纳米孔及纳米结构的尺寸依赖性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统总结了根据Lindemann熔化准则和Mott方程推导出的尺寸依赖的熔化温度模型,该模型简单且无自由参数,既能解释具有自由表面的纳米晶体的过冷现象,又能解释镶嵌于基体的纳米晶体的过热现象。应用该模型并结合尺寸依赖的熔化熵模型,预测了具有较小表面体积比的纳米晶体结合能的尺寸效应。纳米孔洞与纳米粒子的表面曲率相反,分析具有负曲率表面(即纳米孔洞)的晶体熔化热力学行为,建立了预测镶嵌纳米孔洞的无自由外表面晶体的最大过热度模型。引入结合键数参数,建立尺寸与结构依赖的结合能模型,该模型无尺寸范围限制。根据该模型预测一维ZnO纳米线、单臂纳米管结构稳定的临界尺寸。基于Wulff球的几何特征,给出Wulff球结构的结合键数尺寸依赖模型,并根据尺寸依赖结合能模型预测不同尺寸和不同结构的团簇结合能。以上的预测结果均与实验、计算机模拟以及其它理论结果具有良好的一致性。
As the size of low-dimensional materials decreases to nanometer size range, electronic, magnetic, optic, catalytic and thermodynamic properties of the materials are significantly altered from those of either the bulk or a single molecule. Among the above special properties of nanocrystals, the size-dependent melting temperature of nanocrystals has received considerable attention since Takagi in 1954 experimentally demonstrated that ultrafine metallic nanocrystals melt below their corresponding bulk melting temperature. However, it has not been accompanied by the necessary investigation of other size-dependent thermodynamic properties of nanocrystals, such as the melting entropy, the melting enthalpy, and the cohesive energy. Such an investigation should deepen our understanding of the nature of the thermal stability of nanocrystals. Different from nanoparticles, nanovoids, being defined as a cluster of many vacancies in a given matrix, have negatively curved surfaces, which results in the unusual thermodynamic behavior. Note that many researches [13, 20-22] have been focused on the melting point of the crystals as a function of nanovoid size via computer simulations, and find that the melting point increases with void size decreasing. However, by far the mechanism of void melting is still lacking and the theoretical basis for its unusual melting behavior is still unknown. Since nanovoids with potential applications, exist in many real materials and lead to the formation of internal interfaces (surfaces), it is important to identify the void size effect on properties. Cohesive energy as one of the most important lattice parameter, should directly be related with the nature of the thermal stability of nanocrystals. The established size-dependent cohesive energy which is based on surface/volumeδ, is suitable for nanoparticles. As particle size decreases, the percent of surface atoms increases and thus results in higher energy, which is easily understood. However, this model is usually suitable for nanoparticles, and limited for other nanostructures. Recently, the cohesive energies of ZnO nanowires and ZnO single-walled nanotubes have obtained via first-principle simulation, and found that ZnO single-walled nanotubes is more stable only at small size. Thus, to estimate the cohesive energy of nanocrystals with different structure and the relative stability, it is urgent to establish a cohesive energy model which is related with both size and structure. It is clear that cohesive energy is a valid method to estimate structure stability which relies on size. For clusters with small number of atoms, all clusters have similar spherical shape with different structures, such as icosahedron and truncated decahedron. Due to the size dependence of structure, it is significant to construct a unite model to predict clusters cohesive energy, which will deepen our knowledge to this property. The concrete contents are listed as follows:
     1. The size-dependent melting temperature model for nanocrystals is summarized systematically. In terms of such model, the melting temperature of a free nanocrystal decreases as its size decreases while nanocrystals embedded in a matrix can melt below or above the melting point of corresponding bulk crystals. If the bulk melting temperature of nanocrystals is lower than that of the matrix, the atomic diameter of nanocrystals is larger than that of the matrix, and the interfaces between them are coherent or semi-coherent, an enhancement of the melting point is present. Otherwise, there is a depression of the melting point. Our model can predict melting temperuatures of low-dimensional crystals with different chemical bonds, different dimensions, and different surface or interface conditions and the surface melting temperature of nanocrystals. As an example, an agreement is found between model predictions and experimental results for In nanocrystals. Based on the above model and the size-dependent melting entropy model, we establisehed a model to predict the size dependence of the mleing enthalpy and further to predict the size effect on the cohesive energy of nanocrystals. It is found that our model predictions are consistent with available experimental results for the melting enthalpy of In nanocrystals and cohesive energies of Mo and W nanoparticles,and the validity of this model to predict cohesive energy of nanocrystals with surface/volume ratio smaller than 0.5 is apparent.
     2. With higher than the bulk melting point, the melting temperature of crystals from nanovoids is an inverse function of void size, which is different from the melting behavior of nanoparticles. According to the classical nucleation theory, the estimation of the equation for homogeneous nucleation temperature of liquid elements from nanovoids is developed by considering energetic contributions of surface (interface) energy and surface (interface) stress on total Gibbs free energy. The model predicts the superheating limit temperature, as a function of void size, which limits the crystal stability from kinetic point. The crystal can be significantly superheated with increase of superheating degree and this increase is enhanced as nanovoids size decreases, which can well explain the MD simulation results for melting temperatures of argon crystal from nanovoids. As void radius is larger than 2nm, this melting behavior is similar to that of bulk. In the solid-liquid transition, except the contribution of surface (interface) free energy change, taking the effect of elastic energy change into consideration is necessary to determine the superheating degree. Moreover, according to the established size-dependent surface (interface) energy functions for nanoparticles and taking the negative curvature for nanovoids, a similar function for negatively curved surface (interface) energy is obtained, which is consistent with other theoretical results. Similarly, the surface (interface) energy becomes slowly decrease as void radius is larger than 2nm.
