversely proportional.
     3. Systemic experimental study on deposition of aluminium film by femtosecond laser-induced forward transfer had been accomplished for the first time, in which the important headway had been acquired experimentally. Consist: The threshold fluences of aluminium film of 150 and 500 nm in thickness had been ascertained. The influence of the pulse fluence on the size and morphology of deposited dots had been researched. And experimental study on the influence of laser focusing location on the size and morphology of deposited dots had been completed.
     4. Influence of various parameters on the fabrication of line and micro lattice patterns by fs-LIFT had been investigated experimentally, for example: space between dot and dot, laser fluence and the accept distance etc. And the various micro lattice patterns had been fabricated.
引文
[1] G. Mourou, C. P. J. Barty, and M. D. Perry, Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today, 1998, 51(22)
    [2] Johnson K. I., Current and future developments of plasmaare, laser and electron beam processing, Proc. Int. Power Beam Cenf., San Diego, Califronia, USA, 1998, 5(2-4):1~10
    [3] B. Sall′e1, O. Gobert2, P. Meynadier2, et.al., Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion. Appl. Phys. A, 1999, 69[Suppl.]: S381–S383
    [4] A. J. D.Maria, D. A.Stetser, & H.Heynau, Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 1966, 8: 174-176.
    [5] Fork R L, Green B I, Shank C V., Generation of optocal pulses shorter than 0.1 psec by colliding mode locking. Appl. Phys. Lett., 1981, 38: 671-672
    [6] J. A. Valdmanis, R. L. Fork, and J. P. Gordon, Generation of optical pulses as short as femtoseconds directly from a laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain. Opt. Lett., 1985, 10:131-133.
    [7] Fork, R. L. C. H. Brito Cruz, P. C. Becker, et.al.,Compression of optical pulse to six femtoseconds by using cubic phase compensation. Opt. Lett., 1987, 12: 483-485
    [8] P.F.Moulton, New development of titanium sapphire laser. Opt. News., 1982, 8(1): 9~11
    [9] P.F.Moulton, Solid state research report, DIIC AD-A12, 4305/4, MIT. Lincoln Lab. 1982, 12~15
    [10] R. Roy, P. A. Schulz, and A. Walther, Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser, Opt. Lett. 1987, 12(9): 672~674
    [11] P. A. Schulz, M. J. LaGasse, T. W. Schoenlein, and J. G. Fujimoto, in Digest of Annual Meeting of the Optical society of America. (Optical Society of America, Washington, D. C., 1988), paper MEE5
    [12] N. Sarukura, Y. Ishida, H. Nakano, and Y. Yamamoto, cw passive mode locking of a Ti:sapphire laser, Opt. Lett. 1987, 56(9): 814~816
    [13] P. M. W. French, S. M. J. Kelly, and J. R. Taylor, Mode locking of a continous-wave titanium-dopped sapphire laser using a linear external cavity. Opt. Lett. 1990, 15(7): 378~380
    [14] Kazunori Naganuma and Kazuo Mogi, 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror. Opt. Lett., 1991, 16(10): 738~740
    [15] D. E. Spence, P. N. Kean, and W. Sibbett, 60-fs pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 1991, 16(1): 42~44
    [16] Xu L., Ultrabroadband ring oscillator for sub-10-fs pulse generation. Opt. Lett., 1996, 21: 1259
    [17] Baltuska A., Optical pulse compression to 5 fs at a 1-MHz repetition rate. Opt. Lett., 1997, 22: 102-104
    [18] H. A. Haus, J. G. Fujimoto and E. P. Ippen, Structure for additive pulse mode locking. J. Opt. Soc. Am. B, 1991, 8:2068
