复合材料层合结构极限强度预测方法及分层应力最小化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(FRP)是由高强度、低密度的纤维材料与基体组成,具有很多其它材料和结构不具有的优点或特点,如比强度和比模量很高,具有强烈的各向异性和可设计性等,广泛应用于航空、航天、造船和汽车等领域。纤维金属混杂层合板(FML)是最近几年出现的一种新型复合材料结构。FML由纤维增强树脂层与金属薄板层交替粘接而成。FML具有抗冲击性能好;防火、防腐蚀性能好;抗疲劳性能好等优点。因此FML是一种很有应用前景的航空航天材料。为了保证FRP层合板或FML混杂层合板结构在航空航天领域的安全应用,其强度特征和强度预测方法的研究显得尤为重要。复合材料层合板有多种不同的失效模式,分层失效是层合结构所独有的一种失效模式,对易于分层的铺层结构,忽略分层失效会使预测的失效强度远高于实际值。因此在对复合材料层合结构的极限强度进行预测时,必须考虑分层失效的影响,并且有必要采用优化技术最大程度的降低分层失效发生的可能性。针对以上问题,本文的主要研究内容和取得的成果如下:
     (1)提出了复合材料层合板强度预测的数值模型。采用有限元方法对复合材料层合板进行结构分析,根据Tsai-Wu准则来判断层合板的面内失效,利用APDL编制程序来模拟层合板在加载过程中的逐步失效过程,得到了层合板的极限强度。在此基础上,将实验和有限元分析法相结合来评价层合板的强度,系统研究了准各向同性层合板的极限强度与加载方向(层合结构)之间的关系,对损伤规律以及强度特征进行了预测和讨论。在一定范围内揭示了不同的准各向同性板的内部损伤扩展规律和强度特征,为层合板结构的强度预测,以及复合材料的优化设计提供依据和参考。
     (2)对上述仅考虑面内失效的逐步失效模型进行了改进,建立了同时考虑面内失效和源于自由边界处层间应力的分层失效的强度预测模型和方法。采用改进的数值模型计算得到了多组层合板的分层起始强度以及最终失效强度,计算结果和文献中的实验结果相当符合。相比仅考虑面内失效的逐步失效模型和方法可以更全面的预测层合板的逐步失效过程。这对复合材料失效机理认识的深化,和更加安全可靠地利用复合材料层合结构有着重要的意义。
     (3)针对分层失效由层间正应力主导的特点,构筑了自由边界处层间正应力的最小化问题,建立了相应的模型和数值求解方法。对于实际工程中的高度非线性、多局部极值、目标函数不可导等复杂问题,传统的梯度型优化算法常常存在函数求导困难或不能求导的问题,导致优化问题无法进行。为此,本文首先采用ANSYS自带的零阶优化方法进行求解。该方法只需用到目标函数或约束函数的值,而不需要用到它们的导数。优化结果显示出了一定的精度,然而优化结果具有初值敏感性。为此,本文提出了将智能进化算法PSO和FEM相结合的思想,开发了通用有限元软件和粒子群优化算法之间的接口程序。构造了三类基于层间正应力的目标函数,对层合板的铺层进行了优化。通过与零阶优化方法的比较,论证了提出的优化方法用于复杂工程优化设计问题的可行性和优越性。
     (4)针对新型纤维金属混杂层合板(FML)结构,将传统的经典层合板理论进行了修改和扩充使之适用于FML。分别采用修改的层合板理论和基于ANSYS的数值方法对FML进行了拉伸试验模拟,得到的应力应变曲线与已有文献试验结果相符。采用ANSYS计算层合板在不同荷载下的应力响应,并结合失效准则得到失效因子。以失效因子最大和最小为目标,分别对FML和FRP中的纤维铺层角度进行了优化。基于得到的优化结果对FRP和FML的强度性能进行了比较。结果表明:由于金属层的加入,使得FML相比FRP具备更好的抵抗双向拉伸载荷及面外集中载荷(低速冲击载荷)作用的能力。
By virtue of its excellent properties, such as the high specific strength and high specific modulus, anisotropy and designability, the Fiber Reinforced Plastics (FRP) has been widely used as structure materials in aircraft, space, marine and automobile, etc. Fiber metal hybrid laminate (FML) is a new class of composite material structure arisen in recent years. It consists of thin aluminum alloy sheets bonded together with fiber-reinforced epoxy prepreg. These laminates exhibit favourable characteristics, such as excellent impact properties, fire and corrosion behavior and fatigue properties. These advantages further facilitate the use of FML for primary structures in aerospace industry. In order to guarantee secure use of FRP or FML in aeronautical applications, their strength characteristic and evaluation is of great concern. For a loaded laminate, there are several failure modes among which delamination is a primary failure mode unique to composite laminates. For laminates prone to delaminating, the predicted ultimate failure strength will be overestimated if delamination is neglected. Thus, it is crucial to take the delamination into account when predicting the ultimate failure strength of laminated composites, and it is essential to minimize delamination tendency by optimization technology.