     3. Although the synthesized ZnO single-walled nanotube has not obtained in experiments, ZnO single-walled nanotube can exist in principle since negative cohesive energy. Due to potential application, the stability of both ZnO single-walled nanotube and nanowires should be determined. Recently, ZnO single-walled nanotube is found to be stable only at small size, while ZnO nanowires is preferred at larger size. Based on the bond broken rule and introducing bond number which is directly related with cohesive energy, we develop a model of size-dependent cohesive energy without any adjustable parameters, which successfully predict the cohesive energy of ZnO nanowires. Moreover, the critical size at which the stability of ZnO single-walled nanotube and ZnO nanowires change is estimated. Good agreement between model predictions and simulation results is found.
     4. The structure and cohesive energy of clusters have been investigated by computer simulation. The structures of clusters depend on size and tend to bulk shape as size increasing. However, suitable models describing their cohesive energy and shape in a unified form are absent since the structure uncertainty is the key difficulty to realize the this object. For small size of clusters, the surface energy is the dominant factor to determine the structure, while the Wulff is preferred to be equilibrium shape for bulk crystals. Although Wulff construction does not account for the desire of clusters to minimize the total surface to volume ratio, Wulff construction has the same consideration to establish stable clusters?designing the substance with smallest surface energy. Owing to the densest consideration on packing, a size-dependent bond number of Wulff construction of Fcc structure is established. Substituting this bond number function into the cohesive energy model based on bond number, we find that the validity of Wulff construction to describe cohesive energy of cluters, since the good agreement between model predictions and simulation results for several metal clusters is found, without considering the detail of cluster structures.
引文
[1] GLEITER H, HANSEN N, HORSEWELL A, LEFFERS T, LIHOLD H. (Eds.), in Proceedings of the second Risφinternational symposium on metallurgy and materials science [M], RisφNat. Laboratory Roskilde, Denmark, 1981:15
    [2] GLEITER H. Nanostructured materials: Basic concept and microstructure [J]. Acta Materialia, 2000,48:1.
    [3] CAVICCHI R E, SILSBEE R H. Coulomb suppression of tunneling rate from small metal particles [J]. Physical Review Letters, 1984,52:1453.
    [4] TAKAGI M. Electron-diffraction study of liquid-solid transition of thin metal films [J]. Journal of the Physical Society of Japan, 1954,9:359.
    [5] BALL P, GARWIN L. Science at the atomic scale [J]. Nature, 1992,355:761.
    [6] DASH J G. History of the search for continuous melting [J]. Reviews of Modern Physics,, 1999,71:1737.
    [7] CHRISTIAN J W. The Theory of Transformations in Metals and Alloy [M]. 2rd ed. Part I, Equilibrium and General Kinetic Theory, Oxford, Pergamon Press, 1975, pp. 418.
    [8] GLEITER H. Nanocrystalline materials [J]. Progress in Materials Science, 1989,33:223.
    [9] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000,287:1463.
    [10] LINDEMANN F A.üder die berechnung molekularer eigenfrequenzen [J]. Physica Z, 1910,11:609.
    [11] BORN M. Thermodynamics of crystals and melting [J]. Jouranl of Chemical Physics, 1939,7:591.
    [12] GORECKI T. Vacancies for solid krypton bubble copper, nickel and gold particles[J]. Zeitschrift fur Metallkunde, 1974,65:426.
    [13] RUBCIC A, RUBCIC J B. Fizika 1978, 10 (Suppl. 2), 294.
    [14] GRABACK L, BOHR J. Superheating and supercooling of lead precipitates in aluminum [J]. Physical Review Letters, 1990,64:934.
    [15] LU K, YI Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals [J]. Physical Review Letters, 1998,80:4474.
    [16] ROSSOUW C J, DONNELLY S E. Superheating of small solid–argon bubbles in aluminum [J]. Physical Review Letters, 1985,55:2960.
    [17] BUFFAT P A, BOREL J P. Size effect on the melting temperature of gold particles [J]. Physical Review A, 1976,13:2287.
    [18] ALLEN G L, BAYLES R A, GILES W W, JESSER W. Small particle melting of pure metals [J]. Thin Solid Films, 1986,144:297.
    [19] COOMBES C J. The melting of small particles of lead and indium [J]. Journal of Physics F, 1972,2:441.
    [20] SKRIPOV V P, KOVERDA V P, SKOKOV V N. Size effect on melting of small particles [J]. Physica Status Solidi A, 1981,66:109.
    [21] PEPPIATT J, SAMBLES J R. The melting of small particles [J]. II. Bismuth, Proceedings Royal Society London Series A 1975,345:387.
    [22] KOFMAN R, CHEYSSACS P, GARRIGOS R. From the bulk to clusters: solid-liquid phase transitions and precursor effects [J]. Phase Transitions, 1990,24:283.
