正交各向异性材料V型切口及界面问题的应力奇异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于正交各向异性材料线弹性平面问题的基本方程,通过引入位移函数,推导出了正交各向异性平面问题的位移法通解。根据该通解,借助坐标转换关系和特征展开方法,得到了正交各向异性材料奇异点附近的位移场和奇异应力场,当两个材料特征参数均等于1时,该位移场和奇异应力场即退化为各向同性材料相应的场。在此研究基础上,取得了以下研究成果:
     (1)对正交各向异性材料的对称V型切口尖端的应力奇异性进行了理论分析,得到了切口尖端的应力奇异性特征方程及其附近的位移场和奇异应力场。结果表明,与各向同性材料不同,正交各向异性材料V型切口尖端的应力奇异性次数不仅与切口的张角有关,还与材料的弹性常数有关。
     (2)对正交各向异性材料的任意V型切口尖端的应力奇异性进行了理论分析,给出了在多种边界条件下切口尖端的应力奇异性特征方程及其附近的位移场和奇异应力场。
     (3)就材料特征参数的三种匹配形式,对具有任意结合角的正交各向异性双材料界面角点进行了理论分析,得到了对称和反对称变形模态下界面角点的应力奇异性特征方程及其附近的位移场和奇异应力场。该解也可用于正交各向异性/各向同性以及各向同性/各向同性的双材料界面角点问题。
     (4)研究了加固工程中一种常见几何形式的正交各向异性/各向同性双材料界面端的应力奇异性,得到了界面端的应力奇异性特征方程及其附近的位移场和奇异应力场,讨论了正交各向异性材料的端部结合角及其弹性常数对界面端应力奇异性的影响。
     (5)提出了一种利用常规的数值分析结果确定单应力奇异性和双应力奇异性问题的应力奇异性次数及其相应的应力强度因子的数值计算方法,给出了数值计算公式。该方法具有通用性好、求解精度高、便于工程应用等特点。
     (6)为了检验上述理论分析结果的正确性,应用有限元分析软件MSC. Patran & Nastran分别对正交各向异性材料的V型切口、界面角点和界面端等问题的应力奇异性进行了数值求解,并与理论分析结果进行了比较,两者吻合较好。
In this paper, based on the fundamental equations of the two-dimensional linear elasticity for orthotropic materials, the general solution of the displacement method for orthotropic materials is derived by introducing the displacement function. According to this general solution, and employing the coordinate transformation and the eigenequation expansion method, displacement and singular stress fields near the singular point in orthotropic materials are presented in closed form expressions. When the two characteristic parameters of orthotropic materials are all equal to 1, the above displacement and singular stress fields are degenerated into the corresponding fields in isotropic materials. From these presented expressions, the fruits of the study in this paper are obtained as follows:
     (1) A symmetric V-notch in orthotropic materials is analyzed theoretically for the stress singularity at the notch tip. The eigenequations about the stress singularity, and the displacement and singular stress fields near the notch tip are acquired directly. It is found that the orders of the stress singularity at the notch tip in orthotropic materials are related not only to the angle of the V-notch, but also to the material properties, which being different to isotropic materials.
     (2) An asymmetric V-notch in orthotropic materials is analyzed theoretically for the stress singularity at the notch tip. The eigenequations about the stress singularity, and displacement and singular stress fields near the notch tip under various boundary conditions are presented explicitly.
     (3) For three match cases of the characteristic parameters of orthotropic materials, an interface corner of orthotropic bi-materials with an arbitrary joining angle is analyzed theoretically. The eigenequations about the stress singularity, and the displacement and singular stress fields near the interface corner are also explicitly established for the symmetric and anti-symmetric deformation modes, respectively. The results can be also applied to the interface corners in orthotropic/isotropic bi-materials and isotropic/isotropic bi-materials.
     (4) An interface edge of the orthotropic/isotropic bi-materials with an arbitrary wedge angle for the orthotropic material, which is a common geometry in the strengthened engineering, is analyzed theoretically. The eigenequation as well as the displacement and singular stress fields near the interface edge are derived directly. The relations between the singular stresses near the interface edge of the orthotropic/isotropic bi-material and the wedge angle as well as the material property of the orthotropic material are discussed in details.
     (5) A simple and effective numerical approach is developed to calculate the orders of the stress singularity and the related stress intensity factors for one and two stress singularities by using the results of an ordinary numerical analysis, and the associated formulae are presented for the numerical calculation. The approach can be used in engineering analysis conveniently, and the stress intensity factors evaluated by this method are very accurate.