    [19] Keisaku Yamane, Zhigang Zhang, Kazuhiko Oka, et. al., Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation, Opt. Lett., 2003, 28(22):2258~2260
    [20] U. Keller, G. W. Hooft, W. H. Knox, et al., Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser. Opt. Lett. 1991, 16:1022~1024
    [21] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses. Opt. Comm. 1985, 56:219~221
    [22] Perry M D. Crossing the petawatt threshold. [J]. Science and Technology Review, 1996, 4
    [23] A. Sullivan, H. Hamster, H. C. Kapteyn, et al., Multierawatt, 100-fs laser. Opt. Lett. 1991, 16:1406~1408
    [24] C. P. J. Barty, et al, Generation of 18-fs multiterawatt pulses by regenerative pulse shaping and chirped pulse amplification. Opt. Lett. 1996, 21(9):668~670
    [25] K. Yamakawa, 100TW sub-20-fs Ti:sapphire laser system operating at a 10Hz repetition rate. Opt. Lett. 1998, 23(18):1468~1470
    [26] M. Aoyama, K. Yamakawa, Y. Akahane, et. al., 0.85PW, 33-fs Ti: sapphire laserm, Opt. Lett., 2003, 28(17):1594~1596
    [27] I. N. Ross, J. L. Collier, P. Matousek, et.al., Generation of terawatt pulses by use of optical parametric chirped pulse amplification, Appl. Opt. 2000, 39: 2422-2427
    [28] I. N. Ross, P. Matousek, G. H. C. New, et.al., Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 2002, 19: 2945-2956
    [29] Collier J L, et al., Demonstration of high power pulse production using OPCPA, [A].XXVI European Conference on Laser Interaction with Matter. [C],12-16 June (2000), Prague.
    [30] Yang X D , Xu Z Z , Leng Y X, et al., Multiterawatt laser system based on optical parametric chirped pulse amplification Opt . Lett., 2002, 27: 1135-1137
    [31] Johnson K. I., Current and future developments of plasmaare, laser and electron beam processing, Proc. Int. Power Beam Cenf., San Diego, Califronia, USA, 1998, 5(2-4):1~10
    [32]江海河,激光加工技术的发展与展望.光电子技术与信息,2001,14(4):1~12
    [33] Finucan M, Black I. The cutting of glass using CO2 lasers technology. Lasers in Engineering, 1985, 4:137-156
    [34]江涛,陈艳译,高功率YAG激光器在加工厚板方面的应用,2002,11: 46~51
    [35] Pethig R, Burt JPH et. al. Development of biofactory using excimer laser micromaching. J. Microeng., 1999, 8: 57-63
    [36]贾正根,激光加工呈强势发展,世界产品与技术,2002, 9: 75~77
    [37]杨建军,飞秒激光超精细“冷”加工技术及其应用,激光与光电子学进展,2004,41(3):42
    [38] Mevel E, Breger P, Traunham R et al. Atoms in Strong Optical Fields: Evolution from Multiphoton to Tunnel Ionization. Phys. Rev. Lett., 1993, 70: 406-409
    [39] Norin J. Characterisation and Applications of Ultrashort Extreme Ultraviolet Pulses, Ph.D Thesis, Department of Physics, Lund Insitute of Technology, 2002
    [40] Du D., Liu X., Korn G., Squier J., Mourou G., Optical breakdown with femtosecond laser pulses, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting, 1994, 8: 407~408
    [41] Jiang Z., Kieffer J.C., Matte J.P., Chaker M., et.al., Laser-solid interaction at 1018-1019 W/cm2, Springer Series in Chemical Physics, 1994, 60: 239~242
    [42] Du D., Squier J., Kurtz R., et. al., Damage threshold as a function of pulse duration in biological tissue, Springer Series in Chemical Physics, 1994, 60: 254~255
    [43] Pronko P. P., Dutta S. K., Squier J., Rudd J. V., Machining of sub-micron holes using a femtosecond laser at 800 nm, Optics Communications. 1995, 114(1-2), 106~110
    [44] Liu X., Du D., Tien A.-C., Mourou G., Laser micromachining with ultrafast pulses, Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 1996, 376
    [45] X. Liu, D. Du, and G. Mourou, Laser Ablation and Micro-machining with Ultra-short Laser Pluses. IEEE J. Quantum Electron., 1997, 33(10): 1706~1716