    [23] CASTRO T, REIFENBERGER R, CHOI E, ANDRES R P. Size-dependent melting temperature of individual nanometer-sized metallic clusters [J]. Physical Review B, 1990,42:8548.
    [24] BOREL J P. Thermodynamical size effect and the structure of metallic clusters [J]. Surface Science, 1981,106:1.
    [25] SOLLIARD C. Debye-Waller factor and melting temperature in small gold particles realted size effect [J]. Solid State Communications, 1984,51:947.
    [26] EVENS J H, MAZEY D J. Evidence for solid krypton bubbles in copper, nickel and gold at 293K [J]. Journal of Physics F, 1985,15:L1.
    [27] BECK T L, JELLINED J, BERRY R S. Rare gas clusters: Solids, liquids, slush, and magic numbers [J]. Journal of Chemical Physics, 1987,87:545.
    [28] GOLDSTEIN A N, ECHER C M, ALIVISATOS A P. Melting in semiconductor nanocrystals [J]. Science, 1992,256:1452.
    [29] GOLDSTEIN A N. The melting of silicon nanocrystals submicro thin–film structuters derived from nanocrystal precursors [J]. Applied Physics A, 1996,62:33.
    [30] LAI S L, GUO J Y, PETROVA V, RAMANATH G, ALLEN L H. Size dependent melting properties of small tin particles: Nanocalorimetric measurements [J]. Physical Review Letters, 1996,77:99.
    [31] ZHANG D L, CANTOR B. Melting behaviour of In and Pb particles embedded in an Al matrix [J]. Acta Materialia, 1991,39:1595.
    [32] GOSWAMI R, CHATTOPADHYAY K. The superheating and the crystallography of embedded Pb particles in f.c.c. Al, Cu and Ni matrices [J]. Acta Metallurgica et Materialia, 1995,43:2837.
    [33] SHENG H W, REN G, PENG L M, HU Z Q, LU K. Superheating and melting-point depression of Pb nanoparticles embedded in Al matrixes [J]. Philosophical Magazine Letters, 1996,73:179.
    [34] GOSWAMI R, CHATTOPADHYAY K. The superheating of Pb embedded in a Zn matrix: The role of interface melting [J]. Philosophical Magazine Letters, 1993,68:215.
    [35] ANDERSEN H H, JOHNSON E. Structure, morphology and melting hysteresis of ion-implanted nanocrystals [J]. Nuclear Instruments & Methods in Physics ResarchB, 1995,106:480.
    [36] SEMENCHENKO V K. Surface Phenomena in Metals and Alloys [M]. Oxford, Pergamon, 1961.
    [37] SAMBLES J R. The extrusion of liquid between highly elastic solid [J]. Proceedings Royal Society A, 1971,324:339.
    [38] COUCHMAN P R, JESSER W A. Thermodynamic theory of size dependence of melting temperature in metals [J]. Nature, 1977,269:481.
    [39] ALLEN G L, GILE W W, JESSER W A. The melting temperature of microcrystals embedded in a matrix [J]. Acta Metallurgica, 1980,28:1695.
    [40] ECKERT J, HOLZER J C, AHN C C, FU Z, JOHNSON W L. Melting behavior of nanocrystalline aluminum powders [J]. Nanostructure Materials, 1993,2:407.
    [41] SHI F G. Size dependent thermal vibrations and melting in nanocrystals [J]. Journal of Materials Research, 1994,9:1307.
    [42] DAVID T B, LEREAH Y, DEUTSCHER G, KOFMANS R, CHEYSSAC P. Solid-liquid transition in ultra-fine lead particles [J]. Philosophical Magazine A, 1995,71:1135.
    [43] JOHARI G P. Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals [J]. Philosophical Magazine A, 1998,77:1367.
    [44] PETERS K F, COHEN J B, CHUNG Y W. Melting of Pb nanocrystals [J]. Physical Review B, 1998,57:13430.
    [45] MORISHIGE K, KAWANO K. Freezing and melting of methyl chloride in a single cylindrical pore: Anomalous pore-size dependence of phase-transition temperature [J]. Journal of Physical Chemistry B, 1999,103:7906.
    [46] JIANG Q, SHI H X, ZHAO M. Melting thermodynamics of organic nanocrystals [J]. Journal of Chemical Physics, 1999,111:2176.
    [47] ZHANG Z, LI J C, JIANG Q. Modeling for size-dependent and dimension-dependent melting of nanocrystals [J]. Journal of Physics D, 2000,33:2653.
    [48] WEN Z, ZHAO M, JIANG Q. The melting temperature of molecular nanocrystals at the lower bound of mesoscopic size range [J]. Journal of Physics: Condensed Matter, 2000,12:8819.
    [49] ZHANG Z, ZHAO M, JIANG Q. Melting temperature of semiconductor nanocrystals in the mesoscopic size range [J]. Semicondutor Science and Technology, 2001,16:L33.
    [50] PAWLOW P.über die abn?ngikeit des schmelzpunktes von der oberfl?chenenergie eines festen k?rpers [J]. Zeitschrift Physikalische Chemie, 1909,65:545.
    [51] HANSZEN K J. The melting points of small spherules. The thermodynamics of boundary layers [J]. Zeitschrift für Physik, 1960,157:523.
    [52] JONES D R H. Review: The free energies of solid-liquid interfaces [J]. Journal of Materials Science, 1974,9:1.