     (6) To verify the correctness of the abovementioned theoretical analyses, the stress singularities at the V-notch tips, interface corners, and interface edges of orthotropic materials are analyzed numerically by Patran & Nastran code (MSC Corporation), based on the displacement finite element method. The analytical results are compared with the related numerical ones, respectively; it is found that they coincide with each other very well.
引文
[1]沈观林,胡更开.复合材料力学.北京:清华大学出版社, 2006
    [2] Knein M. Zur theoric des druckversuchs. Zeitschrift fur Angewandte Mathematik und Mechanik, 1926; 6: 414-416
    [3] Brahtz J H A. Stress distribution in a reentrant corner. Transactions of the American Society of Mechanical Engineers, 1933; 55: 31-37
    [4] Tranter C J. The use of the Mellin transform in finding the stress distributing in an infinite wedge. Quarter Journal of Mechanics and Applied Mathematics, 1948; 1:125-130
    [5] Williams M L, Pasadena, Calif. Stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME Journal of Applied Mechanics, 1952; 19: 526-528
    [6] Rosel R. On the wedge/notch eigenvalues. International Journal of Fracture, 1987; 33(1): 61-71
    [7]杨春林,郑百林,嵇醒.单材料V型缺口尖端振荡性奇异应力场产生的条件.应用力学学报, 2001; 18(2): 65-68
    [8] Huth J H. The complex-variable approach to stress singularities. ASME Journal of Applied Mechanics, 1953; 20: 561-563
    [9] Williams M L, Pasadena, Calif. The complex-variable approach to stress singularities-II. ASME Journal of Applied Mechanics, 1956; 23: 477-478
    [10] Huang C S, Leissa A W. Three-dimensional sharp corner displacement functions for bodies of revolution. ASME Journal of Applied Mechanics, 2007; 74(1): 41-46
    [11] Sih G C, Paris P C, Irwin G R. On cracks in rectilinearly anisotropic bodies. International Journal of Fracture Mechanics, 1965; 1(3), 189-203
    [12] Bogy D B. The plane solution for anisotropic elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics, 1972; 39: 1103-1109
    [13] Kuo M C, Bogy D B. Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges. ASME Journal of Applied Mechanics, 1974; 41: 197-202
    [14] Kuo M C, Bogy D B. Plane solutions for traction problems on orthotropic unsymmetrical wedges and symmetrically twinned wedges. ASME Journal of Applied Mechanics, 1974; 41: 203-208
    [15] Eshelby J D, Read W T, Shockley W. Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica, 1953; 1(3): 251-259
    [16] Stroh A N. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 1958; 3: 625-646
    [17] Stroh A N. Steady state problems in anisotropic elasticity. Journal of Mathematics and Physics, 1962; 41(1): 77-103
    [18] Lekhnitskii S G. Theory of elasticity of an anisotropic elastic body. New York: Holden-Day, 1963
    [19] Ting T C T, Chou S C. Edge singularities in anisotropic composites. International Journal of Solids and Structures, 1981; 17(11): 1057-1068
    [20] Wu K C, Chen C T. Stress analysis of anisotropic elastic V-notched bodies. International Journal of Solids and Structures, 1996; 33(17): 2403-2416
    [21] Wu K C, Chang F T. Near-tip fields in a notched body with dislocations and body forces. ASME Journal of Applied Mechanics, 1993; 60(4): 936-941
    [22] Chuang W Y, Sung J C, Chung W G. Stress singularities of two special geometries of wedges with free-mixed boundary conditions. Computers & Structures, 2003; 81(3):167-176
    [23] Selvarathinam A, Pageau S S. The order of stress singularities in orthotropic wedges. ASME Journal of Applied Mechanics, 1997; 66(3): 717-719
    [24] Mantic V, Paris F, Canas J. Stress singularities in 2D orthotropic corners. International Journal of Fracture, 1997; 83(1): 67-90
    [25] Chue C H, Liu C I. A general solution on stress singularities in an anisotropic wedge. International Journal of Solids and Structures, 2001; 38(38): 6889-6901
    [26] Chue C H, Tseng C H, Liu C I. On stress singularities in an anisotropic wedge for various boundary conditions. Composite Structures, 2001; 54(1): 87-102
    [27] Gross B, Srawley J E, Brown W F. Stress intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function. NASA TN, 1964; D-2395
    [28] Gross B, Srawley J E. Stress intensity factors for a single-edge-notch specimens in bending or combined bending and tension by boundary collocation of a stress function. NASA TN, 1965; D-2603
    [29] Gross B, Srawley J E. Stress intensity factors for three point bend specimens by boundary collocation. NASA TN, 1965; D-3092