     Aiming at the problems mentioned above, the main contents and achievements in this paper are listed as follows:
     (1) A numerical method for predicting ultimate strength of composite laminates is proposed. The proposed method adopts FEM to conduct structural analysis and Tsai-Wu criterion is utilized to account in-plane failure of laminates. The progressive failure process is modeled through APDL incorporated in ANSYS and the ultimate failure strength of laminates is obtained. The failure characteristics of CF/EP quasi-isotropic laminates are discussed and the effect of loading direction and stacking sequence on the ultimate strength is investigated through experiments and numerical analyses.
     (2) The proposed method above considering only in-plane failure is improved by accounting delamination failure attributed to the interlaminar stresses at the free-edge additionally. The improved method is used to predict the onset strength of delamination and the ultimate strength of various lay-ups. The predicted results show excellent agreement with the experimental results available in literature. Thus, in comparison to the method considering only in-plane failure, the improved method can lead to a more comprehensive failure process. It is of great significance in further understanding the failure mechanism and exploiting laminated composites more safely and reliably.
     (3) Considering that delamination failure is mainly attributed to interlaminar normal stresses, an objective function is presented to minimize the interlaminar normal stresses at the free-edge. In practical engineering problems, optimization may deal with functions which are discontinuous or un-differentiable, highly nonlinear, or multiple local extreme. It makes the optimization problems difficult or even impossible to be solved by traditional methods which require at least the first derivative of the objective function with respect to the design variables. In view of this, the zero-order method (ZOM) incorporated in ANSYS which requires only the value of the objective function and the constraint functions is firstly adopted for optimization. ZOM can yield a satisfactory optimal solution. However, the solutions of ZOM exhibit sensitivity to the initial designs. In order to overcome this disadvantage, a technique of applying an evolution-based optimization algorithm PSO integrated with the general FE code ANSYS is developed for optimization. Examples dealing with the optimization of three different functions of interlaminar normal stresses are presented to demonstrate the feasibility and superiority of the proposed approach.
     (4) Aiming at the new class of composite structure FML, traditional CLT is modified and extended to nonlinear cases. Modified CLT and FEM are utilized to simulate the stress-strain behavior of FML under tensile loading. The simulated stress-strain curves agree well with the experimental results available in literature. Subsequently, ANSYS is utilized to perform the structural analysis of laminates under different loads, and the failure indices are obtained through failure criterions. The maximum and minimum failure index of FRP and FML have been found out respectively via altering the fiber orientations of prepreg layers. Based upon the optimization results, the strength behavior of FML and FRP are compared. The optimization results demonstrate that owing to the substituting of metal alloy sheet for prepreg layer, FML is of better capability to withstanding biaxial load and out of plane concentrating load (low-velocity impact load) than FRP.