    [53] SAKA H, NISHIKAWA Y, IMURA T. Melting temperature of In particles embedded in an Al matrix [J]. Philosophical Magazine A, 1988,57:895.
    [54] SHENG H W, REN G, PENG L M, JU Z Q, LU K. Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling [J]. Journal of Materials Research, 1996,11:2841.
    [55] CHATTOPADHYAY K, GOSWAMI R. Melting and superheating of metals and alloys [J]. Progress in Materials Science, 1997,42:287.
    [56] ZHANG L, JIN Z H, ZHANG L H, SUI M L, LU K. Superheating of confined Pb thin films [J]. Physical Review Letters, 2000,85:1484.
    [57] JIANG Q, ZHANG Z, LI J C. Size-dependent superheating of nanocrystals embedded in matrix [J]. Chemical Physics Letters, 2000,322:549.
    [58] JIANG Q, ZHANG Z, LI J C. Melting thermodynamics of nanocrystals embedded in matrix [J]. Acta Materialia, 2000,48:4791.
    [59] JIANG Q, LIANG L H, LI J C. Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals [J]. Journal of Physics: Condensed Matter, 2001,13:565.
    [60] REISS H, WILSON I B. The effects of size on melting point [J]. Journal of Colloid Science, 1948,3:551.
    [61] JIANG Q, SHI H X, ZHAO M. Free energy of crystal-liquid interface, Acta Materialia, 1999,47:2109.
    [62] WEN Z, ZHAO M, JIANG Q. Size range of solid-liquid interface free energy of organic crystals [J]. Journal of Physical Chemistry B, 2002,106:4266.
    [63] JONES H. The solid-lquid interfacial energy of metals: Calculation versus measurements [J]. Materials Letters, 2002,53:364.
    [64] MOTT N F. The resistance of liquid metals [J]. Proceedings Royal Society A, 1934,146:465.
    [65] REGEL A R, GLAZOV V M. Entropy of melting of semiconductors [J]. Semiconductors, 1995,29:405.
    [66] JIANG Q, LIANG L H, ZHAO M. Modeling of the melting temperature of nano-ice in MCM-41 pores [J]. Journal of Physics: Condensed Matter, 2001,13:L397.
    [67] PRINCE K C, BREUER U, BONZEL H P. Anisotropy of the order-disorder phase transition on the Pb(110) surface [J]. Physical Review Letters, 1988,60:1146.
    [68] DI TOLLA F D, ERCOLESSI F, TOSATTI E. Maximum overheating and partial wetting of nonmelting solid surface [J]. Physical Review Letters, 1995,74:3201.
    [69] MADDOX J. The phase transition from solid to liquid, perhaps the most puzzling of all, probably begins with surface-melting where the crystallographic orientationis appropriate [J]. Nature, 1987,330:599.
    [70] COTTERILL R M J, MADSEN J U. Evidence against a crystal instability in melting [J]. Nature, 1980,288:467.
    [71] HERMAN J W, ELSAYED-ALI H E. Surperheating of Pb(111) [J]. Physical Review Letters, 1992,69:1228.
    [72] BAI X M, LI M. Dependences between solid superheating and liquid supercooling [J]. Journal of Chemical Physics, 2005,123:151102.
    [73] BAI X M, LI M. Nature and extent of melting in superheated solids: Liquid-solid coexistence model [J]. Physical Review B, 2005,72:052108.
    [74] LUTSKO J F, WOLF D, PHILLPOT S R, YIP S. Molecular-dynamics study of lattice-defect-nucleated melting in metals using an embedded-atom-method potential [J]. Physical Review B, 1989,40:2841.
    [75] DIETEL J, KLEINERT H. Defect-induced melting of vortices in high-Tc superconductors: A model based on continuum elasticity theory [J]. Physical Review B, 2006,74:024515.
    [76] BAIS F A, MATHY C J M. Defect-mediated melting and the breaking of quantum double symmetries [J]. Physical Review B, 2006,73,224120.
    [77] MOTTET C, ROSSI G, BALETTO F, FERRANDO R. Single impurity effect on the melting of nanoclusters [J]. Physical Review Letters, 2005,95:035501.
    [78] DIETEL J, KLEINERT H. Triangular lattice model of two-dimensional defect melting [J]. Physical Review B, 2006,73:024113.
    [79] HARRIS N C, KIANG C H. Defects can increase the melting temperature of DNA-nanoparticle assemblies [J]. Journal of Physical Chemistry B, 2006,110:16393.
    [80] ERLEBACHER J, AZIZ M J, KARMA A, DIMITROV N, SLERADZKL K. Evolution of nanoporosity in dealoying [J]. Nature, 2001,410:450.
    [81] AGRAWAL P M, RAFF L M, KOMANDURI R. Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters [J]. Physical Review B, 2005,72:125206.
    [82] AGRAWAL P M, RICE B M, THOMPSON D L. Molecular dynamics study of the effects of voids and pressure in defect-nucleated melting simulations [J]. Journal of Chemical Physics, 2003,118:9680.
    [83] VELARDEZ G F, ALAVI S, THOMPSON D L. Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate [J]. Journal of Chemical Physics, 2004,120:9151.