    [30] Rice J R. A path-independent integral and the approximate analysis of strain concentration by notches and cracks. ASME Journal of Applied Mechanics, 1968; 35: 379-386
    [31] Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 1968; 16(1): 13-31
    [32] Rice J R, Rosengren G F. Plane strain deformation near a crack in a power law hardening material. Journal of the Mechanics and Physics of Solids, 1968; 16(1): 1-12
    [33] Budinansky B, Rice J R. Conservation laws and energy release rates. ASME Journal of Applied Mechanics, 1973; 40: 201-203
    [34] Nishioka T , Atluri S N. Path-independent integrals, energy release rates and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Engineering Fracture Mechanics, 1983; 18(1): 1-22
    [35] Lin S T, Feng Z, Rowlands R E. Thermoelastic determination of stress intensity factors on orthotropic composites using the J-integral. Engineering Fracture Mechanics, 1997; 56(4): 579-592
    [36] Chang J H, Kang L K. Evaluation of the stress field around a notch tip using contour integrals. International Journal of Engineering Science, 2002; 40(5): 569-586
    [37] Stern M, Becker E B, Dunham R S. A contour integral computation of mixed-mode stress intensity factors. International Journal of Fracture, 1976; 12(3): 359-368
    [38] Carpenter W C. Calculation of fracture mechanics parameters for a general corner. International Journal of Fracture, 1984; 24(1): 45-58
    [39] Carpenter W C. Mode I and mode II stress intensities for plates with cracks of finite opening. International Journal of Fracture, 1984; 24(3): 201-214
    [40] Carpenter W C. A collocation procedure for determining fracture mechanics parameters at a corner. International Journal of Fracture, 1984; 24(4): 255-266
    [41]杨晓翔,毛银杰,匡震邦. V型切口的断裂研究.固体力学学报, 1996; 17(4): 353-359
    [42] Dunn M L, Suwito W. Stress intensities at notch singularities. Engineering Fracture Mechanics, 1997; 57(4): 417-430
    [43] Labossiere P E W, Dunn M L. Calculation of stress intensities at sharp notches in anisotropic media. Engineering Fracture Mechanics, 1998; 61(5-6): 635-654
    [44] Chan S K, Tuba I S, Wilson W K. On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics; 1970; 2(1): 1-17
    [45] Carpenter W C. Extrapolation techniques for determining stress intensity factors. Engineering Fracture Mechanics; 1983; 18(2): 325-332
    [46] Chen D H. Stress intensity factors for V-notched strip under tension or in-plane bending. International Journal of Fracture, 1995; 70(1): 81-97
    [47] Somaratna N, Ting T C T. Three-dimensional stress singularities in anisotropic materials and composites. International Journal of Engineering Science, 1986; 24(7): 1115-1134
    [48] Lim W, Lee C. Evaluation of stress intensity factors for a crack normal to bimaterial interface using isoparametric finite elements. Engineering Fracture Mechanics, 1995; 52(1): 65–70
    [49] Leslie B S. Weight functions for interface cracks. International Journal of Fracture, 1993; 60(1): 89-95
    [50] Leslie B S, Yang Y Y, Munz D. An influence function for stress intensity factors of bi-material notched bodies. International Journal of Fracture, 1997; 85(4): 333-350
    [51] Lu H, Chiang F P. Photoelastic determination of stress intensity factor of an interface crack in a bi-material. ASME Journal of Applied Mechanics, 1993; 60(1): 93-100
    [52] Picon R, Paris F, Canas J, Marin J. A complete field method for the photoelastic determination of and in general mixed-mode fracture. Engineering Fracture Mechanics, 1995; 51(3): 505–516 K 1K2
    [53] Mahinfalah M, Zackery L. Photoelastic determination of Mixed mode stress intensity factors for sharp reentrant corners. Engineering Fracture Mechanics, 1995; 52(4): 639-645
    [54] Ricci V, Shukla A, Singh RP. Evaluation of fracture mechanics parameters in bimaterial systems using strain gages. Engineering Fracture Mechanics, 1997; 58(4): 273-283
    [55] Kondo T, Kobayashi M, Sekine H. Strain gage method for determining stress intensities of sharp-notched strips. Experimental Mechanics, 2001; 41(1): 1-7
    [56] Williams M L. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 1959; 49(2): 199-204
    [57] Williams M L, Pasadena, Calif. On the stress distribution at the base of a stationary crack. ASME Journal of Applied Mechanics, 1957; 24: 109-114
    [58] Erdogan F. Stress distribution in a nonhomogeneous elastic plane with cracks. ASME Journal of Applied Mechanics, 1963; 30: 232-236