引文
[1] 王兴业.复合材料力学分析与设计.北京:国防科技大学出版社,1999
    [2] 王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999
    [3] 毛天祥.复合材料的现状与发展-第十一届全国复合材料学术会议论文集.合肥:中国科技大学出版社,2000
    [4] 王震鸣,杜善义,张恒.复合材料及其结构的力学、设计、应用和评价(第一册).北京:北京大学出版社,1998
    [5] 陈华辉,邓海金,李明.现代复合材料.北京:中国物资出版社,1998
    [6] 罗祖道,王震鸣.复合材料力学进展.北京:北京大学出版社,1988
    [7] 张志民,张开达,杨乃宾.复合材料结构力学.北京:北京航空航天大学出版社,1993
    [8] 沈观林.复合材料力学.北京:清华大学出版社,1996
    [9] 吴人杰.复合材料.天津:天津大学出版社,2000
    [10] Vlot A. Impact loading on fibre metal laminates. International Journal of Impact Engineering,1996,18(3):291-307
    [11] Caprino G, Spataro G, Del Luongo S. Low-velocity impact behavior of fibreglass-aluminium laminates. Composites Part A, 2004, 35:605-616
    [12] S.M.R. Khalili, R.K. Mittal, S. Gharibi Kalibar. A study of the mechanical properties of steel/aluminium/GRP laminates. Materials Science and Engineering A, 2005,412: 137-140
    [13] Vogelesang LB, Vlot A. Development of fibre metal laminates for advanced aerospace structures. Journal of Materials Processing Technology,2000,103:1-5
    [14] Vermeeren CAJR, Beumler Th, et.al. GLARE design aspects and philosophies. Applied Composite Materials, 2003,10:257-276
    [15] Akbar Afaghi-Khatibi, Glyn Lawcock, Lin Ye, Yiu-Wing Mai. On the fracture mechanical behaviour of fibre reinforced metal laminates (FRMLs). Computer Methods in Applied Mechanics and Engineering,2000, 185:173-190
    [16] Davisaon DL, Austin LK. Fatigue crack growth through ARALL-4 at ambient temperature.Fatigue and fracture of engineering materials and structure, 1991,14:939-951
    [17] 曹增强.纤维金属层板及其在飞机结构中的应用.航空制造技术,2006,6:60-62
    [18] Edson Cocchieri Botelho, et.al. A Review on the Development and Properties of Continuous Fiber/epoxy/aluminum Hybrid Composites for Aircraft Structures. Materials Research, 2006, 9(3):247-256
    [19] Reddy, J.N. and Pandey, A.K. A first ply failure analysis of composite laminates. Computers and Structures, 1987,25(3): 371-393
    [20] Reddy YSN, Reddy JN. Linear and non-linear failure analysis of composite laminates with transverse shear. Composites Science and Technology, 1992,44:227-255
    [21] Ray, C. and Satsangi, S.K. A first ply failure analysis of composite laminates. Journal of Reinforced Plastics and Composites, 1999,18(12): 1061-1075
    [22] Prusty, B.G., Ray, C. and Satsangi, S.K. First ply failure analysis of stiffened panels-a finite element approach. Composite Structures,2001,51 (3): 73-81
    [23] Ramtekkar, G.S., Desai, Y.M., Shah, A.H. First Ply Failure of Laminated Composite Plates-A Mixed Finite Element Approach. Journal of reinforced plastics and composites, 2004,23 (3) :291-315
    [24] 王放.复合材料对称层合板的强度预测.西北工业大学硕士学位论文,2004
    [25] Chang Fu-Kuo, Chang Kuo-Yen, A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. Journal of Composite Materials, 1987,21:834-855
    [26] Reddy, Y.S.N and Reddy, J.N. Three-dimensional finite element progressive failure analysis of composite laminates under axial extension. Journal of Composite Technology and Research, 1993, 15(2): 73-87
    [27] Reddy, Y.S.N, Moorthy CMD and Reddy, J.N. Non-linear progressive failure analysis of laminated composite plates. International journal of non-linear mechanics, 1995, 30:629-649
    [28] Sleight D.W. Progressive failure analysis methodology for laminated composite structures. NASA/TP-1999-209107, Washington DC, 20546-0001; 1999
    [29] P. Pal, C. Ray. Progressive failure analysis of laminated composite plates by finite element method. Journal of reinforced plastics and composites, 2002, 21:1505-1513