    [84] SOLCA J, DYSON A J, STEINEBRUNNER G, KIRCHNER B. Melting curves for neon calculated from pure theory [J]. Journal of Chemical Physics, 1998,108:4107.
    [85] BAI X M, LI M. Nucleation and melting from nanovoids [J]. Nano Letters, 2006,6:2284.
    [86] MORISHIGE K, IWASAKI H. X-ray study of freezing and melting of water confined within SBA-15 [J]. Langmuir, 2003,19:2808.
    [87] SCHREIBER A, KETELSEN I, FINDENEGG G H. Melting and freezing of water in ordered mesoporous silica materials [J]. Physical Chemistry Chemical Physics, 2001,3:1185.
    [88] YANG M, JACKSON K A, KOEHLER C, FRAUENHEIM T, JELLINEK J. Structure and shape variations in intermediate-size copper clusters [J]. Journal of Chemical Physics, 2006,124:024308.
    [89] GUVELIOGLU G H, MA P, HE X, FORRERY R C, CHENG H. First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2 [J]. Physical Review B, 2006,73:155436.
    [90] SUN C Q. Size dependence of nanostructures: Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007,35:1.
    [91] GUISBIERS G, WAUTELET M. Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate [J]. Nanotechnology, 2006,17:2008.
    [92] JIANG Q, LI J C, CHI B Q. Size-dependent cohesive energy of nanocrystals [J]. Chemical Physics Letters, 2002,366:551.
    [93] QI W H, WANG M P, ZHOU M, SHEN X Q, ZHANG X F. Modeling cohesive energy and melting temperature of nanocrystals [J]. Journal of Physics and Chemistry of Solids, 2006,67:851.
    [94] SHANDIZ M A, SAFAEI A, SANJABI S, BARBER Z H. Modeling the cohesive energy and melting point of nanoparticles by their average coordinate number [J]. Solid State Communications, 2008,145:432.
    [95] SHANDIZ M A. Average coordination number model for the structure stability of nanoclusters [J]. Physics Letters A, in press.
    [96] SAFAEI A, SHANDIZ M A, SANJABI S, BARBER Z H. Modeling the size effect on the melting temperature of nanoparticles, nanowires, and naonfilms [J]. Journal of Physics: Condensed Matter, 2007,19:216216.
    [97] MIRJALILI M, VAHDATI-KHAKI J. Prediction of nanoparticle’s size-dependent melting point using mean coordination number concept [J]. Journal of Physics and Chemistry of Solids, 2008,69:2116.
    [98] SAFAEI A, SHANDIZ M A. Size-dependent thermal stability and the smallest nanocrystal [J]. Physica E, 2009,41:359.
    [99] SHANDIZ M A, SAFAEI A, SANJABI S, BARBER Z H. Modeling size dependence of melting temperature of metallic nanoparticles [J]. Journal of Physics and Chemistry of Solids, 2007,68:1396.
    [100] KIM H K, HUH S H, PARK J W, JEONG J W, LEE G H. The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters 65[J]. Chemical Physics Letters, 2002,354:165.
    [101] YANG CC, JIANG Q. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive [J]. Acta Materialia, 2005,53:3305.
    [102] YANG CC, LI S. Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals [J]. Physical Review B, 2007,75:165413.
    [103] BARNARD A S. A thermodynamic model for the shape and stability of twinned nanostructures [J]. Journal of Physical Chemistry B, 2006,110:24498.
    [104] BARNARD A S, CURTISS L A. Computational nano-morpholoy: Modeling shapes as well as size, Review on Advanced Materials Science, 2005,10:105.
    [105] MORAN LOPEZ J L. Theoretical studies and modeling of nanostructured materials a challenge for the 1990s [J]. Computational Materials Science, 1994,2:72.
    [106] TOMANEK D, MUKHERJEE S, BENNEMANN K H. Simple theory for the electronic and atomic structure of small clusters [J]. Physical Review B, 1983,28:665.
    [107] HALL B D, FLUELI M, MONOT R, BOREL J P. Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction [J]. Physical Review B, 1991,43:3906.
    [108] CAMPBELL C T, PARKER S C, STARR D E. The effect of size-dependent nanoparticle energetics on catalyst sintering [J]. Science, 2002,298:811.
    [109] LOPEZ N, JANSSENS T V W, CLAUSEN B S, XU Y, MAVRIKAKIS M, BLIGAARD T, NORSKOV J K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation [J]. Journal of Catalysis, 2001,223:232.
    [110] DE HEER W A. The physics of simple metal cluters: Experimental aspects and simple models [J]. Review Modern Physics, 1993,65:611.
    [111] MARKS L D. Experimental studies of small particle structures [J]. Reports on Progress in Physics, 1994,57:603.
    [112] ASCENCIO J A. GUTIERREZ-WING C, ESPINOSA M E, MARIN M, TEHUACANERO S, ZORRILLA C, JOSE-YACAMAN M. Structure determination of small particles by HREM imaging: Theory and experiment [J]. Surface Science, 1998,396:349.
    [113] ASCENCIO J A, PEREZ M, JOSE-YACAMAN M. A truncated icosahedral structure observed in gold nanoparticles [J]. Surface Science, 2000,447:73.
    [114] INO S. Epitaxial growth of metals on rocksalt faces cleaved in Vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum [J]. Journal of Physical Society of Japan, 1966,21:346.