    [46] Goldman J R, Prybyla J A. Ultrashort dynamics of laser-excited electron distributions in silicon. Phys. Rev. lett.,1994, 72: 1364-1367
    [47] von der Linde D Tinten K S, Bialkowski J. Laser-solid interaction in femtosecond time regime, Applied Surface Science, 1997, 109/110:1-10
    [48] Chichkov B.N, Momma C, Nolte S, et. al., Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A , 1996, 63: 109~115
    [49] N. Shinki, O. Takuya, K. Hiroshi, et. al., Ablation of polyfluorocarbon films with femtosecond Ti:sapphire laser pulses, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting, 1994, 8: 385~386
    [50] Kautek, W., Mitterer, S., Krueger, J., et. al. Femtosecond-pulse laser ablation of human corneas, Applied Physics A: Solids and Surfaces, 1994, 58(5):513~518
    [51] Loesel, F.H., Brockhaus, P., Fischer, J.P., et. al., Femtosecond pulse lasers for nonthermal tissue ablation, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1994, 277~278
    [52] Muggli P., Brogle R., Joshi C., Two-color photoemission produced by femtosecond laser pulses on copper, Journal of the Optical Society of America B: Optical Physics, 1995, 12(4): 553~558.
    [53] Liu Ding, Alexander D.R., High intensity femtosecond laser pump-probing measurements of a Cu surface, Applied Physics Letters, 1995, 67(25): 3726~3728
    [54] Sokolowski-Tinten K., Bialkowski J., Cavalleri A.et. al., Observation of a transient insulating phase of metals and semiconductors during short-pulse laser ablation , Applied Surface Science, 1998, 127-129: 755-760
    [55] Gerstner V., Pfeiffer W., Thon A., et. al., Scanning tunneling spectroscopy of GaAs(110) surfaces under femtosecond laser illumination, Technical Digest - European Quantum Electronics Conference, 1996, 53
    [56] Ashkenasi D., Varel H., Rosenfeld A., et.al., Pulse-width influence on the laser-induced structuring of CaF2 (111), Applied Physics A: Materials Science & Processing, 1996, 63(2): 103~107
    [57] Cavalleri A., Sokolowski-Tinten K., Bialkowski J., et. al., Time of flight measurement during femtosecond laser ablation of gallium arsenide, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1998, CThD4, 258
    [58] Luther-Davies B., Samoc M., Swiatkiewicza J., et. al., Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene), Optics Communications, 1996, 131(4-6): 301~306
    [59] Nakamura Shinki, Midorikawa Katsumi, Kumagai Hiroshi, Effect of pulse duration on ablation characteristics of tetrafluoroethylene-hexafluoropropylene copolymer film using Ti:sapphire laser , Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1996, 35(1A):101~106
    [60] Kruger J., Kautek W., Femtosecond-pulse visible laser processing of transparent materials, Applied Surface Science, Symposium F: 3rd International Conference on Laser Ablation, 1996, 96-98: 430~438
    [61] Oraevsky Alexander A., Da Silva Luiz B., Rubenchik Alexander M., et.al., Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption, IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(4): 801~809
    [62] Fibich, Gadi, Femtosecond laser-tissue interaction, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2673: 93~101
    [63] Cain, Clarence P. (The Analytic Sciences Corp., San Antonio, TX, USA); DiCarlo, Cheryl D.; Noojin, Gary D.; Amnotte, Rodney E.; Rockwell, Benjamin A.; Roach, William P., In-vivo laser-induced bubbles in the primate eye with femtosecond pulses, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2681:382~388