    [30] Coats, T. W. A Progressive Damage Methodology for Residual Strength Predictions of Center-crack Tension Composite Panels. Ph.D. Dissertation, Old Dominion University, August 1996
    [31] Lo, D. C., Coats, T. W., Harris, C. E., and Allen, D. H. Progressive Damage Analysis of Laminated Composite (PDALC) (A Computational Model Implemented in the NASA COMET Finite Element Code. NASA TM 4724, August 1996
    [32] Coats, T. W., and Harris, C. E. A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels. NASA TM-1998-207646, 1998
    [33] Wang xiangyang, Chen jianqiao. Robust optimum design of laminated composite plates. Acta Mechanica Solida Sinica, 2004, 17(4):315-322
    [34] 王向阳,陈建桥.基于最终失效强度的层合板结构的鲁棒优化分析.机械强度,2004.6:675-679
    [35] 陈建桥,杨能仁,李峰.铺层结构对CFRP准各向同性板损伤破坏的影响.机械强度,2003,5(3):241-245
    [36] 陈建桥,彭文杰等.层合结构对复合材料层合板最终强度的影响.华中科技大学(自然科学版),2006,34(8):91-93
    [37] K-S. Liu, S.W.Tsai. A progressive quadratic failure criterion for a laminate. Composites Science and Technology, 1998,58:1023-1032
    [38] Soden P.D., Hinton M.J., Kaddour A.S. A comparison of the predictive capabilities of current failure theories for composite laminates. Composites Science and Technology, 1998,58:1225-1254
    [39] Hinton M.J., Kaddour A.S., Soden P.D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Composites Science and Technology,2002,62:1725-1798
    [40] Kaddour A.S., Hinton M.J., Soden P.D. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Composites Science and Technology, 2004,64:449-476
    [41] PengWenjie and ChenJianqiao. Numerical Evaluation of Ultimate Strengths of Composites Considering Both In-plane Damage and Delamination. Key Engineering materials,2006,324-325:771-774
    [42] 高洪芬,高建中.复合材料层合结构自由边效应实验研究.玻璃钢/复合材料,2005.3:3-6
    [43] Pipes, R. B., and Pagano, N. J. Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension. Journal of Composite Materials,1970,4:538-548
    [44] Altus E, Rotem A, Shmueli M. Free-edge effect in angle-ply laminates-A new three-dimensional finite difference solution. Journal of Composite Materials,1980,14:21-30
    [45] Lee, S. S. Boundary Element Analysis of the Stress Singularity at the Interface Comer of Viscoelastic Adhesive Layers. International Journal of Solids and Structures, 1998,35: 1385-1394
    [46] Lindemann, J., and Becker, W., Analysis of the Free-Edge Effect in Composite Laminates by the Boundary Finite Element Method. Mechanics of Composite Materials, 2000,36:355-366
    [47] Flanagan, G. An Efficient Stress Function Approximation for the Free-Edge Stresses in Laminates. International Journal of Solids and Structures, 1994,31: 941-952
    [48] Yin, W. L. Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting, Part Ⅰ: A Stress-Function-Based Variational Approach. ASME Journal of Applied Mechanics, 1994,61:410-415
    [49] Webber, J. P. H., and Morton, S. K.An Analytical Solution for the Thermal Stresses at the Free Edges of Laminated Plates. Composites Science and Technology, 1993,46:175-185
    [50] Morton, S. K., and Webber, J. P. H. Interlaminar Failure Due to Mechanical and Thermal Stresses at the Free Edges of Laminated Plates. Composites Science and Technology, 1993,47:1-13
    [51] Rose, C. A., and Herakovich, C. T. An Approximate Solution for Interlaminar Stresses in Composite Laminates. Composites Engineering, 1993,3: 271-285
    [52] Lin, C. C., Hsu, C. Y., and Ko, C. C. Interlaminar Stresses in General Laminates With Straight Free Edges, AIAA Journal, 1995,33:1471-1476
    [53] Wang, S. S., and Choi, I. Boundary-Layer Effects in Composite Laminates, Part 1: Free-Edge Stress Singularities. ASME Journal of Applied Mechanics, 1982, 49:541-548.