    [115] MARTIN T P. Shells of atoms [J]. Physics Reports, 1996,273:199.
    [116] CLEVELAND C L, LANDMAN U, SCHAAFF T G, SHAFIGULLIN M N, STEPHENS P W, WHETTEN R L. Structural evolution of smaller gold nanocrystals: The truncated decahedral motif [J]. Physical Review Letters, 1997,79:1873.
    [117] YACAMAN M J, ASCENCIO J A, LIU H B, GARDEA-TORRESDEY J. Structure shape and stability of nanometric sized particles [J]. Journal of Vacuum Science & Technology B, 2001,19:1091.
    [118] INO S, OGAWA S. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals [J]. Journal of Physical Society of Japan, 1967,22:1365.
    [119] MARKS L D, SIMTH D. High resolution studies of small particles of gold and silver: II. Single crystals, lamellar twins and polyparticles [J]. Journal of CrystalGrowth, 1981,54:433.
    [120] BALETTO F, FERRANDO R. Crossover among structural motifs in transition and noble-metal clusters, Journal of Chemical Physics, 2002,116:3856.
    [121] SOLER J M, BELTRAN M R. Metallic bonding and cluster structure [J]. Physical Review B, 2000,61:5771.
    [122] YACAMAN M J, ASCENCIO J A, LIU H B, GARDEA-TORRESDEY J. Structure shape and stability of nanometric sized particles [J]. Journal of Vacuum Science & Technology B, 2001,19:1091.
    [123] ROCKENBERGER J, TROGER L, KORNOWSKI A, VOSSMEYER T, EYCHMIILER A, FELDHAUS J, WELLER H. EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles [J]. Journal of Physical Chemistry B, 1997,101:2691.
    [124] ZHANG M, EFREMOV M Y, SCHIETTEKATTE F, OLSON E A, KWAN A T, LAI S L, WISLEDER T, GREENE J E, ALLEN L H. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements [J]. Physical Review B, 2000,62:10548.
    [125] KRAUSCH G, DETZEL T, BIELEFELDT H N, FINK R, LUCKSCHEITER B, PLATZER R, WOHRMANN U, SCHATZ G. Growth and melting behavior of thin In films on Ge (100) [J]. Applied Physics A, 1991,53:324.
    [126] LU K, JIN Z H. Melting and superheating of low-dimensional materials [J]. Current Opinion Solid State & Materials Science, 2001,5:39.
    [127] PRINCE K C, BREUER U, BONZEL H P. Anisotropy of the order-disorder phase transition on the Pb(110) surface [J]. Physical Review Letters, 1988,60:1146.
    [128] WEN Z, ZHAO M, JIANG Q. Surface melting of polycrystals Pb and In within 1 K below melting temperature [J]. Materials Letters, 2003,57:2515.
    [129] ZHAO M, ZHOU X H, JIANG Q. Comparison of different models for meltingpoint change of metallic nanocrystals [J]. Journal of Materials Research, 2001,16:3304.
    [130] ZHAO M, JIANG Q. Melting and surface melting of low-dimensional In crystals [J]. Solid State Communications, 2004,130:37.
    [131] ZHONG W L, JIANG B, ZHANG P L, MA J M, CHEN H M, YANG Z H, LI L. Phase transiton in PbTiO3 ultrafine particles of different sizes [J]. Journal of Physics: Condensed Matter, 1993,5:2619.
    [132] JIANG Q, YANG C C. Effect of size and pressure on phase-transition temperature [J]. Trends in Vacuum Science & Technology, Research Trends, Trivandrum, India, 2004,6:69.
    [133] JIANG Q, CUI X F, ZHAO M. Size effect on Curie temperature of ferroelectrics particles [J]. Applied Physics A, 2004,78:703.
    [134] CUI X F, ZHAO M, JIANG Q. Curie transition temperature of ferromagnetic low-dimensional metals [J]. Thin Solid Films, 2005,472:328.
    [135] JIANG Q, SHUI H X, LI J C. Finite size effect on glass transition temperatures [J], Thin Solid Films, 1999,354:283.
    [136] JIANG Q, LANG X Y. Glass transition of low-dimensional polystyrene [J]. Marcomolecular Rapid Communications, 2004,25:825.
    [137] http://www.webelements.com/.
    [138] BARIN I, KNACKE O. Thermochemical Properties of Inorganic Substances [M]. Springer-Verlag, Berlin, 1973.
    [139] KING H W. in: R. W. Cahn, P. Hassen, Physical Metallurgy [M]. 3rd ed. North-Holland Physics, Publishing, Amsterdam, 1983.
    [140] MOLENBROEK A M, TER HORST G. FRENKE J W M. Difference in surface melting between indium(110) and (011) [J]. Surface Science, 1996,365:103.
    [141] DIPPEL M, MAIER A, CIMPLE V, WIDER H, EVENSON W E, RASERA R L,SCHATZ G. Size-dependent melting of self-assembled indium nanostructures [J]. Physical Review Letters, 2001,87:095505.
    [142] Periodic Table of the Elements [M]. Gaston, Oregon, 1993.
    [143] HASEGAWA M, WATABE M, HOSHINO K. A theory of melting in metallic small particles [J]. Journal of Physics F, 1980,10:619.
    [144] SCHMIDT M, HARBERLAND H. Phase transitions in clusters [M], C. R. Acad. Sci. Ser IV 2002,3:327.