    [64] Henyk M., Costache F., Reif J., Femtosecond laser ablation from sodium chloride and barium fluoride, Applied Surface Science, 2002, 186(1-4): 3381~3384
    [65] Serafetinides Alexander A., Makropoulou Mersini I., Kar Ajoy K., et. al., Picosecond and femtosecond laser ablation of hard tissues, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2922: 200~208
    [66] Ihlemann, J., Scholl, A., Schmidt, H., et. al. Nanosecond and femtosecond excimer-laser ablation of oxide ceramics , Applied Physics A: Materials Science & Processing, 1995, 60(4): 411~417
    [67] Molian P.A., Ultrafast pulsed lasers for manufacturing applications with special reference to diamond machining, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1997, 11: 161~162
    [68] Momma C,Chichkov B N,Nolte S,et a1.Short-pulse laser ablation of solid targets.Opt Comm. 1996, 129(1-2): 134
    [69] Pronko P P.Dutta S K.Squier J,et a1.Machining of sub-micron holes using a femtosecond 1aser at 800 nm. Optics Communications,1995, 114(1-2):106
    [70] G. kamlage,T. bauer, A. ostendorf and B. N. Chichkov, Deep drilling of metals by femtosecond laser pulses Appl. Phys. A, 2003, 77: 307~310
    [71] Nakaya Takayuki, Qiu Jian-Rong, Zhou Chang-He et. al., Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser, Chin. Phys. Lett., 2004, 21(6): 1061~1063
    [72] Rode, A. V.. Subpicosecond laser ablation of dental enamel. J. Appl. Phys., 2002, 92(15): 2153~2158
    [73] T. Juhasz, G. Djotyan, F. H. Loesel et. al., Applications of femtosecond laser in noreal surgery. Laser Physics, 2000, 10:1~6
    [74] Weiss P. Hot Flashes, Cold Cuts: Ultrafast lasers give power tools a new edge. Science News, 2002, 162(20): 315~318
    [75] Nan Shen, Debjyoti Datta et al., Nanosurgery in a live cell using femtosecond laser pulses. (to be published in Science)
    [76] Kaoru Minoshima, AndrewM. Kowalevicz, Erich P. Ippen, et. al., Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing, Optics Express, 2002, 10(15 /29):645~652
    [77] Arnaud Zoubir, Martin Richardson, Clara Rivero, et. al., Direct femtosecond laser writing of waveguides in As2S3 thin films, Optics Express, 2004, 29( 7):748~750
    [78]Cumpston B H, Ananthavel S P, Barlow S et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398: 51~54
    [79] C.B. Schaffer, J.F. García, E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser". Appl. Phys. A. 2003, 76: 351-354
    [80]袁大军,蒋中伟,郭锐,徐藻,王翔,黄文浩,夏安东,褚家如,飞秒激光双光子复杂结构的微细加工,微细加工技术. 2004, 2: 27-30
    [81] Ya Cheng, Koji Sugioka, and Katsumi Midorikawa, "Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing", Opt. Lett. 2004, 29(17): 2007-2009
    [82] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pusles. Opt. Lett., 2001, 26(1): 42~44
    [83] Will M,Stefan Nolte, chichkov B N et al.. Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt., 2003, 41(21): 4360~4364
    [84] Shane M. Eaton, Haibin Zhang, Peter R. Herman,Fumiyo Yoshino, Lawrence Shah, James Bovatsek, Alan Y. Arai, "Heat accumulation effects in femtosecond laserwritten waveguides with variable repetition rate", Opt. Exp. 2005, 13(12): 4908~4716
    [85] J. Bohandy, B.F. Kim, F.J. Adrian, "Metal deposition from a supported metal film using an excimer laser",J. Appl. Phys. 1986,60: 1538~1539
    [86] J. Bohandy, B. F. Kim, F. J. Adrian, and A. N. Jette, "Metal deposition at 532 nm using a laser transfer technique", J. Appl. Phys. 1988, 63(4): 1158~1162
    [87] P. Mogyorosi, T. Sz?rényi, K. Bali, et.al., Appl. Surf. Sci. 1989, 36 : 157~.