    [59] Erdogan F. Stress distribution in bonded dissimilar materials with cracks. ASME Journal of Applied Mechanics, 1965; 32: 403-410
    [60] Erdogan F. Stress distribution in bonded dissimilar materials containing circular or ring-shaped cavities. ASME Journal of Applied Mechanics, 1965; 32: 829-836
    [61] England A H. A crack between dissimilar media. ASME Journal of Applied Mechanics, 1965; 32: 400-402
    [62] Sih G C, Rice J R. The bending of plates of dissimilar materials with cracks. ASME Journal of Applied Mechanics, 1964; 31: 477-482
    [63] Rice J R, Sih G C. Plane problems of cracks in dissimilar media. ASME Journal of Applied Mechanics, 1965; 32: 418-423
    [64] England A H. An arc crack around a circular elastic inclusion. ASME Journal of Applied Mechanics, 1966; 33: 637-640
    [65] Comninou M. The interface crack. ASME Journal of Applied Mechanics, 1977; 44: 631-636
    [66] Comninou M. Interface crack with friction in the contact zone. ASME Journal of Applied Mechanics, 1977; 44: 780-781
    [67] Comninou M. The interface crack in a shear field. ASME Journal of Applied Mechanics, 1978; 45: 287-290
    [68] Comninou M, Schmueser D. The interface crack in a combined tension-compression and shear field. ASME Journal of Applied Mechanics, 1979; 46: 345-348
    [69] Mak A F, Keer L M, Chen S H, Lewis J L. A no slip interface crack. ASME Journal of Applied Mechanics, 1980; 47: 347-355
    [70] Atkinson C. The interface crack with a contact zone (an analytical treatment). International Journal of Fracture, 1982; 18(3): 161-177
    [71] Dundurs J, Gautesen A K. An opportunistic analysis of the interface crack. International Journal of Fracture, 1988; 36(2): 151-159
    [72] Delale F, Erdogan F. On the mechanical modeling of the interfacial region in bonded half-planes. ASME Journal of Applied Mechanics, 1988; 55: 317-324
    [73] Gautesen A K, Dundurs J. The interface crack under combined loadings. ASME Journal of Applied Mechanics, 1988; 55: 580-588
    [74]张洪武,钟万勰,李云鹏.界面裂纹无摩擦接触裂尖应力场.上海力学, 1996; 17(1): 1-9
    [75] Rice J R. Elastic fracture mechanics concepts for interfacial cracks. ASME Journal of Applied Mechanics, 1988; 55: 98-103
    [76] Zak A R, Williams M L. Crack point stress singularities at a bi-material interface. ASME Journal of Applied Mechanics, 1963; 30: 142-143
    [77] Bogy D B. On the plane elastostatic problem of a loaded crack terminating at a material interface. ASME Journal of Applied Mechanics, 1971; 38: 911-916
    [78] Bogy D B. The plane elastostatic solution for a symmetrically loaded crack in a strip composite. International Journal of Engineering Science, 1973; 11(9): 985-996
    [79] Fenner D N. Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. International Journal of Fracture, 1976; 12(5): 705-721
    [80] Comninou M, Dundurs J. A closed crack tip terminating at an interface. ASME Journal ofApplied Mechanics, 1979; 46: 97-100
    [81] Chen D H, Nisitani H. Singular stress field for a crack meeting a bimaterial interface. Transactions of Japan Society Mechanical Engineers (in Japanese), 1992; A58: 32-38
    [82] Chen D H. A crack normal to and terminating at a bimaterial interface. Engineering Fracture Mechanics; 1994; 49(4): 517-532
    [83] Chang J, Xu J Q. The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface. International Journal of Mechanical Sciences, 2007; 49(7): 888-897
    [84]亢一澜,陆桦,贾有权,邱宇.垂直界面裂纹断裂力学问题的实验研究.力学学报, 1997; 29(2): 242-247
    [85] Bogy D B. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics, 1968; 35: 460-466
    [86] Dundurs J. Effect of elastic constants on stress in a composite under plane deformations. Journal of Composite Materials, 1967; 1(3): 310-322
    [87] Dundurs J. Discussion of edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. ASME Journal of Applied Mechanics, 1969; 36: 650-652
    [88] Bogy D B. On the problem of edge bonded elastic quarter planes loaded at boundary. International Journal of Solids and Structures, 1970; 6(9): 1287-1313
    [89] Bogy D B. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. ASME Journal of Applied Mechanics, 1971; 38: 377-386
    [90] Bogy D B. The plane solution for joined dissimilar elastic semistrips under tension. ASME Journal of Applied Mechanics, 1975; 42: 93-98
    [91] Adams G G, Bogy D B. The plane solution for bending of joined dissimilar elastic semi-infinite strips. International Journal of Solids and Structures, 1976; 12(4): 239-249