    [54] Wang, S. S., and Choi, I. Boundary-Layer Effects in Composite Laminates, Part 2: Free-Edge Stress Solutions and Basic Characteristics. ASME Journal of Applied Mechanics, 1982, 49:549-560
    [55] 张灿辉.非线性杂交应力有限元方法和复合材料层合结构层间效应分析.上海大学博士学位论文,2002
    [56] Yang, H. T. Y., and He, C. C. Three-Dimensional Finite Element Analysis of Free Edge Stresses and Delamination of Composite Laminates. Journal of Composite Materials, 1994,28:1394-1412
    [57] Pageau, S.S., and Biggers, S.B. A Finite Element Approach to Three-Dimensional Singular Stress States in Anisotropic Multi-Material Wedges and Junctions. International Journal of Solids and Structures, 1996, 33:33-47
    [58] Haipeng wu and Xiangqiao yan. Interlaminar Stress Modeling of Composite Laminates with Finite Element Method. Journal of reinforced plastics and composites, 2005,24(3):235-258
    [59] Chaitra L.N. and Donald F. A. An Experimental and Numerical Investigation of the Free Edge Problem in Composite Laminates. Journal of reinforced plastics and composites, 2002,21 (1):3-39
    [60] Mittelstedt, C. and Becker, W. Free-Edge Effects in Composite Laminates. Applied Mechanics Reviews, 2007,60:217-245
    [61] Kant T, Swaminathan K. Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments. Composite Structures,2000, 49:65-75
    [62] Mittelstedt, C. and Becker, W. Interlaminar Stress Concentrations in Layered Structures-Part, 1: A Selective Literature Survey on the Free-Edge Effect since 1967. Journal of Composite Materials, 2004, 38:1037-1062
    [63] J.D. Lee, Three dimensional finite element analysis of damage accumulation in composite laminate. Composite Structures, 1982,15:335-350
    [64] Gerald Kress. Free Edge influence on CFRP-Laminate Strength. International Journal of Damage Mechanics, 1994,3:194-211
    [65] Heung Soo Kim, Maenghyo Cho, Gun-In Kim. Free-edge strength analysis in composite laminates by the extended Kantorovich method. Composite Structures, 2000, 49:229-235
    [66] 王丹勇,温卫东,崔海涛.含孔复合材料层合板静拉伸三维逐渐损伤分析.力学学报,2005,37(6):788-795
    [67] Sang-Gun Joo, Chang-Sun Hong and Chun-Gon Kim. Free Edge Effect on the Post Failure Behavior of Composite Laminates under Tensile Loading. Journal of reinforced plastics and composites, 2001, 20(3): 191-221
    [68] K.I.Tserpes, G.Labeas, et.al. Strength prediction of bolted joints in graphite/epoxy composite laminates. Composites: Part B, 2002, 33:521-529
    [69] Tolson, S. and Zabaras, N. Finite Element Analysis of Progressive Failure in Laminated Composite Plates. Computers and Structures, 1991,38(3): 361-376
    [70] 黄争鸣.复合材料细观力学引论.北京:科学出版社,2004
    [71] Patrick Johnson, Fu-kuo Chang. Characterization of Matrix Crack-Induced Laminate Failure-Part Ⅰ: Experiments. Journal of Composite Materials, 2001,35(22):2009-2035
    [72] Stephen R. Hallett, Wen-Guang Jiang, Bijoysri Khan and Michael R. Wisnom Interaction between transverse cracks and delamination during damage progress in CFRP cross-ply laminates. Composites Science and Technology, 2008,68:80-89
    [73] J. Noh and J. Whitcomb, Prediction of delamination growth and opening near intersection of transverse matrix cracks and delamination. Journal of Composite Materials, 2005,39(15):1335-1352
    [74] T. Okabe, M. Nishikawa, N. Takeda. Numerical modeling of progressive damage in fiber reinforced plastic cross-ply laminates. Composites Science and Technology,2008,8:2282-2289