    [88] E. Fogarassy, C. Fuchs and F. Kerherve et. al., Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films, J. Appl. Phys. 1989, 86(1): 457~
    [89] Robet J, Baseman, Nan M et.al., Minimum fluence for laser blow-off of thin gold at 248 and 532 nm, Appl. Phys. Lett. 1990, 56 (15): 1412~1414
    [90] Z. Toth, T. Sz?rényi, Pulsed laser processing of Ge/Se thin film structures. Appl. Phys. A , 1991, 52: 273~279.
    [91]. V. Schltze, M. Wagner, Laser-induced forward transfer of aluminum, Appl. Surf. Sci. 1991, 52: 303~.309
    [92]. Z. Kántor, Z. Tóth and T. Sz?rényi, Laser induced forward transfer: The effect of support-film interface and film-to-substrate distance on transfer. Appl. Phys. A , 1992, 54: 170-175
    [93] Z. Toth, T. Sz?rényi, A.L. Toth, Ar laser induced forward transfer(LIFT): a novel method for. micrometer size surface patterning. Appl. Surf. Sci. 1993, 69: 317~320
    [94] H. Esrom, J.Y. Zhang, U. Kogelschatz, et.al. New approach of a laser-induced forward transfer for deposition of patterned thin metal films, Appl. Surf. Sci. 1995, 86: 202~.207
    [95] Z. Kantor, Z. Toth, and T. Sz?rényi, et. al., Deposition of micrometer-sized tungsten patterns by laser transfer technique, Appl. Phys. Lett. 1994, 64 (25): 3506~3058
    [96] Z. Kantor, T. Sz?rényi, Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance, J. Appl. Phys. 1995, 78 (4): 2775~2780
    [97] Tatsuo Okada, Yoshiki Nakata, Junichi Muramoto and Mitsuo Maeda, New developments of pulsed-laser deposition process, SPIE 1998, 3274: 246~254
    [98] I. Zergioti, S. Mailis, N.A. Vainos, et.al., Microdeposition of metal and oxide structures using ultrashort laser pulses, Appl. Phys. A , 1998, 66: 579~582.
    [99] P. Papakonstantinou, N.A. Vainos, C. Fotakis. Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films,Appl. Surf. Sci. 1999, 151: 159-170
    [100] R. B?hnisch, W. Gro?, A. Menschig, Single-shot, high repetition rate metallic pattern transfer, Microelectronic Engineering, 2000, 50: 541~546
    [101] H.Yamada,T. Sano,T.Nakayama et.al., Optimization of laser-induced forward transfer process of metal thin films,Appl. Surf. Sci. 2002, 197-198: 411~415
    [102] B. Tan, K. Venkatakrishnan, K.G. Tok. Selective surface texturing using femtosecond pulsed laser induced forward transfer, Appl. Surf. Sci. 2003, 207: 365~371
    [103] D. A. Willis and V. Grosu. Proc. Evaporation and phase explosion during laser-induced forward transfer of aluminum, SPIE, 2004, 5339: 304 -312
    [104] D. A. Willis and V. Grosu., Microdroplet deposition by laser-induced forward transfer, Appl. Phys. Lett. 2005, 86: 244103-1-3
    [105] Li Yang, Ching-yue Wang, Xiao-chang Ni, et.al., Microdroplet deposition of copper film by femtosecond laser-induced forward transfer, Applied Physics Letters, 2006, 89(16):161110-1-3
    [106] D. Young, R. C. Y. Auyeung, A. Pique′et.al., Time-resolved optical microscopy of a laser-based forward transfer process, Appl. Phys. Lett., Vol. 78, No. 21, 21 May 2001
    [107] Yoshiki Nakata, Tatsuo Okada and Mitsuo Maeda, Ejection of particles placed on a thin-film by laser-induced forward transfer, Proc. SPIE , 2001, 4274: 204-210
    [108] D. Young, R. C. Y. Auyeung, A. Pique′et.al., Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy, Appl. Surf. Sci. 2002, 197-198:181-187