    [145] GU L, CHELEY S, BAYLEY H. Capture of a single molecule in nanocavity [J]. Science, 2001,291:636.
    [146] COYLE S, NETTI M C, BAUMBERG J J, GHANEM M A, BIRKIN P R, BARTLETT D M. WHITTAKER D M. Confined plasmons in metallic nanocavities [J]. Physical Review Letters, 2001,87:176801.
    [147] BIENER J, HODGE A M, HAMZA A V, HSIUNG L M, SATCHER J H. Nanoporous Au: A high yield strength material [J]. Journal of Applied Physics, 2005,97:024301.
    [148] VOLKERT C A, LILLEODDEN E T, KRAMER D, WEISSMULLER J. Approaching the theoretical strength in nanoporous Au [J]. Applied Physics Letters, 2006,89:061920.
    [149] OUYANG G, TAN X, CAI M O, YANG G W. Surface energy and shrinkage of a nanocavity [J]. Applied Physics Letters, 2006,89:183104.
    [150] KOFMAN R, CHEYSSAC P, AOUAJ A, LEREAH Y, DEUTSCHER G, BEN-DAVID T, PENISSON J M, BOURRET A. Surface melting enhanced by curvature effects [J]. Surface Science, 1994,303:231.
    [151] JIANG Q, LIANG L H, ZHAO D S. Lattic constraction and surface stress of fcc nanocrystals [J]. Journal of Physical Chemistry B, 2001,105:6275.
    [152] JIANG Q, LU H M. Size-dependent interface energies [J]. Journal of MaterialsScience & Technology, 2005,21:6.
    [153] ZHU X F, WANG Z G. Nanoinstability as revealed by shrinkage of nanocavities in silicon during irradiation [J]. Internet Journal of Nanotechnology, 2006,3:492.
    [154] PETERSON O G, BATCHELDER D N, SIMMONS R O. Measurements of X-Ray lattice constant, thermal expansivity, and isothermal compressibility of argon crystals [J]. Physical Review, 1966,150:703.
    [155] Available from: .
    [156] VAN NESS K E, COUCHMAN P R. Cell theory calculation of surface tension of simple liquids solely from bulk properties [J]. Journal of Colloid and Interface Science, 1996,182:110.
    [157] WU Y Y, YANG P D. Direct observation of vapor-liquid-solid nanowire growth [J]. Journal of the American Chemical Society, 2001,123:3165.
    [158] LI B S, LIU Y C, CHU Z S, SHEN D Z, LU Y M, ZHANG J Y, FAN X M. High quality ZnO thin films grown by plasma enhanced chemical vapor deposition [J]. Journal of Applied Physics, 2002,91:501.
    [159] FAN X M, LIAN J S, GUO Z X, LU H J. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates [J]. Applied Surface Science, 2005,239:176.
    [160] WANG Z L. Zinc oxide nanostructures: Growth, properties and applications [J]. Journal of Physics: Condensed Matter, 2004,16:R829.
    [161] HUANG M H, MA S, FEICK H, YAN H, WU Y, KIND H, WEBER E, RUSSO R, YANG P. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001,292:1897.
    [162] HAUPT M, LADENBURGER A, SAUER R, THONKE K, GLASS R, ROOS W, SPATZ J P, RAUSCHER H, RIETHMULLER S, MOLLER M. Ultroviolet-emitting ZnO nanowhiskers prepared by a vapor transport process onprestructured surfaces with self-assembled polymers [M]. Journal of Applied Physics, 2003,93:6252.
    [163] PARK W I, KIM D H, JUNG S W, YI G C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods [J]. Applied Physics Letters, 2002,80:4232.
    [164] ARNOLD M S, AVOURIS P, PAN Z W, WANG Z L. Field-effect transistors based on single semiconducting oxide nanobelts [J]. Journal of Physical Chemistry B, 2003,107:659.
    [165] HU J Q, LI Q, MENG X M, LEE C S, LEE S T. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J]. Chemistry of Materials, 2003,15:305.
    [166] KONG X Y, DING Y, WANG Z L. Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes [J]. Journal of Physical Chemistry B, 2004,108:570.
    [167] SUN Y, GUGE G M, FOX N A, RILER D J, ASHFOLD M N R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film [J]. Advanced Materials, 2005,17:2477.
    [168] ERKOC S, KOKTEN H. Structural and electronic properties of single-wall nanotubes [J]. Physica E, 2005,28:162.
    [169] TU Z C, HU X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes [J]. Physical Review B, 2006,74:035434.
    [170] SHEN X, ALLEN P B, MUCKERMAN J T, DAVENPORT J W, ZHENG J C. Wires versus tube: Stability of small one-dimensional ZnO nanostructures [J]. Nano Letters, 2007,7:2267.
    [171] MEYER B, MARX D. Density-functional study of the structure and stability of ZnO surfaces [J]. Physical Review B, 2003,67:035403.
    [172] CLAEYSSENS F, FREEMAN C L, ALLAN N L, SUN Y, ASHFOLDA M N R,HARDING J H. Growth of ZnO thin films?experiment and theory [J]. Journal of Materials Chemistry, 2005,15:139.
    [173] JIANG Q, LU H M, ZHAO M. Modeling of surface energies of elemental crystals [J]. Journal of Physics: Condensed Matter, 2004,16:521.