    [92] Theocaris P S, Gdoutos E E. Stress singularities at equal angle biwedges and two-material composite half planes with rough interfaces. ASME Journal of Applied Mechanics, 1976; 43: 64-68
    [93] Dempsey J P, Sinclair G B. On the stress singularities in the plane elasticity of the composite wedge. Journal of Elasticity, 1979; 9(4): 373-391
    [94] Dempsey J P, Sinclair G B. On the singular behavior at the vertex of a bi-material wedge. Journal of Elasticity, 1981; 11(3): 317-327
    [95] Chen D H, Nisitani H. Singular stress field in two bonded wedges. Transactions of Japan Society Mechanical Engineers (in Japanese), 1992; A58: 457-464
    [96]许金泉,金烈候,丁皓江.双材料界面端附近的奇异应力场.上海力学, 1996; 17(2):104-110
    [97] Kubo S, Ohji K. Geometrical conditions of no free-edge stress singularities in edge-bonded elastic dissimilar wedges. Transactions of Japan Society Mechanical Engineers (in Japanese), 1991; A57: 632-636
    [98] Inoue T, Koguchi H. Suggestion for disappearance conditions of stress singularity in dissimilar materials. Transactions of Japan Society Mechanical Engineers (in Japanese), 1996; A62: 41-48
    [99] Chen D H, Nisitani H. Logarithmic singular stress field in bonded wedges. Transactions of Japan Society Mechanical Engineers (in Japanese), 1993; A59: 2687-2693
    [100]Chen D H. Condition for occurrence of logarithmic stress singularity. Transactions of Japan Society Mechanical Engineers (in Japanese), 1996; A62: 1634-1642
    [101]Chen D H. Analysis of singular stress field. Transactions of Japan Society Mechanical Engineers (in Japanese), 1996; A62: 1862-1869
    [102]Chen D H. Logarithmic singular stress field in a semi-infinite plate consisting of two edge-bonded wedges subjected to surface tractions. International Journal of Fracture, 1996; 75(4): 357-378
    [103]Yang Y Y. Asymptotic description of the logarithmic singular stress field and its application. International Journal of Solids and Structures, 1998; 35(30): 3917-3933
    [104]Munz D, Yang Y Y. Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loadings. ASME Journal of Applied Mechanics, 1992; 59(4): 857- 861
    [105]Munz D, Fett T, Yang Y Y. The regular stress term in bonded dissimilar materials after a change in temperature. Engineering Fracture Mechanics, 1993; 44(2): 185-194
    [106]Yang Y Y, Munz D. Stress distribution in a dissimilar materials joint for complex singular eigenvalues under thermal loadings. Journal of Thermal Stresses, 1995; 18(4): 407-419
    [107]许金泉,金烈候,丁皓江.结合残余应力在界面端的奇异应力性.上海力学, 1996; 17(3): 189-195
    [108]Xu J Q, Mutoh Y. Singular residual stress field near the interface edge. Transactions of Japan Society Mechanical Engineers (in Japanese), 1996; A62: 1219-1225
    [109]Yang Y Y, Munz D. Stress singularities in a dissimilar materials joint with edge tractions under mechanical and thermal loadings. International Journal of Solids and Structures, 1997; 34(10): 1199-1216
    [110]Qian Z Q, Akisanya A R. Wedge corner stress behaviour of bonded dissimilar materials.Theorecial and applied fracture mechanics, 1999; 32(3): 209-222
    [111]Qian ZQ. On the evaluation of wedge corner stress intensity factors of bi-material joints with surface tractions. Computers & Structures, 2001; 79(1): 53-64
    [112]Theocaris P S. The order of singularity at a multi-wedge corner of a composite plate. International Journal of Engineering Science, 1974; 12(2): 107-120
    [113]Koguchi H, Inoue T, Yada T. Stress singularity at the apex in three-phase bonded structure. Transactions of Japan Society Mechanical Engineers (in Japanese), 1993; A59: 163-170
    [114]Koguchi H, Inoue T, Yada T. Stress singularity in three-phase bonded structure. ASME Journal of Applied Mechanics, 1996; 63(2): 252-258
    [115]Inoue T, Koguchi H, Yada T. Stress singularity near apex in three-phase bonded structure (effect of elastic property of intermediate material on order of stress singularity). Transactions of Japan Society Mechanical Engineers (in Japanese), 1995; A38: 163-170
    [116]亢一澜, Laermann K H.异质双材料界面端部应力奇异性的实验分析.力学学报, 1995; 27(4): 506-512
    [117]Bogy D B, Wang K C. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. International Journal of Solids and Structures, 1971; 7(8): 993-1005
    [118]Chen D H, Nisitani H. Stress fields near the corner of jointed dissimilar materials. Transactions of Japan Society Mechanical Engineers (in Japanese), 1991; A57: 366-372