    [109] T. Sano, H. Yamada, T. Nakayama et.al., Experimental investigation of laser induced forward transfer process of metal thin films, Appl. Surf. Sci., 2002, 186:221-226
    [110] D. G. Papazoglou, A. Karaiskou, I. Zergioti et.al., Shadowgraphic imaging of the sub-ps laser-induced forward transfer process, Appl. Phys. Lett., 2002, 81(9): 1594-1597
    [111] I. Zergioti, D.G. Papazoglou, A. Karaiskou,et.al., A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr, Appl. Surf. Sci., 2003, 208–209: 177–180
    [112] G. Koundourakis, C. Rockstuhl, D. Papazoglou, Laser printing of active optical microstructures,Appl. Phys. Lett., 2001, 78(7): 868~870
    [113] I. Zergioti, S. Mailis, N.A. Vainos, Microdeposition of metals by femtosecond excimer laser, Appl. Surf. Sci., 1998, 127–129: 601–605
    [114] A. Piqu′e, D.B. Chrisey, R.C.Y. Auyeung, et.al., A novel laser transfer process for direct writing of electronic and sensor materials, Appl. Phys. A, 1999, 69 [Suppl.]: S279~S284
    [115] J.M.Fernandez-Pradas, M.Colina, P.Serra, et.al. Laser-induced forward transfer of biomolecules, Thin Solid Films, 2004, 453–454 :27~30
    [116] D.B. Chrisey,A. Pique, R. Modi et.al., Direct writing of conformal mesoscopic electronic devices by MAPLE DW, Appl. Surf. Sci., 2000, 168: 345-352
    [117] Zergioti I, Mailis S, et al. Microprinting and microetching of diffractive structures using ultrashort laser pulses. Appl Surf Sci, 1999, 138-139: 82.
    [118] Karaikou A, Zergioti I, et al. Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process. Appl Surf Sci, 2003, 208-209: 245.
    [119] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Zheksp, Teor. Fiz, Sov. Phys-JETP 1974, 39: 375
    [120] J.G.Fujimoto, J. M. Liu, E. P. Ippen et.al., Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and lattice Temperatures. Phys.Rev. Lett., 1984, 53: 1837~1840
    [121] H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot et.al., Time-Resolved Observation of Electron-Phonon Relaxation in Copper. Phys. Rev. Lett., 1987, 58(12): 1212~1215
    [122] P. B. Corkum, F, Brunel, and N. K. Sherman, Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 1988, 61: 2886~2889
    [123] Schoenlein R W, Lin W Z, Fujimoto J G . Femtosecond studies of nonequilibrium processes in metals. Phys. Rev. Lett.,1987, 58(16):1680-1863
    [124] B. N. Chichkov, C. Momma, S. Nolte, et. al., Femtosecondm, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63: 109~115
    [125] J.Güdde, J. Hohlfeld, J. G. Müller, et Al., Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci., 1998, 127-129: 40~45
    [126] X. Zhu, A new method for determining critical pulse width with laser material processing, Applied Surface Science, 2000, 167: 230~242
    [127] Pronko P P,Dutta S K,Du D,et al. Thermophysica1 effects in 1aser processing of materials with picosecond and femtosecond pulses.J App1 Phys,1995, 78(10):6233
    [128] Nolte S,Momma C,Jacobs H,et al. Ablation of metals by ultrafast 1aser pulses.J. Opt. Soc. Am. B, 1997, 14(10):2716
    [129] Wellershoff S-S, Hohlfeld J H, Gudde J, et al., The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A, 1999, 69(Suppl):99
    [130] Furusawa K, Takahashi K, Kumagai H, et al., Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti: sapphire laser. Appl. Phys. A, 1999, 69(Suppl): 359