    [174] MINTMIRE J W, WHITE C T. Electronic and structural properties of carbon nanotubes [J]. Carbon, 1995,33:893.
    [175] NIKOLAEV P, THESS A, RINZLER A G, COLBERT D T, SMALLEY R E. Diameter doubling of single-wall nanotubes [J]. Chemical Physics Letters, 1997,266:422.
    [176] MOON W H, HWANG H J. Molecular-dynamics simulation of structure and thermal behavior of boron nitride nanotubes [J]. Nanotechnology, 2004,15:431.
    [177] HERNANDEZ E, GOZE C, BERNIER P, RUBIO A. Elastic properties of C and Bx CyNz composite nanotubes [J]. Physical Review Letters, 1998,80:4502.
    [178] ZHAO M W, XIA Y Y, TAN Z Y, LIU X D, LI F, HUANG B D, JI Y J, MEI L M. Strain energy and thermal stability of single-walled aluminum nitride nanotubes from first-principle calculations [J]. Chemical Physics Letters, 2004,389:160.
    [179] SCHIMID G, BAUMLE M, GEERKENS M, HELM I, OSEMANN C, SAWITOWSLO T. Current and future applications of nanoclusters [J]. Chemical Society Reviews, 1999,28:79.
    [180] JIANG Q, LU H M. Size dependent interface energy and its applications [J]. Surface Science Reports, 2008,63:427.
    [181] SUN C Q. Thermo-mechanical behavior of low-dimensional systems: The local bond average approach [J]. Progress in Materials Science, 2009,54:179.
    [182] HAM H S, HWANG N M, YU B D, YOON Y K. Formation of an Icosahedral structure during the freezing of gold nanoclusters: Surface-induced mechanisum [J]. Physical Review Letters, 2002,89:275502.
    [183] BACHELS T, SCHAFER R, CUNTHERODT H J. Dependence of formation energies of Tin nanoclusters on their size and shape [J]. Physical Review Letters, 2000,84:4890.
    [184] VALKEALAHTI S, MANNINEN M. Instability of cuboctahedral copper clusters [J]. Physical Review B, 1992,45:9459.
    [185] VYSTAVEL T, KOCH S A, PALASANTZAS G, DE HOSSON J T M. Structural dynamics of gas-phase molybdenum nanoclusters: A transmission electron microscopy study [J]. Applied Physics Letters, 2005,86:113113.
    [186] RODRIGUEZ-LOPEZ J L, AGUILERA-GRANJA F, MICHAELIAN K, VEGA A. Structure and magnetism of cobalt clusters [J]. Physical Review B, 2003,67:174413.
    [187] HABERLEN O D, CHUNG S C, STENER M, ROSCH N. From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 [J]. Journal of Chemical Physics, 1997,106:5189.
    [188] REY C, GALLEGO L J, GARCIA-RODEJA J, ALONSO J A, LNIGUEZ M P. Molecular-dynamics study of the binding energy and melting of transition-metal clusters [J]. Physics Review B, 1993,48:8253.
    [189] ZHANG Z, HU W Y, XIAO S F. Shell and subshell periodic structures of icosahedral nickel nanoclusters [J]. Journal of Chemical Physics, 2005,122:214501.
    [190] HEARN J E, JOHNSTON R L. Modeling calcium and strontium clusters with many-body potentials [J]. Journal of Chemical Physics, 1997,107:4674.
    [191] MONTEJANO-CARRIZALES J M, AGUILERA-GRANJA F, MORAN-LOPEZ J L. Direct enumeration of the geometrical characteristics of clusters [J]. Nanostructure Materials, 1997,8:269.
    [192] WULFF G. Zur frage der geschwindigkeit des wachstums und der auflosung derkristallflachen [J]. Zeitschrift für Kristallographie, 1901,34:449.
    [193] FRITSCHE H G, BENFIELD R E. Exact analytical formulae for mean coordination numbers in clusters [J]. Zeitschrift für Physik D, 1993,26:S15.
    [194] DUBIEL M, BRUNSCH S, TROGER L. Characterization of nanoscale silver particle in glasses by temperature-dependent EXAFS spectroscopy [J]. Journal of Physics: Condensed Matter, 2002,12;4775.
    [195] WOOLLEY R G. The dependence of cluster binding energy on coordination number Z [J]. Journal of Physics B, 1990,23:1563.
    [196] OH S J, HUH S H, KIM H K, PARK J W, LEE G H. Structural evolution of W nano clusters with increasing cluster size [J]. Journal of Chemical Physics, 1999,111:7402.
    [197] BALETTO F, FERRANDO R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects [J]. Reviews of Modern Physics, 2005,77:371.
    [198] LIU W, LIU D, ZHENG W T, JIANG Q. Size and structural dependence of cohesive energy in Cu [J]. Journal of Physical Chemistry C, 2008,112:18840.
    [199] LIU D, LIAN J S, JIANG Q. Surface energy and electronic structures of Ag quasicrystal clusters [J]. Journal of Physical Chemistry C, 2009,113:1168.
    [200] WANG J L, WANG G H, ZHAO J J. Density-functional study of Aun(n=2-20) clusters: Lowest-energy structures and electronic properties [J]. Physical Review B, 2002,66:035418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700