    [75] 章成器.优化设计方法在工程机械中的应用.上海:同济大学出版社,1993
    [76] 曾昭华,傅祥志.优化设计.北京:机械工业出版社,1992
    [77] 徐锦康.机械优化设计.北京:机械工业出版社,1996
    [78] 王子若,陈永昌.优化计算方法.北京:机械工业出版社,1989
    [79] 陈立周.机械优化设计方法.北京:冶金工业出版社,1995
    [80] 孙国正.优化设计及应用.北京:人民交通出版社,1992
    [81] 万仲平,费浦生.优化理论与方法.武汉:武汉大学出版社,2004
    [82] Fox R L,张建中,诸梅芳.工程设计的优化方法.北京:科学出版社, 1981
    [83] 王凌.智能优化算法及其应用.北京:清华大学出版社,2003
    [84] Holland J H. Adaptation in Natural and Artificial Systems. Michigan: University of Michigan Press, 1975
    [85] Alibeigloo, A., Shakeri, M. and Morowat, A. Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm. Structural Engineering and Mechanics, 2007, 25(6): 637-652
    [86] Paluch, B., Grediac, M. and Faye, A. Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness. Composite Structures, 2008, 83(3):284-294
    [87] Murugan, M.S., Suresh, S., Ganguli, R. et al. Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Structural and multidisciplinary optimization, 2007, 33(2): 131-146
    [88] Naik G.N., Gopalakrishnan S, Ganguli R. Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Composite Structures, 2008, 83:354-367
    [89] Rahul, D., Chakraborty, A. and Dutta. Optimization of FRP composites against impact induced failure using island model parallel genetic algorithm. Composites Science and Technology, 2005, 65:2003-2013
    [90] 任庆生,叶中行.进化计算的收敛速度.上海交通大学学报,1999,33(6):671-673
    [91] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, 2005, 9:43-53
    [92] Kennedy J, Eberhart R C. Particle swarm optimization. IEEE service center, 1995, 1:1942-1948
    [93] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, IEEE service center, Piscataway, NJ, Nagoya, Japan, 1995:39-43
    [94] Kennedy J, Eberhart R C. Swarm intelligence. San Francisco: San Francisco Morgan Kaufmann Publishers, 2001
    [95] Emad Elbeltagi, Tarek Hegazy, Donald Grierson. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, 2005,19:43-53
    [96] Dong Y, Tang J, Zu B, Wang D. An application of swarm optimization to nonlinear programming. Computers & Mathematics with Applications, 2005, 49(11-12):1655-1668
    [97] Hassan R, Cohanim BK, Weck OD, Venter G. A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Austin, TX; 2005
    [98] Zhang LB, Zhou CG, Liu XH, Ma ZQ, Ma M, Liang YC. Solving multi objective optimization problems using particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC),2003
    [99] Suresh, S., Sujit, P.B., Rao, A.K. Particle swarm optimization approach for multi-objective composite box-beam design. Composite Structures, 2007,81: 598-605
    [100] Chen, J.Q., Ge, R. and Wei, J.H. Probabilistic optimal design of laminates by using the improved particle swarm optimization. Engineering Optimization, 2008, 40(8):695-708
    [101] Omkar, S.N., Mudigere, D., Naik, G.N., Gopalakrishnan, S. Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structure. Computers and Structures, 2008, 86:1-14
    [102] Kathiravan, R. and Ganguli, R. Strength design of composite beam using gradient and particle swarm optimization, Computers and Structures, 2007, 81:471-479
    [103] Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73
    [104] Clerc M. The swarm and the queen: towards the deterministic and adaptive particle swarm optimization, in: Proceedings of the Congresson Evolutionary Computation, Washington DC, USA, IEEE Service Center Piscataway, NJ,1999:1951-1957.