    [131] Falkovsky L A,Mishchenko E G.Electron-lattice kinetics of metals heated by ultrashort laser pulses.J. Exp. Theor. Phys., 1999, 88: 84
    [132]倪晓昌,王清月,飞秒、皮秒激光烧蚀金属表面的有限差分分析,中国激光,2004, 31(1): 277~280
    [133] S. Valette, R. Le Harzic, N.Huot, 2D calculations of the thermal effects due to femtosecond laser-metal interaction, Appl. Surf. Sci., 2005, 247: 238-242
    [134] R. Le Harzic, N. Huo, E. Audouard et.al., Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl. Phys. Lett., 2002, 80(21): 3886-3888
    [135] F. Vidal, S. Laville, T. W. Johnston et.a1., Numerical simulations of ultrashort laser pulse ablation and plasma expansion in ambient air. Spectrochim Acta B, 2001, 56(6): 973~986
    [136] T.E. Itina, J.Hermann, Ph.Delaporte et.al., Modeling of metal ablation induced by ultrashort laser pulses. Thin Solid Films, 2004, 453–454 : 513–517
    [137] Carsten Schafer, Herbert M.Urbassek and Leonid V. Zhigilei, Metal ablation by picosecond laser pulses: A hybrid simulation. Phys. Rev. B, 2002, 66: 115404-1-8
    [138] Xianfan Xu, Changrui Cheng, Ihtesham H. Chowdhury, Molecular Dynamics Study of Phase Change Mechanisms During Femtosecond Laser Ablation. Journal of heat transfer, 2004, 126: 727-734
    [139] Kunal Mitra, Sunil Kumar, and Ali Vedavarz, Parametric aspects of electron–phonon temperature model for short pulse laser interactions with thin metallic films. J. Appl. Phys. 1996, 80 (2): 675-680
    [140] Roger Kelly, Antonio Miotello, Comments on explosive mechanisms of laser sputtering. Applied Surface Science, 1996, 96-98: 205-215
    [141] B. Rethfeld, A.Kaiser, M. Vicanek, et.al., Femtosecond laser-induced heating of electron gas in aluminium. Appl. Phys. A, 1999, 69 [Suppl.]: S109–S112.
    [142] K. Eidmann, J. Meyer-ter-Vehn, and T. Schlegel, et.al., Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E, 2000, 62(1): 1202-1214
    [143] F.J. Adrian, J. Bohsndy, B.F. Kim, et.al., A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Scl. Technot. B, 1987, 5(5): 1491-1494
    [144] Arinder S. Sandhu, A. K. Dharmadhikari and G. Ravindra Kumar,“Evolution of Electrical Resistivity, Thermal Conductivity, and Temperature of a solidunder the action of Intense Ultrashort Laser pulse”Submitted to Applied Physics Letters, September 2002
    [145] Paul Mannion, Sebastian Favre, Gerard M. O'Connor, et.al., Langmuir probe study of plasma expansion in femtosecond pulsed laser ablation of silver, Proc. SPIE, 2005, 5827: 457-466
    [146] V. Margetic, A. Pakulev, A. Stockhaus, et.al., A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples, Spectrochimica Acta Part B, 2000, 55: 1771-1785.
    [147] K. Furusawa, K. Takahashi, H. Kumagai, et.al., Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser, Appl. Phys. A, 1999, 69 [Suppl.]: S359-S366
    [148] S. Amoruso, R. Bruzzese, and M. Vitiello, et.al., Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum J. Appl. Phys. 2005, 98: 044907-1-7
    [149]Yasuaki Okano, Katsuya Oguri, Tadashi Nishikawa, et.al., Observation of femtosecond-laser-induced ablation plumes of aluminum using space- and time-resolved soft x-ray absorption spectroscopy. Appl. Phys. Lett,. 2006, 89: 221502-1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700