    [119]Chen D H, Nisitani H. Mode I and II singular stress fields near a corner of jointed dissimilar materials. JSME International Journal, Series I, 1992; 35: 392-398
    [120]Chen D H, Nisitani H. Singular stress field near the corner of jointed dissimilar materials. ASME Journal of Applied Mechanics, 1993; 60(3): 607-613
    [121]Chen D H, Nisitani H. Singular stress field near a corner of jointed dissimilar materials under antiplane loads. JSME International Journal, Series I, 1992; 35: 399-403
    [122]Pageau S S, Gadi K, Biggers S B, Joseph P F. Standardized complex and logarithmic eigensolutions for n-material wedges and junctions. International Journal of Fracture. 1996; 77(1): 51-76
    [123]Wang X G. A boundary value method for the singular behavior of bimaterial systems under inplane loading. International Journal of Solids and Structures, 2005; 42(20): 5513-5535
    [124]Zak A R. Elastic analysis of cylindrical configurations with stress singularities. ASME Journal of Applied Mechanics, 1972; 39: 501-506
    [125]Agarwal V K. Axisymmetric solution of the end-problem for a semi-infinite elastic circular cylinder and its application to joined dissimilar cylinders under uniform tension. InternationalJournal of Engineering Science, 1978; 16(12): 985-998
    [126]Agarwal V K. Axisymmetric solution for a semi-infinite elastic circular cylinder of one material indenting an elastic half-space of another material. International Journal of Engineering Science, 1980; 18(4): 631-639
    [127]Gecit M R. Axisymmetric contact problem for a semi-finite cylinder an a half space. International Journal of Engineering Science, 1986; 24(8): 1245-1256
    [128]Tsuji T, Shibuya T, Koizumi T. Axially-loaded stepped cylindrical rod. Transactions of Japan Society Mechanical Engineers (in Japanese), 1985; A51: 638-647
    [129]Noda N, Tsuji T. Stress singularities in edge-bonded dissimilar wedges (three dimensional axisymmetric elastic problems). Transactions of Japan Society Mechanical Engineers (in Japanese), 1992; A58: 275-278
    [130]刘一华,结合材料的空间轴对称界面端和界面角点的应力奇异性研究.浙江大学博士学位论文, 1999
    [131]Huang C S, Leissa A W. Stress singularities in bimaterial bodies of revolution. Composite Structures, 2008; 82(4): 488-498
    [132]Luk V K, Keer L M. Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. International Journal of Solids and Structures, 1979; 15(10): 805-827
    [133]Pak R Y S, Gobert A T. Axisymmetric problems of a partially embedded rod with radial deformation. International Journal of Solids and Structures, 1993; 30(13): 1745-1759
    [134]Hasegawa H, Lee V G, Mura T. The stress fields caused by a circular cylindrical inclusion. ASME Journal of Applied Mechanics, 1992; 59(2s): S107-S114
    [135]Noda N A, Wang Q, Morodomi T. Analysis of intensity of singular stress at the end of a cylindrical inclusion. Transactions of Japan Society Mechanical Engineers (in Japanese), 1997; A63: 1701-1706
    [136]Tamate O, Sekine H, Ozawa Y. A criterion for the crack initiation in reinforced composite materials with dispersed plat inclusions. Transactions of the Japan Society of Mechanical Engineers (in Japanese), 1982; A48: 713-718
    [137]Chen D H, Nisitani H. Analysis of intensity of singular stress field at fiber end (1st report, method of analysis). Transactions of the Japan Society of Mechanical Engineers (in Japanese), 1992; A58: 1834-1838
    [138]Chen D H, Nisitani H. Analysis of intensity of singular stress field at fiber end (2nd report, results of calculation). Transactions of the Japan Society of Mechanical Engineers (in Japanese), 1992; A58: 2153-2158
    [139]Kohno Y, Ishikawa H. Singular stress and displacement fields around the corner point of a fiber end in short fiber reinforced composites. International Journal of Engineering Science, 1991; 29(8): 1005-1012
    [140]Ishikawa H, Kohno Y. Analysis of stress singularities at the corner point of square hole and rigid square inclusion in elastic plated by conformal mapping. International Journal of Engineering Science, 1993; 31(8): 1197-1213
    [141]Duva J M. The singularity at the apex of a rigid wedge embedded in a nonlinear material. ASME Journal of Applied Mechanics, 1988; 55: 361-364
    [142]Liu Y H, Xu J Q, Ding H J. Order of singularity and singular stress field about an axisymmetric interface corner in three-dimensional isotropic elasticity. International Journal of Solids and Structures, 1999; 36(29): 4425-4445