    [105] Angeline P.J. Using selection to improve particle swarm optimization. In IEEE World Congress on computational intelligence, ICEC-98, Alaska, 1998:84-89
    [106] 刘金洋.粒子群优化算法的研究与改进.哈尔滨工业大学硕士学位论文,2006
    [107] 汪定伟.一种带有梯度加速的粒子群算法.控制与决策,2004,11(19):1298-1304
    [108] 薛婷.粒子群优化算法的研究与改进.大连海事大学硕士学位论文,2008
    [109] H.W.Nam, W.Hwang and K.S.Han. Stacking sequence design of fiber-metal laminate for maximum strength. Journal of Composite Materials, 2001,35(18):1654-1683
    [110] P.Cortes, W.J.Cantwell. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates. Composites Science and Technology, 2006,66:2306-2316
    [111] Chen JL, Sun CT. Modeling of orthotropic elastic-plastic properties of ARALL laminates. Composites Science and Technology, 1989,36:321-337
    [112] Kawai M, Morishita M, Tomura S, Takumida K. Inelastic behaviour and strength of fiber-metal hybrid composite: GLARE. International Journal of mechanical sciences, 1998, 40:183-198
    [113] Wu G, Yang J.M. Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre-metal laminates. Modelling and Simulation in Materials Science and Engineering, 2005, 13:413-425
    [114] P. Iaccarino, A. Langella, G. Caprino. A simplified model to predict the tensile and shear stress-strain behaviour of fibreglass/aluminium laminates. Composites Science and Technology, 2007,67:1784-1793
    [115] Sinke J. Manufacturing of GLARE parts and structrues. Applied Composite Materials, 2003,10:293-305
    [116] Guocai Wu, Yang J.M. The Mechanical Behavior of GLARE Laminates for Aircraft Structures. Failure in Structural Materials, JOM. New York: Jan 2005,57:1-72
    [117] Ya-Jun Guo, Xue-Ren Wu. Bridging stress distribution in center-cracked fiber reinforced metal laminates: modeling and experiment. Engineering Fracture Mechanics, 1999, 63:147-163
    [118] Lemanski, S.L., Nurick, G.N., Langdon, G.S., Simmons, M.S., Cantwell, W.J., Schleyer, G.K. Understanding the behaviour of fibre metal laminates subjected to localised blast loading. Composite Structures,2006,76:82-87
    [119] Reyes G, Cantwell W.J. The mechanical properties of fibre-metal laminates based on glass fibre-reinforced polypropylene. Composites Science and Technology, 2000,60:1085-1094
    [120] TsaiWu. Composites Design, Fourth edition. Think composite, Dayton, 1988
    [121] Jos(?) Sancho, Antonio Miravete. Design of composite structures including delamination studies. Composite Structures, 2006,76:283-290
    [122] L. Lagunegrand, T. Lorriot, et.al. Initiation of free-edge delamination in composite laminates. Composites Science and Technology, 2006,66:1315-1327
    [123] Withney JM, Nuismer RJ. Stress fracture criteria for laminated composites containing stress concentrations. Journal of Composite Materials, 1974, 18:253
    [124] Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 1988, 22:1141-1155
    [125] Sun CT, Zhou SG. Failure of quasi-isotropic composite laminates with free-edges. Journal of composites technology & research, 1988, 7:515-557
    [126] Chen W.H., Lee S.S., Yeh J.T. Three-dimensional contact stress analysis of a composite laminate with bolted joint. Composite Structures, 1995, 30:287-297
    [127] Kim, R.Y. and Soni, S.R. Experimental and analytical studies on the onset of delamination in laminated composites. Journal of Composite Materials, 1984, 18: 70-80
    [128] Joo, J.W. and Sun, C.T. A failure criterion for laminates governed by free edge interlaminar shear stress. Journal of Composite Materials, 1992, 26:1510-1520