    [143]Bazant Z P, Keer L M. Singularities of elastic stresses and of harmonic functions at conical notches or inclusions. International Journal of Solids and Structures, 1974; 10(9): 957-964
    [144]Keer L M, Parihar K S. Elastic stress singularity at conical inclusions. International Journal of Solids and Structures, 1978; 14(4): 261-263
    [145]Fleck N A, Durban D. Asymptotic fields at tip of conical notches and inclusions in a power hardening solid. Journal of the Mechanics and Physics of Solids, 1989; 37(2): 233-263
    [146]Picu C R. Stress singularities at vertices of conical inclusions with freely sliding interfaces. International Journal of Solids and Structures, 1996; 33(17): 2453-2457
    [147]Somaratna N, Ting T C T. Three-dimensional stress singularities at conical notches and inclusions in transversely isotropic materials. ASME Journal of Applied Mechanics, 1986; 53: 89-96
    [148]Somaratna N, Ting T C T. Three-dimensional stress singularities in anisotropic materials and composites. International Journal of Engineering Science, 1986; 24(7): 1115-1134
    [149]Gotoh M. Some problems of bonded anisotropic plates with cracks along the bond. International Journal of Fracture Mechanics, 1967; 3(3): 253-260
    [150]Clements D L. A crack between dissimilar anisotropic media. International Journal of Engineering Science, 1971; 9(2): 257-265
    [151]Willis J R. Fracture mechanics of interfacial cracks. Journal of the Mechanics and Physics of Solids, 1971; 19(6): 353-368
    [152]Wang S S, Choi I. The interface crack between dissimilar anisotropic materials. ASME Journal of Applied Mechanics, 1983; 50: 169-178
    [153]Wang S S, Choi I. The interface crack behavior in dissimilar anisotropic composites undermixed loading. ASME Journal of Applied Mechanics, 1983; 50: 179-183
    [154]Wu K C, Hwang S J. Correspondence relations for the interface crack in monoclinic composite under mixed loading. ASME Journal of Applied Mechanics, 1990; 57(4): 894-900
    [155]Wu K C. On the contact zone model for interface cracks. ASME Journal of Applied Mechanics, 1992; 59(1): 92-94
    [156]Qu J, Bassani J L. Cracks on bimaterial and bicrystal interfaces. Journal of the Mechanics and Physics of Solids, 1989; 37(4): 417-433
    [157]Bassani J L, Qu J. Finite crack on bimaterial and bicrystal interfaces. Journal of the Mechanics and Physics of Solids, 1989; 37(4): 435-453
    [158]Ting T C T. Interface cracks in anisotropic elastic bimaterials - a decomposition principle. International Journal of Solids and Structures, 1992; 29(14-15): 1989-2003
    [159]Deng X. General crack-tip fields for stationary and steadily growing interface cracks in anisotropic bimaterials. ASME Journal of Applied Mechanics, 1993; 60(1): 183-189
    [160]Ting T C T, Hoang P H. Singularities at the tip of a crack normal to the interface of an anisotropic layered composite. International Journal of Solids and Structures, 1984; 20(5): 439-454
    [161]Wang J, Karihaloo B L. Mode I stress singularity and intensity factor at a crack tip terminating at a transversely isotropic-orthotropic bimaterial interface. International Journal of Fracture, 1996; 74(4): 325-340
    [162]Chen D H, Harada K. Stress singularities for crack normal to and terminating at bimaterial interface on orthotropic half-plates. International Journal of Fracture, 1996; 81(2): 147-162
    [163]Chen D H, Harada K. Stress singularities for crack normal to and terminating at bimaterial interface of anisotropic half-planes. Transactions of Japan Society Mechanical Engineers (in Japanese), 1997; A63: 102-109
    [164]Lin Y Y, Sung J C. Singularities of an inclined crack terminating at an anisotropic bimaterial interface. International Journal of Solids and Structures, 1997; 34(28): 3727-3754
    [165]Erdogan F, Delale F. On the problem of stress singularities in bonded orthotropic materials. Advances in Engineering Science, 1976; 1: 291-300
    [166]Delale F. Stress singularities in bonded anisotropic materials. International Journal of Solids and Structures, 1984; 20(1): 31-40
    [167]Lekhnitskii S G. Anisotropic plates. New York: Gordon and Breach, 1968
    [168]Ting T C T. Singularities at the tip of a crack normal to the interface of an anisotropic layered composites. International Journal of Solids and Structures, 1984; 20(5): 439-454