    [129] Singh, S.B. and Ashwini Kumar. Postbulking response and strength of laminates under combined in-plane loads. Composites Science and Technology, 1999, 59:727-736
    [130] Lecuyer F, Engrand D. A methodology for the identification of a criterion for delamination initiation. JNC 8 1992; November
    [131] Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47:329-334
    [132] Sang-Gun Joo, Chang-Sun Hong and Chun-Gon Kim. Free Edge Effect on the Post Failure Behavior of Composite Laminates under Tensile Loading. Journal of reinforced plastics and composites, 2001, 20(3): 191-221
    [133] T Hayashi. Analytical study of interlaminar shear stresses in a laminate composite plate. Trans Jpn Soc Aeron & Space Sci, 1967,17(10) :43-48
    [134] 钱伟长,黄黔,冯伟.复合材料对称层合板单向拉伸与面内剪切下的三维应力分析.应用数学和力学,1994,15(2):95-103
    [135] Ferreira, J.M. and Chattopadhyay, A. Development of a multiobjective optimization procedure for reducing edge delamination stresses in composite plates. Computers & Mathematics with Applications, 1995, 26:81-97
    [136] Lindemann, J. and Becker, W. Optimization of composite laminates under uniaxial tension with respect to the free-edge effect. ZAMM,2001,81:S683-S684
    [137] Lindemann, J., and Becker, W. The tendency for free-edge delamination in laminates and its minimization. Composites Science and Technology,2002, 62:233-242
    [138] Oguz Kayabasi, Bulent Ekici. The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Materials and Design, 2007, 28:2269-2277
    [139] Hasan. Design automation of a laminated armor for best impact performance using approximate optimization method. International Journal of Impact Engineering, 2003, 29:397-406
    [140] Javid Bayandor, Murray L. Scott, Rodney S. Thomson. Parametric optimisation of composite shell structures for an aircraft Krueger flap. Composite Structures, 2002,57:415-423
    [141] Mohammad MasumHossain, Sudhakar G. Jagarkal et al. Design Optimization and Reliability of PWB Level Electronic Package. Journal of Electronic Packaging, 2007, 129:9-18
    [142] 刘晶.基于有限元法及工程选优一体化技术研究.太原理工大学硕士学位论文,2006
    [143] 王学文,杨兆建.大型网架结构参数优化及算法研究.2006年安世亚太用户年会论文
    [144] 杨周妮,吴作伟,雷铁安.ANSYS优化方法与遗传算法在结构优化方面的比较.控制理论与应用,2004,23(7):4-7
    [145] 柯常忠,索海.ANSYS优化技术在结构设计中的应用.煤矿机械,2005.1:9-11
    [146] 吴振亭,唐红莲.基于ANSYS环境的离散变量优化设计.机械,2004,31(4):30-32
    [147] 陈美霞,金宝燕,陈乐佳.基于APDL语言的加筋圆柱壳的静动态性能优化设计.舰船科学技术,2008,30(3):64-69
    [148] ANSYS, 2003. Ansys Theory Reference Manual
    [149] Holland J.H. Adaptation in nature and artifical systems. MIT Press, 1992
    [150] Vogelesang I B, Gnnink J W, Chen D. New Developments in ARALL Laminates.ICAS Proceedings, Jerussalem, 1988:1615-1633
    [151] Davies, G.A.O., Hitchings, D., Wang, J. Prediction of threshold impact energy for onset of delamination in quasi-isotropiccarbon/epoxy composite laminates under low-velocity impact. Composites Science and Technology, 2000,60:1-7
    [152] 彭文杰,陈建桥,魏俊红.考虑逐步失效的层合板低速冲击下分层损伤的数值分析[OL].中国科技论文在线,2008
    [153] Shivaswamy, S., Lankarani H.M. Impact analysis of plates using quasi-static approach. Journal of Mechanical Design, 1997, 119:376-381
    [154] Edgar Fuossa, Paul V. Effects of stacking sequence on the impact resistance laminates-Part 1: parametric study in composite. Composite Structures, 1998, 41: 67-77
    [155] M.F.S.F.de Moura, A.T.Marques. Prediction of low velocity impact damage in carbon-epoxy laminates. Composites: Part A, 2002, 33:361-368
    [156] Jones RM. Mechanics of composite materials. 2nd ed. Philadelphia: Taylor and Francis Publ. 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700