    [169]Chen H P. Stress singularities in anisotropic multi-material wedges and junctions, International Journal of Solids and Structures, 1998; 35(11): 1057-1073
    [170]Lin Y Y, Sung J C. Stress singularities at the apex of a dissimilar anisotropic wedge. ASME Journal of Applied Mechanics, 1998; 65(2): 454-463
    [171]Ting T C T. Generalized Dundurs constants for anisotropic bimaterials. International Journal of Solids and Structures, 1995; 32(3-4): 483-500
    [172]Labossiere P E W, Dunn M L. Stress intensities at interface corners in anisotropic bimaterials. Engineering Fracture Mechanics, 1999; 62(6): 555-575
    [173]Labossiere P E W, Dunn M L, Cunningham S J. Application of bimaterial interface corner failure mechanics to silicon/glass anodic bonds. Journal of the Mechanics and Physics of Solids 2002; 50(3): 405-433
    [174]Li J, Zhang X B, Recho N. Stress singularities near the tip of a two-dimensional notch formed from several elastic anisotropic materials. International Journal of Fracture. 2001; 107(4): 379-395
    [175]Pageau S S, Biggers S B Jr. A finite element approach to three-dimensional singular stress states in anisotropic multi-material wedges and junctions. International Journal of Solids and Structures, 1996; 33(1): 33-47
    [176]Ma C C, Hour B L. Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. International Journal of Solids and Structures, 1989; 25(11): 1295-1309
    [177]Wu K C, Chiu Y T. Antiplane shear interface cracks in anisotropic bimaterials. ASME Journal of Applied Mechanics, 1991; 58(2): 399-403
    [178]Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff, 1953
    [179]Ting T C T, Hwu C. Sextic formalism in anisotropic elasticity for almost non-simisimple matrix N. International Journal of Solids and Structures, 1988; 24(1): 65-76
    [180]Qu J, Li Q. Interfacial dislocations and its application to interface cracks in anisotropic bimaterials. Journal of Elasticity, 1991; 26(2): 169-195
    [181]Qu J, Bassani J L, Li Q Q. Interfacial dislocation in anisotropic bimaterials. ASTM, Special Technical Publication, 1992; 1131: 578-589
    [182]Qu J, Bassani L. Interfacial fracture mechanics for anisotropic bimaterials. ASME Journal of Applied Mechanics, 1993; 60(2): 422-431
    [183]Barnett D M, Lothe J. Synthesis of the sextic and the integral formulation for dislocations, Green’s function and surface waves in anisotropic elastic solids. Physica Norvegica, 1973;7(1): 13-19
    [184]Choi S T, Shin H, Earmme Y Y. On the unified approach to anisotropic and isotropic elasticity for singularity, interface and crack in dissimilar media. International Journal of Solids and Structures, 2003; 40(6): 1411-1431
    [185]Shin K C, Liu H, Lee J J, Choi ST. Interfacial crack tip field in anisotropic/isotropic bimaterials. Composite Structures, 2004; 66(4): 673-676
    [186]Shin K C, Kim W S, Lee J J. Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge. International Journal of Solids and Structures, 2007; 44(24): 7748-7766
    [187]Ding H, Chen B, Liang J. General solutions for coupled equations for piezoelectric media, International Journal of Solids and Structures, 1996; 33(16): 2283-2298
    [188]丁皓江,王国庆,陈伟球.用“调和函数”表示的压电介质平面问题的通解.应用数学和力学, 1997; 18(8): 703-710
    [189]Eubanks R A, Sternberg E. On the axisymmetric problem of elastic theory for a medium with transverse isotropy. Journal of Rational Mechanics Analysis, 1954; 3: 89-101
    [190]Liu Y H, Xu J Q, Ding H J. An axisymmetric interface edge of bonded transversely isotropic piezoelectric materials under torsion. ASME Journal of Applied Mechanics, 1999; 66(3): 821-823
    [191]Xu J Q, Liu Y H, Wang X G. Numerical methods for the determination of multiple stress singularities and related stress intensity coefficients. Engineering Fracture Mechanics, 1999; 63(6): 775-790
    [192]张双寅.三角形等参数单元.力学与实践, 1986; 5(1): 25-27
    [193]Yeh J R, Tadjbakhsh I G. Stress singularity in composite laminates by finite element method. Journal of Composite Materials, 1986; 20(4): 347-36
    [194]Somaratna N, Ting T C T. Three-dimensional stress singularities in anisotropic materials and composites. International Journal of Engineering Science, 1986; 24(7): 1115-1134
    [195]Gu L, Belytschko T. A numerical study of stress singularities in a two-material wedge. International Journal of Solids and Structures, 1994; 31(6): 865-889
    [196]匡震邦,马法尚.裂纹端部场.西安:西安交通大学出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700